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Abstract  

Undoped and cobalt-doped (1-4 wt%) ZnO polycrystalline, thin films have been fabricated on 

quartz substrates using sequential spin-casting and annealing of simple salt solutions. X-ray 

diffraction (XRD) reveals a wurzite ZnO crystalline structure with high-resolution transmission 

electron microscopy showing lattice planes of separation 0.26 nm, characteristic of (002) planes. 

The Co appears to be tetrahedrally co-ordinated in the lattice on the Zn sites (XRD) and has a 

charge of +2 in a high-spin electronic state (X-ray photoelectron spectroscopy).  Co-doping does 

not alter the wurzite structure and there is no evidence of the precipitation of cobalt oxide phases 

within the limits of detection of Raman and XRD analysis. Lattice defects and chemisorbed 

oxygen are probed using photoluminescence and Raman spectroscopy – crucially, however, this 

transparent semiconductor material retains a bandgap in the ultraviolet (3.30 - 3.48 eV) and high 

transparency (throughout the visible spectral regime) across the doping range. 

Keywords: ZnO; transparent semiconductor; optical materials 
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1. Introduction 

 Controlled synthesis of ZnO nanostructures and thin films and an in-depth understanding of 

their chemical/physical properties and electronic structure are key to the development of ZnO-

based (nano) devices. In particular, in this article we address the synthesis and properties of Co-

doped ZnO as an interesting class of transparent semiconductor with, also, potential functionality 

as a dilute magnetic semiconductor at room temperature. Although it is acknowledged that the 

origin of ferromagnetism in transition-metal doped ZnO is not yet very well understood [1] it is 

nonetheless clear that ZnO is a candidate material for room temperature semiconductor (bipolar) 

spintronics, as evidenced by increasing interest in experimental studies of in this area [2-5]. 

However, optical and electrical properties also play a major role in determining the importance 

and utility of doped ZnO.  The increased functionalities in dilute ferromagnetic semiconductors 

via spin-polarized electron transport opens up various potential applications [6-8]. Moreover, if 

an optically transparent ferromagnetic dilute magnetic semiconductor can be made, then it would 

be attractive for optospintronic applications [9, 10]. In this regard also ZnO is a suitable host 

material as it possesses a large band gap and large excitonic binding energy that lie in the 

ultraviolet region of the spectrum. 

 ZnO has been synthesized in a variety of ways, including pulsed laser deposition [11], 

chemical vapor transport [12],  electrodeposition [13],  co-precipitation [14] and solid state 

reaction [15]. While simpler synthesis techniques that can be performed in ambient environment 

have the attraction of wider accessibility and low-cost it is, of course, very important that the 

(doped) ZnO thus produced is of high integrity, displaying comparable properties and 

competitive functionality with that produced by other means. A popular route in low-cost 

materials fabrication is sol-gel processing where hydrates of the various constituents need to be 
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prepared; this method has been employed to prepare thin films of Co-doped ZnO [16].  In the 

work reported here, however, we have adopted an even more direct methodology based on 

decomposition of metal salts via oxidation at high temperature. The form of the resulting ZnO 

material is generally highly structured on the micro- to nano-scale. In this work the solution-

based methodology leads to a uniform polycrystalline thin film that can serve as a basis for 

subsequent structuring and device fabrication. 

2. Experimental details 

Zinc nitrate and cobalt chloride (both Sigma Aldrich) were used as received with the 

required amounts of these salts being dissolved in ethanol. The solutions were spincast at ~800 

r.p.m. on a quartz slide which was then placed in a furnace at 600 °C for 6 h. Repeating this 

process 10-15 times yields uniform films of thickness nearly 25 nm.  We have investigated four 

concentrations of Co doping 1, 2, 3, 4 wt% along with pristine ZnO.  For convenience we refer to 

these samples as ZC1, ZC2, ZC3, ZC4, and ZnO. Surface morphological studies were performed 

via tapping mode, atomic force microscopy (AFM) using a Digital Instruments, Nanoscope IIIa.  

Field emission transmission electron microscopy (FETEM, operating at 200 kV) measurements 

were made with a Philips Tecnai F20 FETEM and X-ray diffraction (XRD) analysis was carried 

out with a Bruker-AXS D8 4-circle thin film X-ray diffractometer (CuKα = 1.5418 Å) in 

standard -2, Bragg-Brentano configuration.  X-ray photoelectron spectroscopy (XPS) 

measurements were performed at a pressure in the low 10
-6

 mbar range using a Thermoscientific 

Multilab 2000, employing the AlKα line at 1486.6 eV. The binding energy scale was referenced 

to the silver spectrum originating from the silver epoxy used to secure the sample. The peak 

fitting was carried out with Origin 6.1 software where semi-automated background subtraction 

was utilised.  All the peaks were fitted with a single Gaussian curve except those displaying an 
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observable asymmetry – the exceptions were the peaks for the O1s line where a de-convolution 

into two or three Gaussian peaks was performed (see section 3.2.3). No constraints were used in 

the fitting of single peaks, while only the number of peaks was constrained in the multiple peak 

fits, according to the goodness of fit achieved. Optical investigations constituted 

photoluminescence (PL) measurements using a pulsed excitation laser at 355 nm (MPL-355 from 

CNI) and Andor SR163 spectrometer with CCD camera, optical absorption studies using a 

Perkin-Elmer Lambda 850 spectrophotometer and Raman spectroscopy using a lab-built system 

with an input laser at 532 nm (also CNI).  

3. Results 

3.1 Morphology 

AFM images are shown in Fig. 1 for ZC1-4 and these serve to illustrate that the deposited 

films are indeed continuous and of polycrystalline nature. It is noticeable that the more heavily 

doped samples, ZC3 and ZC4, actually possess the better-developed grain structure, with grain 

sizes on the order of 100-150 nm.  This gives an initial indication that, on the local (crystallite) 

scale at least, these samples may possess the better crystalline structure, possibly with fewer 

defects and associated defect signatures. This tentative observation is, in fact, markedly 

confirmed in the Raman spectroscopy data presented below. The variation of grain size from 

sample to sample, and indeed within samples, is likely due to non-uniformity in the evaporation 

process at each spin-casting stage in the film formation. The film morphology itself can be an 

important feature influencing, for example, the fill factor of photovoltaic devices and, in turn, the 

overall device performance. [17] 

 

3.2 Crystal structure and electronic configuration of the constituent atoms 
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3.2.1 TEM analysis 

High resolution TEM (HRTEM) and selected area electron diffraction (SAED) data are shown in 

Fig. 2 for ZC1 and ZC3. In the HRTEM images well-defined boundaries of planes in different 

orientations are observed. The SAED patterns indicate a qualitative difference between the 

samples where that for ZC3 shows well-defined diffraction spots characteristic of a single, well-

defined small crystallite. On the other hand the pattern from ZC1 is rather diffuse, but with 

polycrystalline-type ring structure where the diffracting planes are identified in the SAED 

patterns of Fig. 2. The stronger circles correspond to diffraction from the (100) and (101) planes 

which are also strongly evident in the XRD diffractograms of Fig. 3 for this sample (section 

3.2.2). The better crystalline quality of ZC3 is underscored in the HRTEM image where the 

diffracting planes are parallel over the image (in contrast to ZC1) and the interplanar spacing is 

practically constant at the expected value of 0.26 nm for (002) planes. The SAED pattern for 

ZC3 might reasonably be expected from a single, larger crystalline grain as noted in the AFM 

image of Fig. 2 while the diffuse SAED pattern yielded by ZC1 is qualitatively consistent with 

the much smaller, less well -organized grains shown in the corresponding AFM image. 

 Finally, it is noted in the context of the electron microscopy analysis that estimates of the 

Co concentration using EDX analysis (not shown here) shows that the actual concentration of Co 

is 1.06, 2.05, 3.14 and 4.15% (within a maximum error range of ±10%) for the nominal 1% to 

4% dopant levels used for sample identification here.  

3.2.2 XRD analysis 

The diffraction patterns from ZnO through ZC1-4 are shown in Fig. 3, with the observed peaks 

corresponding to those of polycrystalline wurtzite ZnO, matching JCPDS card No. 89-0510. The 

intensity of (100) and (101) peaks decreases with increasing Co doping in contrast to the (002) 
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peak which remains relatively unaltered with doping. With a smaller atomic structure factor for 

Co than Zn, originating with a smaller number of electrons, it may be expected that the diffracted 

peak intensities become smaller with increasing Co doping. The persistence of the (002) peak is 

taken to indicate a preferential c-axis growth direction for all samples.  

The lattice parameters derived from XRD analysis are given in Table 1. In all cases the 

ratio of the unit cell axis lengths, c/a, is ~1.60 which is characteristic of the wurtzite ZnO 

structure. Further, the unit cell volume is denoted in Fig. 3. For the case of the doped samples, 

ZC1-4, the average unit cell volume of 46.72 Å
3
 is ~4% less than that for undoped ZnO. Such a 

decrease is characteristic of substitution of the Zn
2+

 ion by the smaller radius Co
2+

 ion in 

tetrahedral configuration. [18] The slight increase in the unit cell volume for ZC3 and ZC4 

relative to ZC1 and ZC2 may be indicative of Co
2+

 ions occupying interstitial sites in these more 

heavily doped samples.  

The argument based on a small reduction in unit cell volume, combined with the lack of 

explicit observation of peaks corresponding to metallic cobalt or cobalt oxide phases gives 

support for the dominant substitutional inclusion of Co
2+

 on Zn
2+

 sites.  In addition to the XRD 

data as presented in figure 3 we note that peaks for Co metal (~44.4°), Co3O4 (31.25°, 36.75°, 

65.25°) or for CoO (42.5°, 62.25°) are not evident on a logarithmic scale or in terms of distorting 

the shape or increasing the full-width-half-maximum of the (100) and (101) diffraction peaks 

(very close to the 31.25° and 36.75° values for Co3O4 ) for ZnO when the diffractograms are 

examined on an expanded angle scale. However, the existence of very small Co nanoparticles 

cannot strictly be excluded by XRD data; while nanoparticles of ~5 nm diameter have yielded a 

distinct peak at ~44.4° in XRD [19], such particles of 3 nm diameter have been evidenced in 

atom probe tomography while leaving no signature in X-ray diffractograms [20]. It should be 
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remarked, though, that such metallic nanoparticles tend to be a feature of preparation by pulsed 

laser deposition [19, 20], rather than the crystallisation from solution method employed here. The 

final point of interest from the XRD data is that the Debye-Sherrer formula yields approximate 

grain sizes that are broadly in line with those obtained from the AFM images. 

3.2.3 XPS 

Core level XPS studies can reveal charge-transfer effects between Zn and Co, thus allowing 

determination of the oxidation state of Co in the host matrix. Fig. 4 depicts the core level spectra 

of (a) the whole scan range for all elements, (b) Zn2p, (c) Co2p and (d) O1s. The chemical states 

of the metallic elements present were analyzed by de-convoluting the spectra by means of fitting 

with Gaussian functions (not shown here). Starting with the Zn2p state the notable feature is its 

doublet nature, corresponding to Zn2p3/2 and 2p1/2 at ~1029 and ~1052 eV respectively. The spin 

orbit splitting is approximately constant for all samples at ~23.0 eV and the ratio of the areas 

under the peaks is close to a constant ratio of 3:2 as expected. However, there is some small 

variation in binding energy (BE), with the net consequence that the spin orbit splitting actually 

tends to increase slightly with Co content. A change in BE has been discussed in terms of 

electron transfer from the Zn4s level to the unfilled, high charge density Co3d level, which is an 

energetically favorable process [21-23]. Broadening of the Zn2p3/2 and 2p1/2 peaks for ZC1-4 

relative to undoped ZnO – by ~350 meV on average for the Znp3/2 state and ~270 meV for Znp1/2 

(see Table 1) - is indicative of either variation in the surface potential or the finite life time 

associated with a hole being filled by an electron from another shell. 

A key point is the existence of shakeup satellites (denoted ‘S’ in Fig. 4) seen on the high-

energy side of the core levels. In particular, this is significant for the case of the Co2p spectra 

since these constitute evidence for the existence of Co
2+

 ions. Comparison of the shapes and 
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positions of the primary and satellite peaks (Fig. 4c) shows that there is a good fit between the 

ZC1-4 films and the Co
2+

 standard [3, 5]. The spectra depict the characteristic peaks for Co2p3/2 

and Co2p1/2 (Table 1), along with satellite peaks (~795 and ~812 eV) which are specifically 

connected with the +2 ionic state of Co [14, 24]. Taken together with the absence of XRD peaks 

corresponding to a Co-related phase this constitutes supporting evidence for Co in its oxidized 

(+2) state in the host lattice and substituted into the Zn
2+

 sites. Hence we conclude that Co exists 

in a high spin divalent state (3d
7
, S=3/2), rather than metallic phase and is well incorporated into 

the ZnO lattice. 

While the BE values for the Co dopant here are comparable to those of Co coordinated in 

an oxide lattice such as CoO, Co2O3 or Co3O4 [25], it is also noted that there is some small 

variation of the spectral line shapes and peak BE indicating that the local electronic structure of 

the Co impurities in ZnO depends (weakly) on doping concentration. The spin orbit splitting of 

Co2p is close to literature values [14, 26], confirming the absence of metallic phase Co, but  

decreases slightly with doping (Table 1). The intensity of the Co2p3/2 peak for ZC1 with respect 

to the satellite peak is low due to the small amount of Co embedded into ZnO lattice [23]. As the 

Co wt% increases the intensity of the main 2p3/2 peak relative to the satellite increases, while the 

ratio of the areas under the main peaks (2p3/2, 2p1/2) remains approximately constant. 

Asymmetric peak structure is observed in the O1s spectra for all the films (see Table 1).  For 

ZnO the asymmetric peak is resolvable in to three components lying at 539.5, 540.8 and 541.0eV 

(see Table 1). The main peak at 539.5 eV can be attributed to oxygen incorporated in the ZnO 

lattice, whereas the two shoulders may be attributed to chemisorbed oxygen [27]. However, the 

O1s peaks for ZC1-4 can all be fitted well with only two Gaussian curves, peaked at (averaged) 
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values of 538.9 and ~540.8 eV (Table 1) where the latter is the more intense, indicating a greater 

presence of chemisorbed oxygen. 

3.3 Optical characterisation and defect analysis 

3.3.1 Optical absorption 

The transparent nature of ZnO is a distinctive and critically important feature of this 

semiconducting material as outlined in the introduction, so it is important to confirm that it is not 

compromised with Co doping. Fig. 5, which shows room-temperature UV-visible absorption 

spectra of Co-doped ZnO films along with that for pristine ZnO, indeed offers such confirmation.   

Moving from the visible to the UV region (350-400 nm), the onset of heavy absorption is 

associated with the interband transition in the material. Unusually, though not uniquely, for the 

case of the undoped ZnO the main absorption edge exhibits some structure [28, 29]. However, 

the important point to note is that, for all samples, the onset of significant absorption remains 

below ~400 nm wavelength ensuring excellent transparency (average of <0.1 absorbance) across 

the visible range.  

Assuming a direct interband transition, a plot of (-lnT  hν)
2
 against hν, (T-transmission, 

h-Planck’s constant, ν-frequency in Hz ; graphs not shown here) yields values for the band gap, 

Eg, as quoted in Table 1. These increase from 3.30 eV for undoped ZnO to ~3.43 eV for ZC1 and 

appear to saturate at ~3.47/8 eV for ZC2-ZC4. This increase in band gap with increasing Co 

doping is in contrast to the decrease found in Co-doped ZnO films prepared by sol-gel [16] and 

hydrothermal [30] techniques, although in both cases the doping extended to higher levels than 

in this study. By contrast, but in common with the data presented here, an increase of band gap 

has been reported with increased concentration for the cases of Co [19, 31] and Ga [32] dopants.  

This blue-shift phenomenon may be understood in terms of the Burstein-Moss effect [33]. Also, 
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alluding forward to the PL data of section 3.3.2 it is interesting to note that, in the work by 

Makino et al. [32], the shift of band gap to higher energies is not tracked by the centre-

wavelength of the PL, a feature which we also find here and in our previous work on similarly 

prepared nanowires [29].  

The optical absorption spectrum of Fig. 5 shows a minor feature at ~500 nm which may 

be instrumental in origin, but displays no evidence of absorption peaks at 570, 615 and 655 nm 

characteristic of ionic Co, such as observed by Ivill et al.[19], Bouloudenine et al. [30] and H 

Ndilimabaka et al. [34].  That these peaks (which are of the order of 0.01 on the absorbance 

scale) are not observed in our data is not surprising since the samples we report on have at least 

an order of magnitude less Co content than those in the cited works on account of their relatively 

low Co concentration and small thickness. 

 

3.3.2 Photoluminescence  

 The PL response of the undoped and Co-doped ZnO films is shown in Figure 6 where the 

inset depicts a magnified view from 3.35-3.05 eV. Although samples of all doping levels show 

an exciton band with the peak of the emission at values in the range 3.22 to 3.26 eV, consistent 

with values in the literature [35], it is noticeable that PL due to this transition becomes heavily 

attenuated with increasing Co doping. We consider that this effect is connected with the greater 

level of chemisorbed oxygen on the cobalt-doped samples, as indicated from the XPS data 

relating to the O1s peak (Fig. 4d). Chemisorbed oxygen takes ups or effectively traps electrons 

from the ZnO, leading to a depletion layer in the semiconductor material. These electrons are 

thus no longer available for exciton formation and subsequently for electron-hole recombination 

and this in turn leads to a decrease in PL of excitonic origin. The role of chemisorbed oxygen has 
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been well studied in the context of ZnO-based devices [36] where its presence has been noted as 

reducing exciton emission; however, the main issue in that context comprises the long time 

constants involved in device photoresponse due to charge trapping in the chemisorption process. 

 Considering next the visible spectral range, we note that while it has been reported that PL 

decreases with increasing Co doping [37] significant PL persists in Co-doped ZnO samples of 

various types [14, 23, 29, 38].  Starting at the short-wavelength end of the visible, a violet band, 

centered at 2.96 eV, due to zinc interstitials (Zni) appears in the case of the ZnO film. Like the 

main exciton band at 3.23 eV, this band is suppressed, though less significantly, upon doping 

(cases ZC2-ZC4) - the intensity ratio, PL3.24/PL2.98, is given in Table 1 for all samples – where 

the violet peak shifts to marginally higher energy (2.98 eV). This feature can be attributed to 

band edge exciton transitions [23, 39], specifically from the strong sp-d exchange interactions 

between the band electrons and the localized electrons of the Co [14, 23]. The PL evident in the 

region of 2.85 eV, in only the case of ZC1, is due to transitions from Zni to Zn vacancy (VZn).  

 Continuing towards lower energies it is generally accepted that the PL centered at ~2.35 eV 

is due to oxygen vacancies (VO). While this is weak in the case of the pure ZnO sample, it is 

clear that a more significant level of VO has been introduced in the doping process, as evidenced 

by the strong PL centred at 2.34 eV in the case of all the doped samples. This PL is due to the 

transition of photogenerated electrons from a deep level below the conduction band (associated 

with the VO) to a deeply trapped hole [23, 40]. On the matter of the imperfect incorporation of 

oxygen in the lattice a very weak band at 1.98 eV, due to oxygen interstitials (Oi), can be noticed 

for the case of ZnO. The intensity of this PL band decreases for the case of ZC1 and disappears 

for higher dopings. This removal of Oi from the material appears to be a consistent concomitant 

of the increased density of VO’s. 
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The intensities of visible bands of PL are often referenced to that in the UV (due to exciton 

emission) as a measure of crystal defect density and this has been carried through in Table 1 for 

comparative purposes. However, in the case of the samples studied here such a ratio – or rather 

its inverse - is a measure of internal lattice defects relative to the occurrence of chemisorbed 

oxygen, rather than any meaningful measure of ‘crystallinity’.  In any case it is clear that for 

ZC1-4 there is significant emission in the green-red regime (wavelength 475 – 600 nm or energy 

2.6 - 2.1eV), a feature that has important bearing on the wavelength selective photoresponse of 

ZnO-based detectors [41-44]. 

3.3.3 Raman Spectroscopy 

Raman spectroscopy is a versatile technique for detecting dopant incorporation and the 

resulting defects and lattice disorder in a host lattice, especially in relation to the detection of 

material segregations or secondary phases in the dopant system. Fig. 7 shows composition-

dependent room temperature Raman spectra of the films with the various modes and their 

designations annotated. The most prominent peaks are those at 241 cm
-1 

and 439 cm
-1

 E2 (high), 

where there is some quite remarkable contrast between the samples.  The latter branch is 

characteristic of a wurtzite crystal structure [18] of high crystalline integrity. This band is 

suppressed in samples ZC1 and ZC2, indicating reduced crystallanity [1], while the more heavily 

doped samples, ZC3 and ZC4, show significant retrieval of the intensity level of pristine ZnO. 

The suppression of the 439 cm
-1

 peak is likely due to the presence of strain in the material. Hays 

et al. [37] observed a progressive attenuation of the E2 mode with increasing Co concentration in 

ZnO which they attributed to increased strain induced by an increase in the density of Co 

occupying interstitial sites. Here, however, with the less heavily doped samples (ZC1 and ZC2) 

displaying attenuation of the 439 cm
-1

 peak, we suggest that in these cases the origin of the strain 
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is at the interface between the substrate and the thin samples. Arguably this is also manifest in 

the less well developed grain structure of samples ZC1 and ZC2 compared to samples ZC3 and 

ZC4 (Fig. 1 and 2). 

The band at 241 cm
-1

 is not readily identified, but we note that there is a peak in the 

calculated phonon density of states for ZnO at this wavenumber [45] although it appears that this 

is not normally observed. Indeed, there is no occurrence of a Raman peak at precisely this 

wavenumber in an extensive catalogue of (transition and other) metal compounds [46] but it is 

interesting to note that a strong peak has been observed at 240 cm
-1

 in nanophase TiO2 [47] 

which was not clearly identified but was attributed to a long range order effect, occurring when 

bands known to be characteristic of the crystal structure were strong. This is the case here, where 

for samples ZC3 and ZC4, the 241 cm
-1

 band displays virtually full recovery of the ZnO level, 

while ZC1 and ZC2 show almost no discernible feature at this wavenumber. In summary, the 

better quality crystalline behavior of samples ZC3 and ZC4 that is evident in the SAED patterns 

is manifestly emphasised in the Raman spectra. The next most prominent feature is centered at 

547 cm
-1

, which is attributed to donor defects such as VO’s or Zni’s [18, 48] and, consistent with 

the evidence of PL where green (~2.35 eV) emission indicates VO’s, is least developed for the 

case of undoped ZnO. These defects, which are bound to tetrahedral Co sites, give rise to a 

quasi-longitudinal optical phonon mode and are pertinent to the discussion on magnetic 

properties (section 3.3.3.1) 

In addition, other modes such as 2E2 (low) (330 cm
-1

) and A1 (TO) (370 cm
-1

) are 

observed. The broad peak centered at ~330 cm
-1

 corresponds to the second order phonon mode 

of 2E2 (low) due to zone boundaries [49]. A very weak feature at 472 cm
-1

 due to surface phonon 

modes [1] is also present. The disappearance of some of the phonon modes of ZnO, e.g. that at 
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330 cm
-1

, for low Co doping levels reflects the distortion of the local atomic arrangement around 

the magnetic impurities. Nevertheless, in XRD it was possible to still observe wurtzite structure 

for all doping levels. Finally, it is notable that there are no peaks corresponding to Co oxides 

indicating segregation-free ZnO. Also, there are no Co-induced shifts in the main Raman peaks 

which is evidence that the doping has not given rise to significant strain on the host lattice. 

3.3.3.1 Comment on magnetic properties with reference to Raman data 

 For this part of the investigation samples ZC3 and ZC4 were selected because of their 

higher Co-doping density and better crystalline quality as evidenced on the basis of electron 

diffraction and Raman results. They were tested in a magnetic field of field strength in the range 

± 10
4
 Oe that was available to us, but the response appears to be essentially paramagnetic in 

nature. We consider this aspect of the study with reference to the work of Singhal et al. [50] in 

which it was noted that a ferromagnetic response did not develop in Co-doped ZnO nanocrystals 

until the Co doping reached higher levels – namely, samples with 5 or 7 wt% of Co in that case. 

They interpreted their results in the framework of a bound magnetic polaron mechanism 

proposed by Coey et al. [51, 52].  This requires a high density of donor defects, specifically VO 

and Zni in the present context, which overlap to form a donor impurity band that interacts with 

local magnetic moments through the formation of bound magnetic polarons. When both the 

magnetic impurities are of sufficient density and the bound, finite-radius polaron states overlap 

to form a continuous chain in the material, then ferromagnetism is mediated. It is interesting to 

note that only when the Raman band at 546 cm
-1

 (547 cm
-1

 in our spectra), i.e. the signature of 

VO’s and Zni’s, is of greater intensity than that at 437 cm
-1

 (439 cm
-1

 in our spectra) that 

ferromagnetism is observed [50]. When the opposite is true, as is the case for samples ZC1-4 

here, then ferromagnetism is not present. Thus, while ferromagnetic behavior is not observed in 
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the samples of this study, its absence may be rationalised with reference to the recorded Raman 

spectra and the bound magnetic polaron model developed by Coey et al. [51, 52]; equally, the 

potential to develop such desired behavior at slightly higher Co doping is promising. 

 

4. Summary and conclusions 

 A simple solution-based growth technique has been reported for the fabrication of thin, 

Co-doped (1-4 wt%) ZnO and undoped ZnO films. Generally good quality wurtzite structure was 

confirmed by XRD, while SAED showed high single-crystal integrity on a local scale from 

samples ZC3 and ZC4 which, according to AFM imaging, had large (>100 nm) grain structure; 

the smaller-grained samples, ZC1 and ZC2, yielded typical polycrystalline diffraction ring 

SAED patterns. Also, for ZC3 and ZC4, TEM images illustrated well-oriented lattice planes of 

interplanar spacing 0.26 nm, characteristic of (002) planes, while the (002) peak in the XRD 

scans remains the most prominent peak as the Co-doping increases. The smaller unit cell volume 

for the doped samples, extracted from XRD data, is indicative of Co
2+

 substitution of Zn
2+

 in the 

lattice while XPS analysis gave evidence of Co in a high-spin, +2 oxidation state. There is no 

evidence of the segregation of cobalt metal or cobalt oxide phases within the limits of detection 

of Raman spectroscopy and XRD analysis. 

A crucial aspect of the study is the defect analysis where PL spectra show clear evidence 

of VO in the doped samples, Zni and some Oi in the case of undoped ZnO. Despite such defects 

the material retains very good transparency across the doping range with a bandgap that 

increases from 3.30 eV for undoped ZnO to close to 3.50 eV for the more heavily Co-doped 

samples. Also, it appears that the greater levels of chemisorbed oxygen that are inferred from the 

XPS data for the O1s peak for doped samples ZC2-ZC4 (and to a lesser extent ZC1) act to 
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quench the ultraviolet (exciton) PL due to electron trapping. The lack of ferromagnetic behavior 

is attributed to an insufficient density of impurity states (as evidenced in the Raman spectra) and 

of magnetic impurities in the framework of a bound magnetic polaron picture. 

 To conclude, undoped and doped ZnO polycrystalline, thin films have been fabricated on 

quartz substrates using sequential spin-casting and annealing of simple salt solutions. The Co is 

well incorporated in the lattice i.e. is tetrahedrally coordinated on the Zn sites and of charge +2 

in a high spin electronic state, without altering the wurzite structure and there is no detectable 

evidence of the precipitation of cobalt oxide phases within the scope of the characterisation 

techniques employed here. The samples retain high transparency with increasing doping but do 

not develop a ferromagnetic response. 
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Figure Captions 

Figure 1. Tapping mode AFM images of Co-doped ZnO films. ZC1-4 denote Co-doped ZnO 

samples with 1 to 4 wt% Co respectively. 

Figure 2. HRTEM images (left) of samples ZC1 and ZC3 (Co-doped ZnO with 1 and 3 wt% Co 

respectively), and corresponding SAED patterns (right).  

Figure 3. XRD patterns of ZnO and Co-doped ZnO samples. ZC1-4 denote Co-doped ZnO 

samples with 1 to 4 wt% Co respectively. 

Figure 4. XPS spectra for Co-doped ZnO (a) whole scan range, (b) Zn2p, (c) Co2p, (d) O1s. 

Satellite peaks are denoted by ‘S’. ZC1-4 denote Co-doped ZnO samples with 1 to 4 wt% Co 

respectively. 

Figure 5 Room-temperature UV-visible absorption spectra for ZnO and Co-doped ZnO samples. 

ZC1-4 denote Co-doped ZnO samples with 1 to 4 wt% Co respectively. 

Figure 6  Photoluminescence spectra from ZnO and ZC1-4 under excitation of laser input at 355 

nm. ZC1-4 denote samples with 1, 2, 3 and 4 wt% Co respectively.  

Figure 7.  Raman spectra of Co-doped ZnO thinfilms compared with ZnO; excitation was by 

laser operating at wavelength 532 nm.  ZC1-4 denote samples with 1, 2, 3 and 4 wt% Co 

respectively. 

Table 1. Consolidated data values for undoped ZnO and for the various cobalt-doped ZnO 

samples, ZC1-4, where the number indicates the wt% doping of Co. BE = Binding energy; PL 

refers to the intensity of a photoluminescence peak where the numerical subscript is the peak 

position in eV.  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 20 

 

Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Table 1. Consolidated data values for undoped ZnO and for the various cobalt-doped ZnO 

samples, ZC1-4, where the number indicates the wt% doping of Co.  BE = Binding energy; PL 

refers to the intensity of a photoluminescence peak where the numerical subscript is the peak 

position in eV.  

Technique and Parameters measured Sample 

  ZnO ZC1 ZC2 ZC3 ZC4 

XRD a (Å) 3.263 3.227 3.212 3.220 3.222 

 c (Å) 5.229 5.135 5.162 5.146 5.165 

XPS All units in eV      

 FWHM for Zn2p3/2 1.80 2.01 2.30 2.10 2.20 

FWHM for Zn2p1/2 2.04 2.12 2.40 2.21 2.51 

 Shift in BE w.r.t. ZnO  - 0.90 0.025 1.66 1.50 

 Peak energy, Co2p3/2  - 789.01 789.63 788.69 788.59 

Peak energy Co2p1/2  - 805.28 804.87 803.91 803.71 

 Spin orbit splitting  16.27 15.24 15.22 15.13 

 O1s  - lattice 539.5 538.2 539.8 538.5 539.1 

 O1s  - chemisorbed 540.8 

541.0 

541.0 541.4 540.6 540.9 

Optical λ0 (nm) 365.2 356.1 374.7 371.2 376.0 

absorption hνonset (eV) 3.395 3.482 3.309 3.341 3.298 

 Eg (eV) 3.5 3.48 3.52 3.52 3.53 

 FWHM (nm) 14 9 6 4 3 

Photo- 

luminesence 

PL3.24/PL2.98 5.3 

 

1.2 0.2 0.5 0.6 

Intensity 

ratio 

PL3.24/PL2.35 16.7 0.4 0.03 0.06 0.07 

 PL3.24/PL2.03 6.25 1.4 0.4 0.7 0.6 
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Highlights 

 

 Simple solution-based method for the fabrication of Co-doped ZnO thin films. 

 Evidence for Co substitution on Zn sites in +2 oxidation state. 

 ZnO, with up to 4% Co doping, retains high transparency across visible spectrum. 

 Quenching of exciton photoluminescence linked to chemisorbed oxygen in Co-doped ZnO 


