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ABSTRACT: The skin is the part of the body that is the most exposed to toxic
substances; therefore, the impact of chemicals on the skin should be thoroughly
studied prior to their implementation in any industrial-scale application. Herein, we
examined and analyzed the influence of the structure of both the cation and anion
of 31 different ionic liquids (ILs) on their cytotoxicity against normal human
dermal fibroblasts in the context of their present and future potential applications.
We found that imidazolium-based ILs combined with dialkyl phosphate anions or
with the ethyl sulfate anion are the least cytotoxic. Notably, 1,3-diethylimidazolium
ethyl sulfate can be potentially used as a hydraulic fluid similar to the commercially
available hydraulic medium based on 1-ethyl-3-methylimidazolium ethyl sulfate.
Moreover, the dialkyl phosphate-based ILs are considered as an efficient solvent for
the utilization of lignocellulose-based biomass and as an extractant in eco-friendly
and cost-effective processes for the extraction of bioplastic. Pyrrolidinium-based
and cyano-based ILs, often used as heat transfer media and base fluids for ionanofluids, were also identified herein as good
candidates based on their relatively low toxicity compared to other ILs.

KEYWORDS: toxicity, cytotoxicity, skin cells, ionic liquids, ionic liquids applications

■ INTRODUCTION

Ionic liquids (ILs) have achieved great success due to their
unique features such as high chemical and thermal stability and
low vapor pressure, and also because they are non-explosive,
nonflammable, and much more. This has resulted in a huge
number of applications also on an industrial scale, e.g., biphasic
acid scavenging utilizing ionic liquids (BASIL) and cellulose
dissolutionBASF company; hydraulic ionic liquid compres-
sorLinde Group (world-leading gases and engineering
company); TEGO1 Dispers (paint additives) and hydro-
silylation processDegussa company; batteriesPionics,
NantEnergy, NOHMs Technologies; and isomerization
processEastman Chemical Company.1,2 Because of the
extensive use of ILs in academic research and the chemical
industry, and due to their high stability and noticeable
solubility (especially in water), their environmental impact
cannot be avoided. Ionic liquids used to be called “green
solvents″3 due to their negligible vapor pressure. Conse-
quently, they are usually less volatile than most classic organic
solvents and do not pollute the air. However, ILs may be
potential water and soil pollutants, especially during opera-
tional discharges or accidental leaks, and hence, their general
toxicity plays a crucial role.4−6 While many ILs have proven to
be toxic, and in some cases, more toxic than common organic

solvents, there has still not been enough attention paid to the
effects of ILs on humans and the environment.7−9

To date, the toxicity of ILs has been studied, for example,
against microorganisms (yeast, fungi, and bacteria), algae,
plants, vertebrates, and invertebrates.10 Note that the toxicity
of ILs is dependent on the structure of the cation and anion,
and study of the effect of each structural element on the
toxicity of IL is required for designing low-toxic or even
nontoxic ILs. This is especially important because the same IL
may have various effects on different organisms and cell lines,
and new experimental data are in fact needed. In some cases,
the available data is sufficient to predict the toxicity of ILs only
on the basis of the structure of cations and anions, e.g., Jafari et
al.11 derived and subsequently verified a chemical toxicity
estimation model of Vibrio fischeri based on EC50 values (EC50
is the efficient concentration of the studied sample resulting in
50% of reduction on processes, such as growth or reproductive
activity) for 187 ILs (250 experimental points) and,
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Table 1. Full Names, Acronyms, Chemical Structures, Purities, and Water Contents of the Examined Materialsa,b,c,d,e
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importantly, the authors obtained a satisfactory compliance.
Nevertheless, the database necessary to achieve acceptable
results must be very large.
Recently, increasing amounts of cytotoxic data were

obtained for mammalian cell lines, namely normal murine
fibroblasts,12 normal human keratinocytes and fibroblasts,13 as
well as human cancer cell lines.14−16 In the studies mentioned
above, mainly IC50 values (IC50 is the inhibitory concentration
of the examined material causing 50% inhibition of the activity
of biochemical or biological systems) were applied to estimate
the IL cytotoxicity. In most cases, the authors examined ionic
systems with halide anions (for example, with bromide [Br]−

or chloride [Cl]− anions). Generally, in all tested cell lines, it
was found that ILs with short alkyl chains attached to the
cation have weaker biological effectiveness compared to those
with long apolar alkyl chains. Łuczak et al.17 postulated that the
alkyl chain length in the cation plays a crucial role in the
biocidal activity of ILs and the type of anion has a significantly
smaller impact. It should be mentioned that the effects of
anion on toxicity have been less frequently studied and,
additionally, the current studies are not wholly consistent with
each other on this topic. Concomitantly, some studies
involving ILs with a large variety of anions showed a relatively
strong effect of anions on the IL toxicity,18,19 i.e., ILs
containing [Cl]−, [Br]−, tetrafluoroborate [BF4]

−, and
hexafluorophosphate [PF6]

− anions usually yield EC50 values
of similar magnitude for the same cation, whereas bis-
(trifluoromethylsulfonyl)imide [NTf2]-based ILs often are
more toxic than their halide analogues.18

The purpose of the present work is to investigate the
influence of the structure of the anion, cation, and alkyl chain

length on IL cytotoxicity. To this end, tests of 23 ILs were
performed on normal human skin cells, and the results were
reported in the form of IC50 values. Additionally, the values
obtained in this work were compared with our previous data
for different ILs20 and analyzed in the context of their present
and future applications. In total, the cytotoxicity of 31 ILs was
compared therein. Notably, the skin is directly exposed to toxic
compounds in our everyday life and working environment;
thus, the effects of chemical substances on the skin should be
carefully examined, in particular for materials classified as
present or potential industrial chemicals. Environmental
agencies also require to do skin irritation testing for
compounds that will be used in amounts >1 tonne/year.13

However, the cytotoxicity of ILs on the skin has not been fully
established, and the information obtained from this study can
complement the currently insufficient knowledge.
We have found that ILs with ethyl sulfate anion (1-ethyl-3-

methylimidazolium ethyl sulfate, [C2C1im][C2SO4], and 1,3-
diethylimidazolium ethyl sulfate, [C2C2im][C2SO4]

20) and
dialkyl phosphate anions (1-ethyl-3-methylimidazolium di-
methyl phosphate, [C2C1im][DMP], and 1-ethyl-3-methylimi-
dazolium diethyl phosphate, [C2C1im][DEP]) are the least
cytotoxic. Additionally, cyano-based ILs also are characterized
by their relatively low cytotoxicity. Among ILs with the most
popular [NTf2]

− anion, the pyrrolidinium ones with a non-
aromatic five-membered ring have the lowest cytotoxicity. In
c o n t r a s t , 1 - b u t y l - 1 -m e t h y l p i p e r i d i n i um b i s -
(trifluoromethylsulfonyl)imide [C4C1pip][NTf2] has the high-
est cytotoxicity, over 30 times greater than that of [C2C1im]-
[DMP].

Table 1. continued

aReported by Iolitec. bDetermined using the Karl Fischer method. cRef 28. dRef 23. eRef 22.
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■ EXPERIMENTAL SECTION
Materials. The supplier of the 19 ILs was Iolitec (Germany),

whereas 4-N-alkylpyridinium bis(trifluoromethylsulfonyl)imides,
[Cnpy][NTf2] (n = 2, 4, 6, 8), were prepared in the QUILL Research
Centre (U.K.). Note that in some cases, we have used the same batch
of materials as in previous studies. Thus, the detailed specification was
presented in refs 21, 22, while details about the synthesis, purification,
and storage of the pyridinium-based ILs can be found in ref 23. The
specification of the tested samples is reported in Table 1. All examined
ILs were dried under a pressure of ∼1 kPa at temperatures ≤373.15
K.
Cell Culture. The normal human dermal fibroblasts (NHDF)

(supplier-PromoCell) were cultured in Dulbecco’s modified Eagle
medium (DMEM), with 15% fetal bovine serum (Gibco) and 100
mg·L−1 of gentamycin (Gibco). The cells were grown as an adherent
monolayer culture in standard conditions (95% humidity, 5% CO2,
310.15 K).
Cytotoxicity Assay. Twenty-four hours before adding the tested

ILs, the cells (4.0 × 103 cells/well) were seeded onto 96-well plates
(Nunc). The next day, solutions of ILs were prepared in the culture
medium (in a concentration range from 0.01 to 30 mM) and then
added to the cells. The cytotoxicity assay was performed after 72 h by
exchanging the medium with testes ILs with fresh DMEM (100 μL)
containing 20 μL of CellTiter 96 AQueous One Solution Cell
Proliferation Assay (MTS) (Promega). The cells were incubated with
MTS for 1 h, and then the absorbance of red formazan was measured
on the microplate reader (Synergy4 from BioTek). For calculation of
the IC50 values, the absorbance of cells incubated with tested ILs was
compared to the absorbance of untreated cells. IC50 values along with
standard deviations (confidence level 0.95) were determined using the
GraphPad Prism 8 software. Each experiment was repeated three
times in triplicate (for each IL).
Density Measurements. The density of the tested ILs needed for

the IC50 calculations was recorded at 310.15 K by means of a DMA
5000 M vibrating-tube densimeter (Anton Paar, Austria). The
apparatus was calibrated (an extended-temperature calibration
procedure was used) with redistilled water and dried air. Importantly,
viscosity correction was made automatically. The uncertainty of the
listed density values in Table 2, in each case, did not exceed ±0.1 kg·
m−3. The uncertainty in the density was evaluated using the following
ref 24, in which the impact of the impurities on the uncertainty was
taken into account.

■ RESULTS AND DISCUSSION

Structure vs Cytotoxicity. The NHDF cell line was
employed to investigate the cytotoxicity of ILs because it is a
common and reliable model for measuring the toxicity in in
vitro initial studies. The results obtained are gathered in Table
2 and depicted in Figures 1 and 2, along with the values
presented by our group recently.20,25,26 The density of
[C2C1im][SCN], [C2C1im][N(CN)2], [C2C1im][C(CN)3],
[C2C1im][DMP], and [N4222][NTf2], [C4C1py][NTf2],
[C1OC2C1im][NTf2], [C4C1pip][NTf2], and [N4111][NTf2]
needed to calculate the IC50 parameter in the reported unit
(mM) was measured at 310.15 K and are listed in Table 2. For
the other analyzed ILs, we used the density data reported in
the previous studies.22,27,28

Influence of the Alkyl Chain of the Cation. Thus far, many
studies have analyzed the toxicity of ILs on human cell
lines.16,29−33 Nevertheless, there are few existing studies on the
influence of the anion structure in ILs on the cytotoxicity in
contrast to the numerous studies that have investigated the
impact of the alkyl chain length in the cation. As can be
observed by a review of Table 2 and Figure 1, an increase of
the alkyl chain length in the cation leads to an increase in the
IL cytotoxicity. In each homologous series, the change in

cytotoxicity when the chain is lengthened by two −CH2−
groups is higher than 50%. Hence, the observed behavior is
consistent with the observations made in numerous stud-
ies.6,14,15 Generally, ILs with longer alkyl chains (n > 4) are
more lipophilic than those with shorter alkyl chains. It can be
assumed that the former tends to incorporate into the
phospholipid bilayers of biological membranes.10,33−36 Accord-
ing to Wu et al.,10 the stronger the lipophilicity, the greater the
possibility of contact with the hydrophobic proteins and lipid

Table 2. Density and Cytotoxicity of the Examined ILs at
310.15 K along with the Cytotoxicity Values Reported
Previously

IL ρ (kg·m−3) IC50 (mM)

[C3C1pyr][NTf2] 6.24 ± 0.22a

[C4C1pyr][NTf2] 7.29 ± 0.35a

[C6C1pyr][NTf2] 1325.87b 2.68 ± 0.35
[C8C1pyr][NTf2] 1278.42b 0.21 ± 0.03
[C2py][NTf2] 1525.70c 1.65 ± 0.35
[C4py][NTf2] 1479.62c 1.39 ± 0.30
[C6py][NTf2] 1437.29c 0.29 ± 0.10
[C8py][NTf2] 1372.34c 0.23 ± 0.04
[C2C1C1im][NTf2] 1.87 ± 0.39d

[C4C1C1im][NTf2] 0.85 ± 0.34d

[C3C1im][NTf2] 2.85 ± 0.15a

[C4C1im][NTf2] 5.25 ± 1.03a

[C1OC2C1im][NTf2] 1494.97 1.64 ± 0.46
[HOC2C1im][NTf2] 1563.03 5.18 ± 0.19
[C4C1pip][NTf2] 1370.02 0.32 ± 0.02
[C4C1py][NTf2] 1403.64 2.81 ± 0.28
[N4111][NTf2] 1382.23 2.22 ± 0.36
[N4222][NTf2] 1328.70 1.51 ± 0.09
[C2C1im][TFO] 1372.34b 11.8 ± 1.2
[C4C1im][TFO] 1287.90b 4.42 ± 0.68
[C6C1im][TFO] 1229.37b 0.56 ± 0.10
[C8C1im][TFO] 1179.89b 0.17 ± 0.02
[C10C1im][TFO] 1144.85b 0.025 ± 0.001
[C2C1im][C2SO4] 20.82 ± 0.90e

[C2C2im][C2SO4] 20.4 ± 1.5e

[C2C1im][SCN] 1108.85 11.27 ± 0.28
[C2C1im][N(CN)2] 1101.91 14.08 ± 0.62
[C2C1im][C(CN)3] 1072.97 8.01 ± 0.32
[C2C1im][DMP] 1214.00 30.5 ± 2.5
[C2C1im][DEP] 1136.02f 25.6 ± 1.4
[C4C1im][OAc] 1044.18f 5.2 ± 1.5

aRef 25. bCalculated from the polynomial reported in ref 28.
cCalculated from the polynomial reported in ref 23. dRef 26. eRef 20.
fCalculated from the polynomial reported in ref 22.

Figure 1. Cytotoxicity as a function of the alkyl chain length in the
cation.
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bilayer of the membrane. This increase in lipophilic character,
as well as the presence of delocalized charges, affects the
normal physiological function of the cell membrane and,
unfortunately, promotes its disruption and increases the
internal acidity. Ranke et al.37 have shown that the lipophilicity
of ILs predominates their in vitro cytotoxicity over a broad
range of structural variations. Notably, it is also presented in
the literature that the toxicities do not increase after a certain
number of −CH2− groups (for example, n = 12), which is
generally called as a “cutoff effect”.18,38 According to
literature,38 this may be attributed to the kinetic aspects
(related to steric hindrance for substances that have a big
molecular size) or inadequate solubility (the nominal
concentration differs from the actual test concentration).
Interestingly, Pham et al.6 reported that ILs containing a

cation with polar hydroxyl, nitrile, or ether functional groups in
the side chain (instead of a nonpolar simple alkyl chain) have
lower cytotoxicity. Stolte et al.18 postulated that the groups
mentioned above hinder cellular uptake by membrane
diffusion and reduce lipophilic-based interactions with the
cell membrane. However, as clearly seen in Table 2, the
difference between the cytotoxicities of [C2C1C1im][NTf2]
and [C2OC1im][NTf2] is negligible and does not exceed the
experimental error (1.87 ± 0.39 vs 1.64 ± 0.46 mM).
Notably, we observed that homologues with three carbons in

a chain in a substituent, i.e., [C3C1pyr][NTf2] and [C3C1im]-
[NTf2], have a higher cytotoxicity than the others, i.e.,
[C4C1pyr][NTf2] and [C4C1im][NTf2], respectively (Table
2). Analogous results were presented by Ventura et al.39

Specifically, the authors reported that after 300 s of exposure to
V. fischeri (luminescent marine bacteria), [C4C1im][NTf2] has
a lower toxicity than [C3C1im][NTf2].
Influence of the Head Groups of the Cation. In the case of

[NTf2]-anion-based ILs with cations containing different head
groups and the same alkyl chain length attached to the cation,
the cytotoxicity increases in the following order: [C4C1pyr]

+ <
[C4C1im]+ < [C4C1py]

+ < [N4111]
+ < [C4py]

+ < [C4C1pip]
+

(Figure 2). Piperidinium-based IL is ca. 20 times more toxic
than the pyrrolidinium one (0.32 ± 0.02 vs 7.29 ± 0.35),
demonstrating that the head group has also a significant impact
on the IL cytotoxicity. On the other hand, Wang et al.30

observed that the imidazolium-based ILs showed a higher
inhibition of HeLa cells (an immortal cell line) than
pyridinium and ammonium-based ILs with the bromide
anion ([N4222]

+ < [C4py]
+ < [C4C1im]+Wang et al. for

Br‑-based ILs vs [C4C1im]+ < [N4222]
+ ≈ [C4py]

+this work

for [NTf2]
−-based ILs). Nevertheless, the authors also

observed that for each class of cation (imidazolium,
pyridinium, ammonium, choline-based ILs with Br−,
[NTf2]

−, and [BF4]
− anions) an increase of the side-chain

length of the cation of the homologues (n = 2, 4, 6, 8) leads to
a decrease in the cytotoxicity as claimed in the present
investigation.

Influence of the Anion. As mentioned in the introduction,
several authors have indicated that anion change has only a
minimal effect on the toxicity of ILs.17,34,40 Consequently, the
toxicity of ILs seems to be related to the alkyl chain branching
and the hydrophobicity of the cation but not to the various
anions. However, Stolte et al.41 stated that anionic compart-
ments with lipophilic and hydrolyzable structural elements are
important concerning the IL toxicity. In this work, the
contribution of the anion moiety in ILs on their cytotoxicity
is evaluated by comparing the IC50 values obtained for
imidazolium ILs with one headgroup with one specific side-
chain length (ethyl), i.e. [C2C1im]+ with various anions, i.e.,
[C2SO4]

−, [DMP]−, [DEP]−, [SCN]−, [N(CN)2]
−, [C-

(CN)3]
−, and [TFO]−. The strongest toxic effect toward

normal human dermal fibroblasts was detected for [C2C1im]-
[C(CN)3], and the least cytotoxic was found to be [C2C1im]-
[DMP]. We found that ethyl sulfate ILs are relatively less
cytotoxic and, in addition, nontoxic toward, e.g., Escherichia
coli,7 anaerobic bacteria,42 and luminescent bacteria5 in
comparison to other ILs and are not harmful to the eyes (no
irritating impact).5 Taking into account the uncertainty of the
IC50, the cytotoxicities of [C4C1im]+-based ILs, namely
[C4C1im][OAc], [C4C1im][TFO], and [C4C1im][NTf2], are
comparable. On the other hand, the [NTf2]

− anion contains
fluorinated alkyl side chains with lipophilic interaction
potential. This facilitates the interaction with hydrophobic
protein domains and cell membranes, potentially disrupting
fundamental physiological functions. Since [NTf2]

− is a stable
anion under physiological conditions, the increase in
cytotoxicity, in this case, cannot be related to hydrolysis and
the formation of HF (hydrofluoric acid) like in the case of
[BF4]

−- and [PF6]
−-based ILs, but results from the increased

lipophilicity of the anion.
Cytotoxicity vs Applications. As mentioned before, the

exceptional properties of ILs compared to molecular solvents
have allowed the use of this group in many areas of the
chemical industry, such as extraction, electrochemistry,
biocatalysis, catalysis, separation, biotechnology, as well as in
the food and pharmaceutical industry.1,2 Furthermore, ILs may
be used as working fluids, i.e., lubricants, hydraulic, and heat
transfer fluids, while the search for more favorable, non-
corrosive, easy-to-supercool working fluids with excellent
thermal stability (wide liquidus range) and low toxicity still
is the subject of many studies.20,25,26,43,44 Among the examined
samples, [C2C1im][DMP], [C2C1im][DEP], and [C2C1im]-
[C2SO4], [C2C2im][C2SO4] have the lowest cytotoxicity (see
Table 2). [C2C1im][C2SO4] is imported and/or manufactured
in the European Economic Area in an amount greater than 100
tonnes/year. This information is publicly available within the
C&L Inventory held by the European Chemicals Agency
(ECHA).45 According to the aforementioned website, this
substance is used by consumers, in formulation, in articles, or
re-packing, at industrial sites, and in manufacturing commer-
cially available hydraulic fluid.45 Interestingly, in our previous
work, we observed that [C2C2im][C2SO4] has analogous
features to [C2C1im][C2SO4], namely, the coefficients of

Figure 2. Cytotoxicity for ILs with the [NTf2]
− anion and different

cations (red left side) and for ILs with [C2C1im]+ cation and various
anions (blue right side). * [C2C1C1im][NTf2].
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isobaric thermal expansion and isothermal compressibility are
low, which is important for its potential use as a hydraulic
fluid.20 Both ethyl sulfate ILs are thermally stable, relatively
cheap (can be efficiently and easily prepared), can be
synthesized without chloride contamination (which has a
great influence on the corrosion of metals; namely, corrosion
progresses much faster in the presence of halides), and have a
broad temperature range in their liquid state (from glass
transition temperature to decomposition temperature; no
tendency for crystallization).46 Importantly, lower surface
tension and viscosity, as well as better wettability features
than [C2C1im][C2SO4] were recorded for the [C2C2im]-
[C2SO4] homologue. [C2C1im][DMP], [C2C1im][DEP], and
[C4C1im][OAc] can be considered as efficient solvents for the
utilization of lignocellulose-based biomass.47−51 Additionally,
Dubey et al.52 derived an eco-friendly and cost-effective
process for the extraction of a potentially biodegradable plastic
material (polyhydroxybutyrate) from Halomonas hydrotherma-
lis (marine bacteria) by employing [C2C1im][DEP] as an
extractant.
On the other hand, undeniably, ILs with the [NTf2]

− anion
are more toxic than the others tested herein. However, they are
one of the most popular IL families due to their unique
properties, so it is worth taking a closer look at the obtained
results. To date, [NTf2]

− is still widely used as it provides
hydrophobic ILs with larger operational liquid-range temper-
atures, CO2 solubility, and is more stable chemically and
thermically than those containing fluor, such as [BF4]

− and
[PF6]

−.5353 [NTf2]
−-based ILs were also recognized as a good

heat-transfer medium,25,26,43,44 explaining also why they are
widely used for thermo-electrochemical applications.1−3,54 To
further depict their potential as a heat transfer medium, their
main key properties are plotted in Figure 3 and compared with
those collected for industrial benchmarks, such as Dowcal TM

20055 (based on propylene glycol), PES-443 and PMS-10043

(organosilicon fluids), Therminol 66,56 Therminol VP-3,57

Therminol VP-1,58 and Marlotherm SH59 (based on aromatic
hydrocarbons). One can assume that most of the investigated
ILs have high and near-constant volumic heat capacity, i.e.,
ratio of molar isobaric heat capacity to molar volume Cp/Vm
(Figure 3c). Except for [C2C1im][DEP] and [C4C1im][OAc],
all presented ILs have a similar viscosity at 313.15 K (Figure
3b). However, ILs with [NTf2]

− anion show exceptional
thermal stability and optimal thermal conductivity character-
istic of high-temperature heat transfer media (Therminol 66,56

Therminol VP-1,58 Therminol VP-3,57 and Marlotherm SH59).
Among [NTf2]

−-based ILs, the thermal stability decreases in
the following order: [CnC1C1im]+ > [CnC1pyr]

+ >
[CnC1pip]

+60 ≈ [N1224]
+61 > [CnC1py]

+ > [Cnpy]
+ (see Figure

3a). The length of the alkyl substituent present in the cation
structure does not significantly influence the IL thermal
stability. Furthermore, by taking into account also their
cytotoxicity, the most promising ILs are those based on the
pyrrolidinium cation, which have the least harmful effects (see
Figure 2), explaining why [CnC1pyr][NTf2] (n = 3, 4) could be
promising as a heat transfer medium.
Moreover, the conclusions reported recently by Joźẃiak et

al.21,62 highlight that [C2C1im][SCN]-based ionanofluids
containing 1 wt % multiwalled carbon nanotubes (MWCNTs)
or 1 wt % carboxylic group-functionalized multiwalled carbon
nanotubes (oMWCNTs) show unique transport properties
including high thermal conductivity and low viscosity. With
respect to these findings, the amalgamation of MWCNTs with

Figure 3. Comparison of the characteristics of ILs with those of
commercial heat transfer media: (a) thermal stability, (b) viscosity,
(c) volumic heat capacity, and (d) estimated thermal conductivity at
313.15 K [25, 26, 43, 55−59].
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[C2C1im][SCN] was in fact justified from both an economic
and an engineering point of view.63 In this context, the
relatively low cytotoxicity of [C2C1im][SCN], shown herein,
seems to be even more interesting to further justify their
selection for future energy storage applications.

■ CONCLUSIONS

The cytotoxicity of 31 ILs toward normal human skin cells was
studied and analyzed in the concept of their application. The
influence of alkyl chain length and the structure of cation and
anion was analyzed. The obtained results show that each
element of the structure is important, but two main factors that
influence the cytotoxicity are the type of anion and the length
of the alkyl chain substituent to the ion. We found that ILs
with ethyl sulfate anions ([C2C1im][C2SO4], commercially
available as the hydraulic medium, and [C2C2im][C2SO4]) and
dialkyl phosphate anions ([C2C1im][DMP] and [C2C1im]-
[DEP]) are the least cytotoxic.
[CnC1pyr][NTf2] (n = 3, 4) have the most promising

features (mainly exceptional thermal stability) for application
as a heat transfer medium as they also have the least harmful
effects of all tested [NTf2]

−-based ILs. Unfortunately, it should
also be noted that ILs based on the [NTf2]

− anion have the
highest cytotoxicity among all of the ILs investigated herein
and [NTf2]

−-based ILs are also well known to be the most
toxic to aquatic organisms.64,65 In other words, prior to
designing any industrial application using this particular IL
family, further investigations are needed. Moreover, it should
be remembered that as known, the different models to test
toxicity respond differently to the same ILs.64,65 Finally,
according to their relatively low cytotoxicity and based on their
unique properties, [C2C1im][SCN] seems to be a good
candidate to formulate alternative ionanofluids.21,62,63
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