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Ensuring safe, fresh, and healthy food across the shelf life of a commodity is an ongoing

challenge, with the driver to minimize chemical additives and their residues in the food

processing chain. High-value fresh protein products such as poultry meat are very

susceptible to spoilage due to oxidation and bacterial contamination. The combination

of non-thermal processing interventions with nature-based alternatives is emerging as

a useful tool for potential adoption for safe poultry meat products. Natural compounds

are produced by living organisms that are extracted from nature and can be used as

antioxidant, antimicrobial, and bioactive agents and are often employed for other existing

purposes in food systems. Non-thermal technology interventions such as high-pressure

processing, pulsed electric field, ultrasound, irradiation, and cold plasma technology are

gaining increasing importance due to the advantages of retaining low temperatures,

nutrition profiles, and short treatment times. The non-thermal unit process can act

as an initial obstacle promoting the reduction of microflora, while natural compounds

can provide an active obstacle either in addition to processing or during storage

time to maintain quality and inhibit and control growth of residual contaminants. This

review presents the application of natural compounds along with emerging non-thermal

technologies to address risks in fresh poultry meat.

Keywords: poultry, non-thermal processing, natural compounds, Campylobacter, essential oils

INTRODUCTION

Fresh poultry meat and poultry products are highly perishable products but also have high potential
as sources of human infection due to the presence and persistence of key pathogens in the
poultry process chain. Outbreaks of foodborne illnesses in association with poultry products are
one of the primary causes of outbreaks in the US and the EU. Among the reported numbers
and notification rates of confirmed zoonoses in the EU in 2018, the top 5 are campylobacteriosis
(246,158), salmonellosis (91,662), yersiniosis (6,823), and Shiga toxin-producing Escherichia coli
(STEC) infections (6,073) (1, 2). Also, according to the Centers for Disease Control and Prevention
(3), around 11, 2, and 1% of foodborne outbreaks are associated with chicken, turkey, and other
poultry products, respectively, while turkey (609 illnesses) had the most outbreak-associated
illnesses followed by chicken (487 illnesses). The pathogen Campylobacter caused up to 1.5 million
illnesses each year in the US (4); thus, a focus on comprehensive and emerging methods for safety
control in poultry processing is warranted.
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FIGURE 1 | Schematics of perception analysis for different poultry decontamination treatments. Adapted from Safefood (5).

In order to provide safer poultry products, the food industry
has developed and implemented preventive measures based
on the Hazard Analysis and Critical Control Points (HACCP)
and food safety management systems in combination with
technological interventions, such as sanitization processes,
refrigeration, and modified atmosphere packaging that can
control identified potential microbial hazards during food
processing and storage. However, according to the policy
and consumer demand requiring sustainable, safe, and high-
quality minimally processed foods, the food industry seeks
alternative approaches to extend safe shelf life; such as irradiation,
high-pressure processing (HPP), and natural green chemicals
including bio-preservation or intelligent packaging. Figure 1

(6) illustrates the consumers’ perception of 10 different meat
decontamination processes based on how natural and invasive
the process is considered.

The intensity of non-thermal processing treatment is vital for
product safety and inactivation of pathogenicmicrobes. Han et al.
(7) reported reactivation of sublethally injured microorganisms
in a favorable environment during storage in meat and
meat products. Spore-forming organisms such as Clostridium
botulinum are resistant to HPP (8). The increase in a non-thermal
process intensity to deal with recalcitrant microbiological issues
may adversely affect foods’ sensory properties (9). HPP can also
alter the structure of polysaccharides and proteins, leading to
textural changes in terms of hardness (10). Meat tenderness
is the essential attribute that drives its consumer acceptability
(11). Post slaughter, meat tenderization results from protease

proteolysis of myofibrillar and cytoskeletal proteins as well
as from the degradation of connective tissue substances, in
particular collagen (12). Applying power ultrasound can produce
free radicals, which imparts effective microbiological control, but
which can also impact the product quality of high-fat foods due to
oxidation (13). Similarly, irradiation can also cause undesirable
organoleptic changes to high-fat foods and can induce color,
odor, and taste effect on fresh meat products (14).

Thus, to overcome these shortcomings, there is potential to
optimize non-thermal technology effects in combination with
incorporation of natural compounds. Careful consideration of
the mechanisms of action of individual non-thermal approaches
may reveal what combinations can be successful across a range of
food systems. For example, pulsed electric field (PEF) can cause
cell membrane damage of microorganisms, enhancing sensitivity
to antimicrobial agents like nisin (15). Similarly, application of
naturally occurring antioxidant compounds such as rosemary
extract, blueberry, or ascorbic acid can be used as an alternative
for synthetic preservatives like butylated hydroxyanisole,
butylated hydroxytoluene, and tertiary butylhydroquinone (16).
Synergistic inactivation of microorganisms using non-thermal
technology with natural compounds can be a promising way
to increase the safety of poultry products while diminishing
undesirable effects on some food characteristics. This review
summarizes the key risks and published findings where
non-thermal technologies have been combined with natural
compounds and comments on the effects on the microbiological
and physicochemical characteristics.
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FIGURE 2 | Overview of poultry processing commercial chain. “*” represents a

post slaughter stage point where antimicrobial interventions can take place.

CURRENT INTERVENTION PROCESS
TECHNOLOGIES ENSURING POULTRY
MICROBIOLOGICAL SAFETY

There are many approaches applied in poultry processing
to maintain fresh poultry meat safety, which are generally
classed as biological, physical, or chemical interventions (6).
Electrolyzed water, hot water combined with rapid cooling,
chilling and freezing (cold air and ice water), activated
oxygen, and organic acids (lactic acid, oxidizing acids, and
peroxyacetic acid) are examples of these decontamination
processes currently used in poultry processing plants (17). The
overview of the poultry processing plant is given in Figure 2. The
proposed application of antimicrobial interventions in poultry
processing can be implemented at carcass washing, scalding,
defeathering, chilling/cooling, or packaging. The US Department
of Agriculture (USDA) recommends the use of hot water above
74◦C for sanitizing effect on carcasses.

High pressure, steam, and steam vacuum, as well as hot and
cold water are some physical treatments commonly applied to
meat carcass surface decontamination. Physical decontamination
approaches currently used for chicken are steam and immersion
in hot water (18). Due to the high temperature (100◦C),
microorganisms including natural microflora should be
inactivated on the surface of the product within limited exposure
times. Some limitations with stream usage are the deterioration
of sensory characteristics attributed to changes of the color, and

samples that look partially cooked, with shrunken skin (19).
In steam vacuum processes, steam or hot water is sprayed on
carcasses followed by vacuum treatment. This process is an
effective method for spot decontamination at the slaughtering
unit before the final chilling. The solutions of organic acids are
frequently used in the chemical rinse to decontaminate the entire
surface of carcasses. The most commonly used organic acids are
acetic and lactic acids (20).

Peracetic acid, disodium phosphate, hexadecylpyridinium
chloride, and sodium hypochlorite are themost utilized sanitizers
during poultry processing (scalding and pre/post chilling) in
poultry plants. Treatments with these antimicrobials can be
online or off-line for reprocessing at different stages and
temperatures and for different treatment times (21). Peracetic
acid is an artificial disinfectant retaining good efficacy against
poultry meat-related pathogens: Salmonella and Campylobacter
(22). Sodium hypochlorite is commonly applied in water used
for chilling/cleaning by spaying and/or immersion to reduce
microbial load; however, the efficiency drops down significantly
because of the interaction between organic matter in the
meat and chlorine (23). Chlorine usage is prohibited in some
countries including Germany, Denmark, and Belgium because
of the potential interactions with organic matter within poultry
carcasses, which can generate harmful chlorinated compounds
(halo acetic acids, trihalomethanes, and chloramines) reported to
be mutagenic and carcinogenic (23).

However, chlorine dioxide has also been used for sterilization,
sanitization, and as disinfectant depending on its form (liquid or
gas). Acidified sodium chlorite is an oxidative antimicrobial agent
with a large activity spectrum (yeast, fungi, protozoa, viruses,
pathogens, and molds). It is authorized by Food and Drug
Administration (FDA) and Environmental Protection Agency
(EPA) to be used in poultry (24). One of the best alternatives
to classical sodium hypochlorite is electrolyzed water due to it
low cost, high sterilization effect, and non-harmful effect (23).
Specific organic acids can also be effective in terms of microbial
inactivation and stability in the presence of organic mateial,
namely, citric acid, lactic acid, succinic acid, and acetic acid.
Nevertheless, some limitations are associated with the usage
of such organic acids such as off-colors, odors, and flavors in
addition to material corrosion (24).

MICROBIOLOGICAL CONTAMINANTS OF
CONCERN IN THE POULTRY SECTOR

Microbial Spoilage
Owing to microbial spoilage, millions of pounds per annum
of fresh poultry meat products are lost (25, 26). Poultry meat
spoilage has dramatic effects by limiting shelf life (27) and
negatively affecting the economy (28). The deterioration may
result from quality and sensory damage to change in texture,
odor, color, taste (29), and slime formation (27, 30). These
changes are induced by enzymatic reactions, lipid oxidation (30),
and action of the natural microflora within the poultry meat (28).
Odor quality is affected by the production of volatile catabolites,
while the deterioration in color happens throughout storage that
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is frequently related to biochemical reactions (between meat
pigments, oxygen, and volatile microbial catabolites) and higher
meat pH (30).

Several bacteria may be involved in poultry meat
spoilage including coliforms, Enteriobacteriaceae, Brochothrix
thermosphacta, Pseudomonas, Aeromonas sp., Serratia, lactic
acid bacteria as Lactobacillus oligofermentans, Leuconostoc
gelidum subsp. gasicomitatum (29), Lactococcus, Vagococcus,
and Carnobacterium (27). The dominant spoilage bacteria is
Pseudomonas spp. (26) due to its ability to assimilate, penetrate,
and metabolize many meat compounds that other bacteria
cannot use (30). When the total viable count achieves or exceeds
7 Log CFU/g, spoilage is deemed to ensue (29, 30).

Pathogens
Campylobacter, Salmonella, Listeria monocytogenes, and
Staphylococcus aureus are some of the primary pathogens
naturally present or contaminants of poultry meat products
(31, 32). Clostridium perfringens, Listeria innocua, and
Aeromonas spp. were also identified in poultry meat (29).
Recently, Helicobacter pullorum and Acrobacter gained
considerable attention as relevant agents of poultry meat
infections (33). Staphylococcus saprophyticus is another relevant
agent of poultry product contamination, which varies from S.
aureus because of its virulence factors and genetic profile (34). C.
perfringens is widespread in the tract of birds (35), is responsible
for enteric diseases in poultry (36), and is known for potential
to generate extracellular enzymes and large numbers of toxins
(37). At a certain microbial load, toxin production is upregulated
(38). The enterotoxins delivered are associated with human
gastrointestinal illnesses—enterotoxemia where toxins induce
organ damage upon entering the circulation (36, 38).

Campylobacter spp.
Poultry is the natural host/reservoir of Campylobacter spp.
(39), which is present in the intestinal tract of birds, skin,
and feathers (40). Campylobacter jejuni and Campylobacter
coli are the main zoonotic enteropathogen causative serovars
of human campylobacteriosis (41) and with high prevalence
(42). C. jejuni is dominant by comparison with C. coli
(39). At each point of the production chain, the proportions
of these two isolates may be reversed by passing from
one stage to the other. This could be attributable to the
resistance or the susceptibility to a particular isolation technique
introduced during the test of the collected samples and/or
the feed withdrawal (41). They are microaerophilic and
thermophilic (43) and require specific environmental conditions
to develop (44).

It was reported that for 25.7% of chicken broiler carcasses
tested, both liver (surface and internal tissue) and ceca were
Campylobacter positive. However, for 83% (58/70) of carcasses
tested, Campylobacter was isolated at least once in one of these
compartments (42), and it is of note that the study pointed out
that dissimilar subtypes of Campylobacter could simultaneously
contaminate the same broiler carcasses.

Salmonella spp.
Salmonella spp. is a facultative anaerobic Gram-negative genus
(44), belonging to Enterobacteriaceae family. It is motile (except
for Salmonella enterica Gallinarum and Pullorum) (45). It
grows at optimum environmental conditions of pH 6.5–7 and
temperature around 37◦C (45). It is ubiquitous and able to
survive in water for several months and in a dry environment for
up to 2 weeks (46).

Salmonella is one of the main causative agents of foodborne
disease globally (47). Animal-based foods such as beef, poultry,
and pork are the major sources of salmonellosis (48), where
human salmonellosis is mostly due to consumption of poultry
products (44). Salmonella can persist throughout the processing
chain from the farm to the fork (47). Enteritidis, Newport, and
Typhimurium are serotypes commonly identified (49). The main
genes encoding for the virulence are in both virulence-associated
plasmid and pathogenicity islands. These genes are involved in
internalization, epithelial cell invasion, survival, and replication,
have a significant role in systemic infection (50), and may present
a target for intervention technologies design.

NATURAL COMPOUND-BASED
INTERVENTIONS SIGNIFICANT TO
POULTRY SECTOR

Spices and Herbs
These natural compounds are used in foods for flavoring
and preservation and as additives but also for medicinal and
therapeutic goals (anti-oxidative, immune modulators, anti-
inflammatory, and antimutagenic). Their utilization in foods
can have beneficial effects for shelf life extension as well
as improvement of the organoleptic characteristics (51). The
antioxidant potential of herbs or spices can prevent or decrease
lipid oxidation (52) attributed to the action of phenolic
compounds (53).

Clove and rosemary are two aromatic spices known for
their antimicrobial and antioxidant potential. Antimicrobial
activities of rosemary and clove extracts were tested separately
or in combination against pathogenic and spoilage bacteria
related to meat, namely, L. monocytogenes, E. coli, Pseudomonas
fluorescens, and Lactobacillus sake, as well as against native
microflora in poultry meat samples, where the combination of
both provided enhanced microbial inactivation potential. The
combination of the herb and spice also maintained or improved
the sensory characteristics of fresh meat, reduced lipid oxidation,
and extended shelf life up to 15 days (53).

Curcumin is a US FDA-approved safe plant pigment used for
cooking, reputed for its health benefits. It acts as antioxidant,
anti-inflammatory, and antiproliferative, but drawbacks for use
in foods are related to the color, taste, and quality alterations
(54). Corrêa et al. (54) analyzed the antimicrobial effect of
two photonic approaches, ultraviolet (UV)-C and curcumin-
mediated photodynamic inactivation (PDI), for control of E. coli
and S. aureus inoculated on chicken breast cubes. Limitations
were associated with these treatments, as the UV-C light or the
curcumin-mediated PDI treatment with emission at 450 nmwere
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not absorbed in all areas and did not significantly penetrate
the chicken meat surface, with 1–2 log10 CFU/ml reductions
observed (54).

Essential Oils
Essential oils (EOs) are aromatic secondary metabolites and
concentrated plant extracts. They can be obtained by steam
distillation, expression or supercritical extraction with carbon
dioxide from different parts of the plant, for example, bark,
flower, fruits, seeds, leaves, or roots. Many EOs have found
application in poultry feed as an alternative to antibiotics due
to antioxidant, antiseptic, and insect repellent properties as well
as immune-modulatory effects (55). EOs are chemically diverse
compounds; hence, their antimicrobial activity varies from
compound to compound. However, due to their hydrophobic
nature, they are likely to enter cell membranes of microbes or
eukaryotes (56). The main limitations of using EOs in food
products are the strong flavor imparted on foods (56), the heat-
labile nature, and volatile characteristics (57).

Rosemary extract is well-known for its antimicrobial activity,
which is related to its phenolic composition (e.g., rosmarinic
and carnisic acids). Inactivation of cellular enzymes was seen to
result from the effect of phenolic compounds (16). Treatment
of Salmonella typhimurium with thyme EO caused a rise in
the electrical conductivity, which appears to result from the
destruction of the cell membrane as well as electrolyte leakage.
Additionally, quantitative analysis reported a significant drop in
the protein contents, DNA, and ATP by 55.42, 54.03, and 52.64%,
respectively, when compared to the control (57). Likewise, EOs
(lemon oil, lemon grass oil, lime oil, garlic oil, onion oil,
pimento berry oil, oregano oil, thyme oil, and rosemary oil)
had higher antimicrobial potential against four Campylobacter
strains when compared to organic acid (ascorbic acid, citric
acid, and lactic acid). Oregano EOs specifically displayed the
higher inactivation potential against C. jejuni, where the minimal
inhibitory concentration was equivalent to 62.5 ppm (18).

The application of 0.1% oregano EO was effective for
extending the shelf life up to 5–6 days for fresh chicken breast
meat before packaging (58). The authors pipetted 0.1% of
oregano EO in the low-density polyethylene (LDPE)/polyamide
(PA)/LDPE barrier pouches, which was later subjected to
either air or modified atmosphere packaging (MAP). The lipid
peroxidation and deterioration of sarcoplasmic proteins were
controlled to extend the shelf life of chicken breast up to 2
weeks at 4◦C with the application of 0.5% of both thyme
and Melissa officinalis balm EOs. These EOs were applied on
the chicken breast slices by dipping method for 15min. The
results highlighted that thyme (0.5%) was more effective in
inhibiting the growth of E. coli, whereas balm (0.5%) was more
effective on the Salmonella spp. (59). The combined effect of
ethylenediaminetetraacetic acid (EDTA) (1.5% w/w) lysozyme
(1.5% w/w), rosemary oil (0.2% v/w), and oregano oil (0.2%
v/w) was effective on extending the shelf life of vacuum-
packed semi-cooked coated chicken filets stored at 4◦C (60).
EDTA and lysozyme were applied by spraying technique on the
surface of the chicken surface, while rosemary and oregano oil

were pipetted in the LDPE/PA/LDPE pouch barriers containing
chicken samples.

Organic Acids
Organic acids are naturally occurring compounds present in
many foods and can be produced during the fermentation
process. They are added in foods as acidulants, preservatives, or
flavorants. The commonly used organic acids are lactic, acetic,
malic, and ascorbic acid, etc. The mechanism of inactivation
of these acids is through lowering of pH, pKa value along
with penetration of undissociated compounds through the cell
membrane and its dissociation inside the cell, thus affecting the
bacterial membrane (61, 62). In poultry products, the salts of
organic acids such as potassium or sodium lactate and sodium
diacetate are used to inactivate L. monocytogenes, and buffered
citrate is used to enhance flavor (63). The maximum level
for potassium and sodium lactate is 4.8% by weight of total
formulation in various meat and poultry products. For sodium
diacetate, the maximum permitted level is 0.25% by weight of
total formulation when used as either antimicrobial agent or
flavoring agent (64).

NON-THERMAL TECHNOLOGIES AND
THEIR COMBINATIONS WITH NATURAL
COMPOUNDS IN POULTRY PROCESSING

Non-thermal technologies, such as HPP, PEF, ultrasound,
UV, irradiation, and cold atmospheric plasma (CAP) can
retain nutritional as well as sensory properties of food in
shorter treatment times and low operational temperatures
(65). Extensive research on the application of various non-
thermal technologies to poultry meat has been conducted
in recent years. The effect of non-thermal technologies on
microbial and physicochemical properties will be discussed
in this section. The incorporation of natural compounds
with non-thermal technologies can give an additional hurdle
enhancing antimicrobial efficacy. Additionally, this will help
adjust the processing conditions at lower intensity, giving
improved physicochemical properties (66). Few studies have
focused on combining natural compounds with the non-thermal
treatment as summarized in Table 1 illustrating its impact on
both physicochemical and microbial properties. A pictorial
representation of governing processing parameters, mechanism
for microbial decontamination, and key physicochemical
parameters to take into consideration while application of the
non-thermal technology in the poultry products is depicted in
Figure 3, and it will be further discussed in coming sections.

High-Pressure Processing
HPP is a non-thermal technology for the sterilization and
preservation of food products in which the product is subjected
to high pressure (300–600MPa) with or without the combination
of heat. With the application of HPP, covalent bonds in food
matrices are not broken and the effect on the food characteristics
is minimal. HPP is based on Le Chatelier’s principle and the
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TABLE 1 | Summary of combination trials of different non-thermal technologies with natural compounds on poultry products.

Non-thermal

technology

Natural compounds Poultry products Chemical observations Microbiological observations References

CAP Rosemary extract Poultry ground meats NA - Reduction of the bacterial functional diversity

- The lowest Maximum Population Size (54.65, 95% confidence interval [CI95%] ranges,

54.03–55.16) and slowest growth rate (hour) (0.03258, CI95% ranges, 0.0179–0.04726)

in day 0

- At day 5 of storage at 4◦C, the maximum population sizes of treated samples were

statistically not significant comparing to day 0

(67)

Rosemary extract Ground chicken patties - Lower pH values for

rosemary samples

- a* value was significantly affected

by rosemary addition

- Addition of rosemary extract

prevented lipid oxidation for CAP

Rosemary extract significantly reduced the total plate counts with and without cold plasma

treatment

(16)

Thyme oil (TO)/ Silk

fibroin (SF) nanofiber

Chicken and duck meat - Thyme oil release was enhanced

due to surface modification of SF

by plasma treatment

- Higher overall acceptability of

chicken meat treated with plasma

treatment and combination of

TO/SF nanofiber

- The population of Salmonella Typhimurium on treated chicken meat reached 1.15 and

1.96 log CFU/g when stored at respectively 4 and 25◦C for 7 days after been wrapped

with plasma-Thymol oil-Silk fibroin nanofibers. Identic effects seen with the dusk meat

treated with the same process

(57)

Essential oils: Crocus

sativus L., Allium

sativum L., and Zataria

multiflora Boiss

Breast chicken fillets Overall acceptability and no

undesirable impacts on both flavour

and odour

- Associating CP and essential oils treatments of breast chicken fillet infected by S.

aureus and E. coli lead to significant microbial reductions by at least 3–4 logCFU/g.

- A synergetic effect due to the combination of three different EOs (Crocus sativus L.,

Allium sativum L., and Zataria multiflora Boiss.) and CP treatment reaching microbial

reductions to great extent.

- After 14 days storage, 2–2.7 logCFU/g microbial inactivation reported comparing to 4.9

logCFU/g of samples treated with only EOs

(68)

HPP Articoat-DLP (lactic

acid, acetic acid and

sodium diacetate-

active compounds)

Chicken breast fillets - Significant increase in L-value

- TBARS value remained same

during storage

- Increase in pH due to HPP

- Pseudomonas spp., B. thermosphacta, coliforms, E coli inactivated below detection limit

- LAB reformed after 7 days storage time

(69)

Carvacrol Turkey breast ham - Higher TBARS value for pressurised

samples

- Carvacrol addition decreased

TBARS value of samples

- Carvacrol+HPP extend the lag phase for Listeria

- Reduced the growth rate of LAB spoilage groups

(70)

Thymol Ground chicken NA - addition of thymol impacted the HPP sensitivity for iPEC O157:H7 and UPEC (71)

PEF Oregano essential oils Raw chicken NA - No significant inhibition of C, jejuni if only treatment with PEF (0.25–1 kV/cm) applied.

- Sequential treatment of PEF with immersion for 20min in oregano essential oil (15.625

ppm) were effective against C. jejuni 1146 DF with maximum reduction of 1.5 log CFU/g

(18)

Ultrasound Lactic acid Broiler drumstick skin NA Ultra-sonication alone and with 1% lactic acid did not significantly affect aerobic plate

count

(72)

Lactic acid Poultry skin NA - Pseudomonas was most sensitive to lactic acid than other gram-negative bacteria

- Degree of reduction of gram-negative bacteria was dependent on treatment time and

liquid medium (water or lactic acid)

(73)

Oregano essential oil Chicken breast NA 0.3% oregano oil and ultrasound showed better inactivation of lactic acid bacteria,

mesophiles and anaerobic bacteria at day 0 and during 21 days of storage

(74)
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FIGURE 3 | Illustration of key parameters of non-thermal technologies, their mechanism of action, and critical factors to consider for poultry application, where T

represents temperature, t is time, and f is frequency. CAP, cold atmospheric plasma; HPP, high-pressure processing; PEF, pulsed electric field.

isostatic principle. Le Chatelier’s principle states that “if a change
in conditions is applied on a system in equilibrium, then
the system will try to counteract that change and restore the
equilibrium.” The isostatic principle states that food products
are compressed by uniform pressure from every direction and
then returned to their original shape when pressure is released.
HPP is currently used for liquid and high-moisture solid products
(75). The first commercialized HPP meat products available are
sliced cooked ham and precooked meals containing poultry,
pork, chorizo, and different sausages in Spanish market (76, 77).
Further details about commercialized meat product of HPP are
detailed elsewhere (78).

Effect of High-Pressure Processing on Microbial

Decontamination of Poultry Products
Tracz et al. (2015) investigated the potential of HPP to destroy a
mixed culture of three stains of C. jejuni inoculated in chicken
breast under different pressure conditions (200, 300, and 400
MPa) and treatment times (5, 10, and 15min), where D values
were lowest at the highest pressure applied (79). According to
the pressure applied, the temperature varies from 0 to 10◦C.
When the lowest pressure (200 MPa) was applied, C. jejuni
exposed resistance and no significant reduction was achieved
regardless of the duration of HPP treatment. Gram-negative
bacteria are generally more susceptible to pressure compared
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to Gram-positive bacteria (79). Sheen et al. (2015) reported
also that the inactivation of Salmonella spp. in ground chicken
was dependent on both treatment time and pressure level
applied (80). It was highlighted that even at high pressure
(550 MPa), while the highest temperature reached was 28◦C,
Salmonella recovered and resuscitated over storage at 10◦C
to achieve ∼6 Log CFU/g at day 9 of storage. Therefore,
despite the mechanisms noted of surface structure damage
or disintegration, internal cell compound disappearance, and
appearance of internal voids in the cells, some cells survived the
HPP 15-min treatment (80), pointing to a need for combination
approaches. Argyri et al. (2018) HPP treatment at 500 MPa for
10min at 18–20◦C resulted in a significant reduction, below
detection limit, of both the native microbiota of chicken and
a cocktail culture of three different strains of Salmonella (31).
Furthermore, Salmonella enteritidis inoculated on chicken at
different initial concentration levels stayed below or just at
detection limits during the storage at 4◦C over 18 days (30).
Working with a cocktail of Listeria monocytogenes, also Argyri
et al. (2019) perceived the capability of HPP in maintaining
safety and extending the shelf life of chicken (30, 32). Xu et
al. (2020) reported D10 values for multi-isolated cocktails of
extraintestinal pathogenic E. coli (ExPEC) to HPP (400 MPa,
0–25min) on ground chicken, where 3.26min was the average
and the highest temperature value reached during the treatment
was 25◦C (81). Increasing the pressure to 600 MPa provided
more than 6 log reduction within 3min with no bacterial
recovery after 4min (81). The inactivation effect of HPP on
two different strains of E. coli on ground chicken was assessed
while the temperature remained under 40◦C, where a significant
resistance of uropathogenic E. coli (UPEC) by comparison
with intestinal pathogenic E. coli (iPEC) O157:H7 at 450 and
500 MPa was reported (71). Liu et al. (2012) stated that C.
jejuni HCJ2316 exhibited high resistance to pressure (2.8 Log
CFU/g reduction), whereas the others were more susceptible to
treatment and achieved 5 Log CFU/g reduction (82). However,
the microbial recovery upon pressure treatment of C. jejuni is
iron-dependent (82).

Effect of High-Pressure Processing on

Physicochemical Properties of Poultry Products
Lipid oxidation is one of the major causes of deterioration
of meat during storage. The chicken meat contains a higher
amount of unsaturated fatty acids compared to other animal
meats, which makes it more susceptible to lipid oxidation.
The most common method to determine the lipid oxidation
is Thiobarbituric acid reactive substances (TBARS) analysis
(24). The lipid oxidation was particularly affected by working
pressure; for low pressure (400 MPa and less), significantly
less change in TBARS value was reported, while high
pressure (500 MPa) have a higher impact on TBARS value
(83). Similar effect was observed when chicken breast filets
was treated with 450 and 600 MPa, while no significant
change in TBARS value was observed at 300 MPa (84). The
pressure of 800 MPa has the most detrimental on TABRS
value (85).

Combined Effect of High-Pressure Processing and

Natural Compounds on Poultry Products
A synergistic effect was recorded using nisin (200 ppm)
and HPP (450 MPa) at 20◦C, enhancing the microbial
reduction of mechanically recovered poultry meat, specifically,
the inactivation of both aerobic mesophile and psychrotroph
populations was greater by comparison with HPP treatment on
its own (86). Other researchers outlined the strong synergistic
effect of combining hydrostatic pressure treatment (250 MPa
for 30min at 25◦C) and 1% food additive (citric acid, nisin,
and wasabi extract) in completely reducing the microbial
concentration of S. enteritidis to undetectable levels (87).
Combining HPP (300–400 MPa) with thymol (100–200 ppm)
provided a large inactivation effect on separate cocktails of iPEC
O157:H7 (0.94–5.16 Log CFU/g) and UPEC (0.41–4.66 Log
CFU/g) in ground chicken samples (71).

Pulsed Electric Field
PEF uses short pulses of high voltage (5–80 kV) for microbial
inactivation. The food is placed between two electrodes, and an
external electric field is applied, which induces the movement
of ions along the direction of lines of force of the applied
electric field inside as well as outside the cells. This causes the
accumulation of ions on the membranes, causing polarization
of the cell, which results in thickness reduction of the
membranes due to the forces of attraction between oppositely
charged ions on either side of the membrane (88). Because
of the potential for cell membrane permeabilization, PEF is
a promising technology to modify several qualities of meat,
such as color, texture, and water-holding capacity, and enhance
mass transfer during curing and brining. However, applications
to date can be limited in solid products due to conductivity
requirements (89).

Effect of Pulsed Electric Field on Microbial

Decontamination of Poultry Products
The cell membrane is commonly referred to as the only target
of PEF contributing to bacterial cell death (90). Treatments
with PEF display reversible or irreversible damages on the
cell membrane by disorganizing the structure, which yields the
breakdown of the semipermeable barrier due to formation of
pores in the membrane (18), leading to irreversible electro-
permeabilization of the cell membrane; however, recovery can
occur in optimal conditions (91). Process parameters of pulse
frequency and strength of the electric field of PEF have been
demonstrated to affect the microbial inactivation (92).

Reduction in population densities of S. enteritidis and S.
typhimurium strains suspended in citrate-phosphate buffer was
greater with increasing both treatment time and electric field
above 9 kV/cm (93). It was demonstrated by Clemente et al. (18)
that the treatment of chicken thighs with PEF did not result in
any significant reduction of C. jejuni. PEF was not sufficient to
reduce cell concentration of S. enteritidis, E. coli, and C. jejuni
on raw chicken (92). However, this non-thermal technology
is suggested to be suitable for treating process waters used in
poultry processing as well as for poultry scald (92).
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Effect of Pulsed Electric Field on Physicochemical

Properties of Poultry Products
Several studies have reported the ability of PEF treatment
to modify sensory characteristics, texture, and water-holding
property of the meat products, further improving the mass
transfer properties (94–96). Meat is considered an excellent
source of minerals, such as zinc, iron, phosphorus, and calcium
(97). PEF induces irreversible electroporation in meat and affects
cellular permeability and mass transfer. Studies suggest that
PEF-applied products have changes in mineral content when
compared to control. Khan et al. (98) examined the effect of
low (2.5 kV, 200Hz) and high PEF (10 kV, 200Hz) on four
nutritionally important minerals (P, K, Fe, and Zn) of raw and
cooked chicken breast. For raw chicken, non-significant changes
in mineral content were noted; however, with cooking, a decrease
in P, K, and Zn was observed and the concentration of Fe was
not affected by treatment or cooking. In another study conducted
by Khan et al. (99), the authors found higher concentrations of
Ni and Cu for both low (2.5 kV, 200Hz) and high PEF (10 kV,
200Hz) than control. Thus, it is vital to study the migration of
minerals into meat products due to PEF treatment and should be
checked under regulatory limits.

Combined Effect of Pulsed Electric Field and Natural

Compounds on Poultry Products
Recent work revealed that chicken oyster thigh artificially
contaminated by C. jejuni 1,146 DF (final concentration 4.41 ±

0.20 log10 CFU/g) and treated with only PEF (0.25–1 kV/cm) did
not demonstrate any significant inhibition potential. However,
sequential treatment of PEF (1 kV/cm) and immersion in buffer
with oregano EO (15.625 ppm) for 20min resulted in a significant
reduction close to 1.5 log10 CFU/g (18).

Ultraviolet
UV light is electromagnetic radiation with wavelength from 10
to 400 nm. UV lights fall in the range between visible light and
X-rays. To control surface contaminations on food products, UV-
C light has received US FDA approval (Approval-2010). High-
intensity pulsed UV light has been approved by FDA up to
12 J/cm2 (100). UV-C light can be used in Europe; however,
in Germany, the use is limited to water, fruit, vegetables, and
stored hard cheese (101). UV-C has a wavelength range of 220–
300 nm (102) and is known for its antimicrobial effect (103),
where the specific mechanisms of action include targeting of
the nucleic acids (DNA, RNA) within the bacterial cell and
generation of pyrimidine dimers (104). This latter results in the
bonding of two adjacent pyrimidine bases, provoking obstruction
of transcription and translation, respectively, and suspending
vital cellular functions (102, 105, 106).

Effect of UV on Microbial Decontamination of Poultry

Products
There are some limitations of using UV in poultry processing:
UV-C light is not absorbed and cannot penetrate the chicken
meat surface, which may affect microbial reduction. The
antimicrobial efficacy of pulsed UV and UV-C has limitations
also in terms of product density and treatment time (104,

107). The bactericidal effect of UV-C irradiation against C.
jejuni, L. monocytogenes, and S. typhimurium on chicken breast
was dose-dependent, where treatment at 5 kJ/m2 reduced
L. monocytogenes, C. jejuni, and S. typhimurium, respectively
by 1.29, 1.26, and 1.19 log cycles (102). Haughton et al.
(105) examined UV effects against S. enteritidis, E. coli, and
Campylobacter (C. jejuni and C. coli) when inoculated in liquid
matrix, chicken skin and skinless chicken breast, food contact
surfaces, as well as packaging materials. Treatment at a high
dose equivalent to 0.192 J/cm2 provided complete microbial
inactivation of Campylobacter strains suspended in a liquid
matrix. By contrast, Salmonella and E. coli were more resistant to
the similar UV dose (105). Food surface topography can shield
microorganisms and limit UV treatment efficacy (104, 107).
Isohanni and Lyhs (103) highlighted that although UV treatment
was effective in reducing C. jejuni on surface medium by 6.3 log
cycles per square centimeter. However, only 0.8 and 0.7 log cycles
reduction were achieved on broiler skin and on broiler meat,
respectively, with a dose of 32.9 mW/s per square centimeter.
UV light seems to works well on smooth surfaces (108). Bacterial
multilayer overloading as well as overlapping, and in the presence
of cell, organic compounds protect to target bacteria from UV
irradiation (104, 107).

Effect of UV on Physicochemical Properties of

Poultry Products
UV light can form off-flavors due to the photochemical effect on
the lipid fractions of product or due to absorption of ozone and
oxides of nitrogen (101). This leads to the development of lipid
peroxidation causing off-flavor. The hexanal aldehyde is a volatile
secondary lipid oxidation product, and it is indicative of fatty
aldehydes by headspace/gas chromatography–mass spectrometry
(GC-MS). McLeod et al. (104) detected an increase in hexanal
content of the raw chicken filets treated with 10.8 J/cm2 in air,
which was noted by the sensory panel as a “sunburnt flavor”
giving a low sensory score. Interestingly, when the same chicken
samples were cooked, the sensory panel was unable to identify the
difference, and it scored fairly with the untreated sample (104).

Combined Effect of UV and Natural Compounds on

Poultry Products
The combination treatment of UV-C light and clove EO
was assessed against poultry-related pathogen S. typhimurium
biofilms, generated on stainless steel coupon surfaces. Treatment
with 1.2 mg/ml of clove EO followed with UV-C (76.41 mJ/cm2)
induced a synergistic effect and resulted in no surviving cells
(6.8 log CFU/cm2) embedded within the biofilms. It was
demonstrated that the contact with clove EO made the cell easily
accessible by UV-C due to the morphological damage occurring:
flatter structure (109).

Ultrasound
Ultrasound as a non-thermal approach applies sound waves
with higher frequency (above 20 kHz) than the normal human
hearing. The ultrasound frequencies used in the food industry
are classified into three categories based on the frequency-power
ultrasound: low frequency, high power range (20–100 kHz) and

Frontiers in Nutrition | www.frontiersin.org 9 June 2021 | Volume 8 | Article 628723

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Barroug et al. Combined Interventions for Poultry Safety

large-amplitude waves where typical applications are within
altering physicochemical properties or structure of foods. For
low-intensity ultrasound, in the range of 100 kHz to 1 MKz,
chemical reactions are activated, and free radicals can form
like hydroxyl ions that can have antimicrobial properties. High-
frequency ultrasound is usually used in the food processing and
food safety industry. When the cavitation bubble breaks, it forms
hydroxyl ions, which can have antimicrobial properties (110).

Effect of Ultrasound on Microbial Decontamination of

Poultry Products
The mechanisms of action are connected to cavitation
generation, which eventually disturbs the cell permeability
as well as causing thinning (111) and damage on the bacterial
membrane (112) and “localized heating” (73) that yields cell
inactivation. The cell metabolism is disturbed due to ion
penetration of the cell cytoplasm upon permeability disruption
caused by pressure gradients of ultrasound. These mechanisms
are the result of the collapse of cavitation bubbles during
the acoustic cavitation (73). A further utility of ultrasound
treatments is the “de-agglomeration of bacterial clusters” (73).

Apparent characteristics of target microorganism type,
physiological state, and morphology determine the efficacy of
ultrasound. The efficacy is also dependent on the surface of
food matrix and temperature (111). Moreover, other parameters
interfere with efficacy, such as frequency and sonication
treatment time (73). The peptidoglycan in the cell membrane
of Gram-positive could be a reason behind the resistance to
ultrasound by these bacteria compared to Gram-negative (112),
and the susceptibility to ultrasound treatment may vary between
strains from the same type. The resistance of cells on plates
during in vitro experiments to sonication by ultrasound was
higher in contrast to the susceptibility of bothCampylobacter and
Enterobacteriaceae in raw poultry (112).

It was highlighted that chicken breast subjected to high-
intensity ultrasound promoted the growth of mesophilic,
psychrophilic, and lactic acid bacteria compared to untreated
samples, possibly resulting from the release of nutrients (113).
However, it was pointed out that the presence of E. coli
was lower for samples subjected to longer treatment (30–
50min) compared to non-treated, whereas for S. aureus, it
significantly decreased after 50min. The microbial reduction
in previously contaminated chicken wings depends on both
treatment time (3–6min) and sonication environment solution
where the treatment was in (1% solution of lactic acid or
sterile distilled water). The combination of lactic acid and
sonication (40 kHz, 2.5 W/cm2) had a bactericidal effect on all
the bacteria tested and was considered suitable for poultry carcass
skin decontamination (73). However, combining ultrasound
treatment (37 kHz, 380W, 5min) with 70% ethanol induced the
highest microbial reduction from chicken skin for three types of
attachment by S. typhimurium loosely, intermediately, and tightly
attached by respectively 2.86, 2.49, and 1.63 log CFU/g (114).

Effect of Ultrasound on Physicochemical Properties

of Poultry Products
Marinating is mostly used to increase meat tenderness, enhance
flavor profile, reduce cooking time, and increase the shelf life of

meat. Ultrasound (40 kHz, 22 W/cm2) increased the marination
efficiency of chicken breast when treated with 15 and 20min
(115). A similar increase in marination efficiency, cooking
yield, and tenderization was reported when broiler chicken was
treated for 20min and 18 h marination (91% water, 6% NaCl,
3% sodium tripolyphosphate) (116). A positive influence of
ultrasound frequency (25, 45, and 130 kHz) and treatment time
(1, 3, 6, 16, and 24 h) on marination efficiency was also reported
for chicken breast, giving higher uptake of sodium chloride
(117). Ultrasound improved the marination properties of meat
by breaking the integrity of muscle cell or by enhancing the
enzymatic reactions in cell (11, 111). Thus, ultrasound can be
used as an alternative to standard marination techniques used in
the industry.

Combined Effect of Ultrasound and Natural

Compounds on Poultry Products
The exposure of broiler drumstick skin to ultrasonic energy in
water and submerged in 1% lactic acid did not show consistent
effect in terms of reducing aerobic plate counts. The irregular
characteristics of broiler skin surface were proposed as the reason
behind the lack of microbial reduction by protecting bacteria
in the skin crevices and avoidance of the cavitation (72). In
contrast, other work showed the decontamination efficacy of
sonication (40 kHz) of chicken wing skin in 1% lactic acid
aqueous solution, where the reduction of E. coli, Proteus sp.,
Salmonella anatum, and P. fluorescens inoculated on the surface
of the chicken skin significantly increased with treatment time
rising from 3 to 6min. Except for E. coli, the microbial reduction
was higher when sonication was performed in an aqueous
solution of lactic acid instead of water. This was explained
by the presence of ions penetrating the cytoplasm due to the
action of gradient pressure yielding from ultrasound and the
presence of free radicals received in sonochemical reactions (73).
Combining high-intensity ultrasound with 0.3% oregano EO
treatment was the most appropriate combination to achieve the
best reduction of lactic acid bacteria (2.30 log10 CFU ml−1),
mesophilic populations (3.36 log10 CFU ml−1), and anaerobic
bacteria (3.11 log10 CFU ml−1) present in chicken breasts at
day 0 of refrigeration. However, the treatment with ultrasound
alone was ineffective to control microbial growth during chilled
storage, where the release of nutrient was suggested as a reason
permitting microbial growth (74).

Cold Atmospheric Plasma
Plasma is a quasi-neutral ionized gas composed of ions, free
electrons, atoms, and molecules in their ground as well as the
excited state. Plasma can be generated using any kind of energy,
which can ionize the gas, and mostly electric or electromagnetic
source are used for generation of plasma species. Plasma can be
classified as a thermal plasma or non-thermal plasma. Thermal
or non-thermal plasma processes can be designed to be delivered
in a format that is cold or near room temperature at the point of
application, which is of value for retaining quality and nutritional
characteristics while providing efficient bio-decontamination
resulting from reactive oxygen or nitrogen species, charged
particles, electric field, UV as components of diverse mechanisms
of action (118).
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Effect of Cold Plasma on Microbial Decontamination

of Poultry Products
It is well-documented that cold plasma (CP) has a large
potential for controlling microbial quality, extending shelf life,
and avoiding post-processing contamination (25). It not only
induces bacterial decontamination but also inactivates a broad
spectrum of microorganisms including fungi, viruses, and spores
(119). Various plasma compounds have critical interventions in
the microbial decontamination process like NO2, NO, O, O3,
OH, H2O2, UV photons, charged particles, and electric fields
(120). Bacterial cell etching, erosion, morphological alteration,
nucleic acid damaging, protein oxidation, and loss of cell viability
are the mechanisms of CP to retain microbial safety in foods
(121). However, different parameters and mechanisms interfere
with the gravity of damage occurring. The antimicrobial effects
of CP are a function of process: duration of treatment, gas
mixture, mode of exposure (direct or indirect), power source
intensity, as well as intrinsic characteristics of product: surface
topology, nature of samples treated (liquid, solid, or semisolid),
and characteristics of the target cell (122).

In-package CP treatment configuration enhanced the
microbial safety, avoided postprocess contamination, and
retained toxicological safety of ready-to-eat chicken products
(123). Using the Salmonella mutagenicity assay, no genotoxicity
was seen in plasma-treated chicken breast (120). Tulane virus
(1.08 ± 0.15 log CFU/cube), indigenous mesophilic bacteria
(0.70 ± 0.12 log CFU/cube), and Salmonella (1.45 ± 0.05 log
CFU/cube) from chicken samples were significantly reduced
upon CP treatment (24 kV for 3min), where increasing voltage
(from 22 to 24 kV) and treatment time had a positive impact
on the microbiological quality (123). However, the majority
of cells showed morphological changes (cell flattened and
other distortions) at 2,000Hz, whereas at 1,000Hz, only cell
clumps appeared, and other cells were hollowed out (124).
S. typhimurium, E. coli O157: H7, and L. monocytogenes
populations on chicken breast reduced from 5.48, 5.84, and
5.88 log CFU/g, respectively, at 0min to 2.77, 3.11, and 3.74
log CFU/g at 10-min plasma exposure (120). Other studies
highlight the potential of in-package dielectric barrier discharge
(DBD) (70 kV) in controlling poultry-related pathogens, namely,
Salmonella and Campylobacter, and inhibiting the growth of
spoiling bacteria (psychrophiles) from chicken breast treated and
stored (5 days/4◦C) (23), where increasing CP treatment time
to beyond 60 s improved microbial reduction of psychrophiles,
while no significant effect was seen against foodborne pathogens.
The in situ decontamination potential of plasma-activated
water (PAW) against P. fluorescens ATCC13525 previously
inoculated on chicken skin pieces was associated with the plasma
process parameters of plasma discharge frequency and treatment
time (124), where the concentration of plasma-generated
reactive species of nitrite, nitrate, peroxide, hydroxyl, and ozone
increased with the discharge frequency (124).

Effect of Cold Plasma on Physicochemical Properties

of Poultry Products
The reaction of myoglobin with hydrogen peroxide may produce
choleglobin-inducing discoloration of meat. An increase in both

L∗ and b∗ value was observed when chicken breast was treated
with flexible thin-layer DBD (123); in contrast, application of
DBD applied on chicken breast (110 kV, 60 kHz) showed a
decrease in L∗ value mainly due to slime formation after 9 days
of storage at 4◦C (28). However, Zhuang et al. (25) did not
report significant changes in L∗, a∗, and b value when chicken
breast was treated with 70 kV. The reactive species generated
from the plasma can induce lipid peroxidation. Zhuang et al.
(2019), Lee et al. (2019), and Moutiq et al. (2020) reported no
changes in lipid profile of chicken breast after CP treatment,
attributed to plasma reactive species being less damaging on
chicken breast as compared to red meat due to variation in fat
content (25, 28, 120, 123).

Combined Effect of Cold Plasma and Natural

Compounds on Poultry Products
Yeh et al. (2019) considered the combined treatment effect of
rosemary (Rosmarinus officinalis) extract (1%) and in-package
DBD-CP on poultry ground meat (Table 1) (67). The treatment
induced a reduction of the diversity in bacterial communities,
and by day 5 of storage at 4◦C, themaximumpopulation densities
of treated samples were similar to those at day 0 (67). Rosemary
extract had a significant effect in reducing the total microbial
counts not only of previously plasma-treated chicken patties
but also of non-plasma-treated chicken patties (16). Thyme
oil/silk fibroin nanofibers treated with CP were proposed as an
active packaging approach with antimicrobial potential against
S. typhimurium inoculated on poultry meat (chicken meat and
duck meat). The inhibition potential of thyme EO/silk fibroin
nanofibers treated with CP was reported as higher compared to
thyme EO/silk fibroin nanofibers, with an increase in the rate
of thyme oil released (23.5–25%) upon plasma treatment clearly
noted (57). Sahebkar et al. (2020) found that associating CP
(10min at 32 kHz) and EO (in marinade solutions) treatments of
breast chicken filet inoculated with S. aureus and E. coli challenge
populations leads to significant microbial reductions by up to 3–4
log CFU/g (68). A synergetic effect was identified by combining
three different EOs (Crocus sativus L., Allium sativum L., and
Zataria multiflora Boiss.) and CP treatment, where the advantage
of combining the EOs with CP was retained after 14 days of
storage (68).

FUTURE CHALLENGES FOR THE
APPLICATION OF NON-THERMAL
TECHNOLOGIES TO POULTRY
PROCESSING

In recent years, there has been intensive research and
development of non-thermal process technologies for application
in fresh food processing. EU regulations refer to “fresh meat”
as meat that has not undergone any preserving process other
than chilling, freezing, or quick-freezing, including meat that is
vacuum-wrapped or wrapped in a controlled atmosphere (125).
The application of a novel non-thermal technology will be subject
to these rules, which may on the one hand lead to consumer
skepticism toward acceptance of these technologies while on the
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other hand limit adoption of processes that can enhance safe
and sustainable processing of food resources. To date, HPP and
UV (with limitations in some countries) are approved. Thus,
combining these approaches with other generally recognized
safe approaches including approved natural compounds provides
technical options to enhance poultry processing outcomes.
The morphological characteristics of poultry products and the
skin make the application of non-thermal technology very
critical. For example, from a microbial safety perspective,
the successful application of UV in poultry processing must
consider density, and effects may be limited due to non-
absorption and non-penetration of light in the chicken meat
surface (104, 107).

While many plant EOs are considered generally safe by FDA,
with increasing use, the daily dose intake remains a safety
question (126). The adoption of EOs is controlled by a nexus
of dosage level, antimicrobial efficacy (127), and the effect of
organoleptic characteristics on consumer acceptability (128).
The stability, strong smell, volatility, and limited solubility are
technical issues to be considered from an efficacy perspective.
These should also be considered in tandem with other processing
features as the process or environment may stimulate the
degradability of these compounds (129).

CONCLUSION

Effective interventions, based on the combinations of emerging
process technologies with the well-understood efficacies of
nature-based compounds, can be designed to enhance safety and
quality and minimize food loss in poultry processing. Studies to
date have demonstrated that the order or sequence of application
can be variable to address the key risks at different process
stages, providing great flexibility if being considered as effective
replacements for thermal or conventional chemical strategies.
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