Ultrashort NSAID-conjugated Peptides as Bifunctional Nanomaterials

Document Version:
Other version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2016 The Authors

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Ultrashort NSAID-conjugated Peptides as Bifunctional Nanomaterials

Alice McCloskey
School of Pharmacy
Biofunctional Nanomaterials Group
Outline

1. Ultrashort peptides
2. Self-assembling peptides
3. Ultrashort self-assembling antimicrobial peptides
4. NSAID-conjugated self-assembling peptides
What are Ultrashort Peptides?

• Ultrashort = 4-7 amino acids
• Cationic = net positive charge (+2)
• Cost effective → Upscale → Translational potential → Patient
• Numerous advantages including:
 – ↑ chemical versatility
 – ↓ immunogenicity
 – Tunable biocompatibility + biodegradability
 – Tailored self-assembly/pharmacological properties
 – Antimicrobial = innate immune response
 – Nanotechnology
Self-assembling Peptides

Peptide Amphiphiles (Stupp)

α-helices/ Coiled coils (Woolfson/ Tirrell)

β-sheets (Agelli/ Collier)

β-haripins (Pochan/ Schneider)

Short Aromatics (Xu/ Gazit/ Ulijn)
Core Technology

Self-assembled Peptides → Stimuli → Assembly → Peptide Hydrogels

- pH
- Light
- Temperature
- Ionic Strength
- Specific enzymes

Short peptide sequences
External stimuli
Hydrophobic: Hydrophilic → Hydrogel (critical gelation concentration)
Biofunctional Nanomaterials Utilising the Building Blocks of Life!

Infection and Medical Devices

Wound healing

Drug Delivery

Stem Cells/Regenerative medicine
Planktonic vs. Biofilm Bacteria

- Planktonic form: Free floating in liquid
- Biofilm form: sessile, composed of aggregated microcolonies of cells surrounded by a protective extracellular polymeric matrix
- Mature biofilms can resist 10-1000 times the concentrations of standard antibiotic regimens that are required to kill genetically equivalent planktonic forms

P. Dirckx, Centre for Biofilm Engineering, Montana State University, Bozeman

Biofilms in the Environment and Medicine

Biofilm growth on rocks in a stream (USGS) and within a kitchen pipe (MSU Center for Biofilm Engineering).

SEM Pseudomonas aeruginosa, shown here attached to an implant surface, is one of many resistant microorganisms.

University of Illinois researchers tested a prototype of a new device that can see biofilms behind the eardrum to better diagnose and treat chronic ear infections.
Antimicrobial Resistance

- Healthcare associated infections
- Medical devices: reservoir for “superbugs”
- Chronic wounds
- Persistent burden on:
 - Patient morbidity & mortality
 - Family and carers
 - Healthcare budgets

Superbugs 'Could Send UK Back To The Dark Ages'

Action is needed to stop the world entering a post-antibiotic era in which common infections and injuries can kill, say experts.
Rational Design of Antimicrobial Peptide Motif vs Self-assembly

<table>
<thead>
<tr>
<th>Antimicrobial Activity</th>
<th>Propensity to Self-assemble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrophobic/Hydrophilic (Charge) ratio (more important with regard to antimicrobial activity than size)</td>
<td>Hydrophobic/Hydrophilic balance</td>
</tr>
<tr>
<td>Interactions with microbial extracellular membranes</td>
<td>Non Covalent intermolecular interactions (e.g. Van der Waal’s, (\pi-\pi) stacking)</td>
</tr>
<tr>
<td>Interaction with intracellular targets/processes (DNA, RNA, enzymes, protein synthesis)</td>
<td>Ability of peptide to form hydrogen bonds with each other and with water</td>
</tr>
</tbody>
</table>

Self-assembled Ultrashort Peptide Gels

- Successful library of ultrashort peptides: self-assembled at physiological pH
- \((X_1\text{-FF-}X_2)\)
- Hydrophobicity: naphthalene (Nap) grouping (at \(X_1\)) and varying quantity of phenylalanine (F) in primary structure
- Minimum of 2 charged units required for antimicrobial activity
- Primary amine group provides cationic charge
- Cationic amino acids vary by number of methylene units on R-group

Dual Antimicrobial Anti-inflammatory Nanomaterials

- Hydrophobicity provided by NSAID structure
- High in aromaticity
- Display self-assembly and gelation characteristics
- Potential applications in chronic infected wounds

Confirmation of β-sheet Hydrogel Networks

Oscillatory rheology

FTIR
Dual action

Antimicrobial

Percentage reduction of mature 24h biofilm treated with 2% w/v NSAID-conjugated hydrogels utilizing an alamarBlue assay.

Anti-inflammatory

Percent inhibition of COX 1 and 2 enzyme by NSAID self-assembled hydrogels and by the model COX inhibitor DuP-697 using a COX Fluorescent Inhibitor Screening Assay Kit.
Conclusion

• Developed a library of ultrashort self-assembling bifunctional peptides
• Vast potential for use against Biomaterial/Medical Device/Implant Infections
• Wound healing/surgical gel: Increased healing as mimics natural tissues
• Platforms/vehicles to deliver existing antimicrobials, extend spectrum of activity to Gram-negatives
• Translatable and economically friendly form of nanotechnology for patient benefit
Acknowledgements

• Dr Garry Laverty & Professor Brendan Gilmore
• Sophie Gilmore (Sfam: Students into Work): PhD Oct 2016
• Lab M105

The Xu Group, School of Chemistry, Brandeis.

The Adams Lab, Department of Chemistry, University of Liverpool

amccloskey16@qub.ac.uk
http://lavertylab.weebly.com