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Abstract 

Current strategies for bone repair have accepted limitations and the search for synthetic graft 

materials or for scaffolds that will support ex vivo bone tissue engineering continues. Biomimetic 

strategies have led to the investigation of naturally occurring porous structures as templates for bone 

growth. The marine environment is rich in mineralizing organisms with porous structures, some of 

which are currently being used as bone graft materials and others that are in early stages of 

development. This review describes the current evidence available for these organisms, considers the 

relative promise of each and suggests potential future directions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

Bone grafting is used routinely in orthopaedic and dental surgery for procedures such as spinal fusion, 

foot and ankle arthrodesis, impaction grafting during revision surgery, stimulation of healing in 

fracture non-unions and void filling following tumour resection. In the reconstruction of bony deficits, 

autologous or allogenic bone has proven most effective, however, their use is not without problems. 

Autograft harvest has associated significant donor site morbidity and restrictions on the amount of 

graft material available, particularly if the patient is elderly and bone stock is deteriorating. Allograft 

also has limited stocks(Galea et al., 1998), a clinical failure rate of 20-30% and concerns about 

immunogenicity (Louisia et al., 1999; Summers and Eisenstein, 1989; Wooley et al., 1996). 

Furthermore, it is likely that with increasing concerns over transmissible spongiform 

encephalopathies the use of allograft material will be more tightly regulated and restricted in the near 

future.  

 

Currently, the majority of clinically available and experimental synthetic bone graft materials are 

calcium phosphate (CaP) ceramics. Approximately 60% of bone consists of the mineral phase 

hydroxyapatite (HA), therefore structures containing HA or related CaPs, (e.g. beta-tricalcium 

phosphate) are natural choices as bone substitutes and scaffolds for bone tissue engineering (Rezwan 

et al., 2006). Although the biological performance of CaPs is well proven and they possess excellent 

biocompatibility and osteoconductive properties, clinical results continue to be inferior to those seen 

with autograft or allograft. Therefore, development of new or modified synthetic bone substitutes 

continues apace (Bohner et al., 2005).  

 

It is the general consensus among the scientific and orthopaedic communities that the ideal material 

for bone tissue engineering should provide initial mechanical strength and support, with gradual 

resorption and replacement by newly synthesized host tissue. When calcium phosphates were first 

investigated as bone graft substitutes, dense material in granule or particulate form was often 

implanted but as these ceramics are only partially resorbable, replacement by new bone is incomplete 



and the biomaterial remains in situ for many years.  Development of advanced production methods 

and a desire to mimic more closely the natural structure of bone led to the production of porous 

materials that are more easily infiltrated by host tissue (Shors, 1999). Porous materials allow 

improved interdigitation with host bone, improved vascularization and fluid exchange. Several studies 

have suggested that the optimum pore size for neovascularization and bone ingrowth is between 200 

m and 500 m (Green et al., 2002; Wiesmann et al., 2004) and that good connectivity of the pores 

throughout the scaffold is essential (Shors, 1999). This advancement in design, coupled with the 

principles of biomimetics and an interest in ex vivo tissue engineering of bone has led to a search for 

naturally occurring scaffolds that could be used for the purpose of bone regeneration.   

 

The marine environment is a rich source of organisms with unique bone-like structures. Coral has 

been the most widely used – in the early 1970s, White (White, 1997) suggested that a variety of corals 

and echinoids with unique 3-D structures, described by Weber in the 1960s, may have a potential 

application for orthopaedics – but in the last five years, calcified materials from a diverse range of 

marine invertebrates have been investigated for use in bone tissue engineering. This review will 

compare the published results for each of these sources and will consider the relative promise of each 

organism, taking into consideration concerns of sustainability and conservation.  

 

Coral 

Corals belong to the phylum Cnidaria, and most belong to class Anthozoa (Castro and Huber, 2008). 

Many soft corals have an internal structure that features calcium carbonate spicules but it is the hard, 

or stony, corals which are used for bone tissue engineering (Shors, 1999). Stony corals secrete an 

external calcium carbonate skeleton, mainly in the form of aragonite with some calcite (Abramovitch-

Gottlib et al., 2006; Allemand et al., 1998). This skeleton, combined with an open, highly 

interconnected porous structure, make them of interest as scaffolds for bone tissue engineering. Most 

of the corals that have been investigated thus far for use as scaffolds for bone growth have pore sizes 



between 100 m and 50 0m diameter with a high degree of connectivity (Abramovitch-Gottlib et al., 

2006; Geiger et al., 2007; Green et al., 2002; Mygind et al., 2007; Shors, 1999; Wiesmann et al., 2004).  

 

Clinically, coral scaffolds or coral-derivatives have been used for spinal fusion (Coughlin et al., 2006; 

Griesshaber et al., 2007; Im et al., 2005), in maxillofacial surgery (Chen et al., 2008b; Green et al., 

2003; Laza et al., 2007; Oliveira et al., 2007), dental surgery (Lahaye and Robic, 2007; Martina et al., 

2005) and for other orthopaedic applications (Bachle et al., 2006; Coughlin et al., 2006; Hou et al., 

2007; Kujala et al., 2002), either alone (Chen et al., 2008b; Coughlin et al., 2006; Green et al., 2003; 

Hou et al., 2007; Im et al., 2005; Lahaye and Robic, 2007; Laza et al., 2007; Oliveira et al., 2007), or as 

part of a composite material (Bachle et al., 2006; Coughlin et al., 2006; Griesshaber et al., 2007; 

Martina et al., 2005) with reported success and low complication rates, an exception being a clinical 

study of scaphoid non-unions in which autograft was supplemented with coral/BMP implants and 

poor results were blamed on poor vascularity (Kujala et al., 2002). 

 

Experimentally, in vitro testing of corals directly as scaffolds to support osteogenic cell attachment, 

growth and differentiation has shown that primary human bone-derived osteoblasts (Doherty et al., 

1994) and a mouse mesenchymal cell line (CRL-12424) attached and spread on the coral (Porites 

lutea) surface displaying a fibroblast-like morphology (Gravel et al., 2006). A similar study using the 

same cell line demonstrated cell proliferation on the surface of two corals (Millepora dichotoma and 

Porites lutea) with temporal expression of alkaline phosphatase and osteocalcin (measures of 

osteogenic differentiation) and evidence of mineralization (Abramovitch-Gottlib et al., 2006). Cui et al 

showed similar results in vitro with adipose-derived stem cells from dogs (Cui et al., 2007). In vivo, an 

early study reported successful healing of cortical and cancellous, non-critical and critical sized bone 

defects in dogs using four different corals; Porites, Goniopora, Favites or Lobophyllia (Guillemin et al., 

1987) and Gao et al reported superior healing of a segmental tibial defect in sheep with coral 

compared to tricalcium phosphate (Ohgushi, 1997). However, these early successes have been 



followed by reports of the inability of coral alone to support effective bone healing (Galea et al., 1998; 

Laza et al., 2007; Mygind et al., 2007).  

 

In common with other synthetic CaP bone substitutes, corals have been shown to have limited 

osteoinductive capacity and it is only with the addition of osteogenic cells onto the coral construct 

that ectopic bone formation is demonstrated (Chen et al., 2007; Ohgushi, 1997; Zhang et al., 2007b). 

Therefore many studies investigating the ability of coral to support bone healing in vivo have included 

the use of osteogenic growth factors or cells to enhance the osteoinductive capability of the construct. 

In a rabbit model of spinal fusion, a Biocoral/collagen scaffold with bovine-derived bone protein 

extract resulted in solid fusions compared to scaffold alone (Mygind et al., 2007): a bone 

morphogenetic protein (BMP) loaded coral scaffold also improved healing in a canine long bone defect 

(Harris and Cooper, 2004) and rabbit calvarial defect (Hou et al., 2007). Cui et al showed that 

enhanced healing occurred at 12 and 24 weeks for a cranial defect in dogs when adipose-derived 

autologous stem cells were added to the coral scaffold (Cui et al., 2007). In the group which received 

coral alone, there was minimal new bone formation and much of the coral had been resorbed by 24 

weeks leaving an empty defect. Similar results were reported by Geiger et al in a rabbit radial defect 

(Geiger et al., 2007) and Louisia et al in a rabbit ulnar defect (Louisia et al., 1999) with coral alone 

showing minimal bone formation but healing enhanced by the addition of autologous bone marrow 

stromal cells. Both studies used Biocoral® which is a commercially available bone substitute material 

from purified coral (Porites sp.) exoskeletons (Table 1).  The coral is chemically treated to remove 

amino acids, artefacts and foreign bodies, but there is no alteration to its chemical or crystalline 

structure (Cirutteau, 1979; White, 1997). Geiger et al (Geiger et al., 2007) and Louisia et al (Louisia et 

al., 1999) both also reported substantial resorption of the coral scaffold after several weeks - a finding 

that is supported by others (Bensaid et al., 2005; Guillemin et al., 1987; Ohgushi, 1997). 

 

Based on these results, Louisia et al suggested that resorption of the coral scaffold could be one of the 

main benefits of its use as a bone tissue construct compared to other, more frequently used ceramics 



such as hydroxyapatite. One of the perceived disadvantages of using CaP ceramics clinically is the 

relatively slow resorption rate. Although some formulations, such as those with a greater proportion 

of  tri-calcium phosphate, have a faster resorption rate, in general CaP resorption is slow and 

hydroxyapatite (the most commonly used synthetic bone graft material) can remain at the 

implantation site for several years (von Doernberg et al., 2006). One of the goals of bone tissue 

engineering research is to produce a scaffold that is removed at the same rate as new bone is laid 

down so that it supports, but does not impede, bone repair. Some synthetic bone substitutes such as 

calcium sulphate (Cook and Cook, 2009) are resorbed too quickly to support bone cell attachment and 

bone growth, so could the calcium carbonate skeleton of coral be the optimum material?  

 

Although these early results of Louisia et al and others showed promise, as with many in vivo studies, 

they lacked meaningful control groups and favoured inclusion of an empty defect group over the more 

useful positive control. This was rectified in the group’s subsequent studies which compared the cell-

seeded coral scaffolds to clinically relevant control groups such as coral mixed with fresh bone 

marrow (Petite et al., 2000) and defects filled with autograft (Viateau et al., 2007). Further study by 

this group, and others, showed that resorption rate of the coral scaffold is very finely balanced. 

Tuominen et al reported that adding BMP to the coral scaffold accelerated the rate of resorption 

(Tuominen et al., 2000). Furthermore, the addition of fresh bone marrow (Petite et al., 2000) or 

vascular endothelial growth factor (VEGF)-producing bone marrow stromal cells (Geiger et al., 2007) 

caused the scaffold to resorb too quickly resulting in bone formation rates lower than those seen with 

cell-seeded constructs. This is in direct contrast to the enhanced bone formation rates found when 

bone marrow or VEGF was added to a CaP scaffold (Clarke, 2007) and suggests that, with further 

development, it may indeed be possible to engineer materials with resorption rates tailored to a 

specific clinical application. Certainly, coral scaffolds seeded with osteogenic cells showed promise in 

these studies and may provide a more appropriate scaffold for cell-based therapies than CaP ceramics.  

When compared with autograft control, cell-seeded coral scaffolds showed similar bone formation 

rates, however, radiographically, complete bridging of the defect was superior in the autograft group 



(Viateau et al., 2007) and this may affect clinical outcomes. Furthermore, Bensaid et al, who also 

investigated the ability of MSC-loaded coral scaffolds to repair large bone defects in sheep, found that 

the coral scaffold resorbed too quickly to support bone formation in most instances, even with the 

cell-loaded constructs (Bensaid et al., 2005). Differences in experimental protocols may account for 

the discrepancy between these and the results of Petite’s group (Louisia et al., 1999; Petite et al., 2000; 

Viateau et al., 2007) as Bensaid et al loaded their scaffold with 640 times more cells and so may have 

provided too much stimulus for resorption similar to that seen with whole bone marrow and growth 

factors.  

 

An alternative to using coral directly as a scaffold to support bone growth was first investigated by 

White and Shors in 1972, when they successfully fabricated replicas of the coral structure from TiO2, 

Al2O3 and HA into bone-like plugs (White et al., 1972). In 1974, Roy and Linnehan took a simpler 

biomimetic approach, employing the direct conversion of coral calcium carbonate skeletons into HA 

(termed coralline HA) (Roy and Linnehan, 1974). The years of scientific research that followed have 

resulted in the development of coral-based commercially available products for bone repair (Table 1). 

These products (Pro-OsteonTM 200R, Pro-OsteonTM 500R) are only partially converted and so have an 

outer HA layer (2-5 m thick) with an inner aragonite core (White and Shors, 1986; White and Shors, 

1989). This may provide a solution to the problem of expeditious resorption of the coral scaffold when 

too much of a stimulus is given: the outer HA layer may slow down the resorption rate, yet the more 

soluble inner core will counter the slow remodeling typical of bone substitutes produced from 

unadulterated HA. One concern with HA coated corals in vivo is that, when the HA coating is breached, 

fast resorption of the core will result in a massive increase in localized extracellular calcium and this, 

as much as the lack of a physical scaffold, may impede bone growth. There is some evidence that, 

although small amounts of calcium will enhance bone cell proliferation and differentiation, too much 

may inhibit both osteoblast (Maeno et al., 2005) and osteoclast (Hall, 1994; Yamada et al., 1997; Zaidi 

et al., 1989) function.  

 



In practice, however, the coralline HA scaffold has shown very little ability to resorb. Bensaid et al 

reported that there was little evidence of resorption of a Pro-Osteon Pro-OsteonTM 200R scaffold in 

a sheep long bone defect even after 16 weeks when the majority of an unconverted coral scaffold had 

been resorbed (Bensaid et al., 2005) and in a clinical trial of Pro-Osteon 500R as an alternative to 

autograft for hind foot arthrodesis in ten patients, the Pro-Osteon was still visible on x-ray more 

than six years after surgery (Coughlin et al., 2006). Furthermore, others have shown that Pro-

Osteon 500R did not support ectopic bone formation even when seeded with osteogenic cells, 

unlike conventional CaP scaffolds (Harris and Cooper, 2004). A review by Shors suggests resorption 

rates for coralline HA in a canine model of 2-5% per year in cancellous sites and 25% per year in 

cortical defects compared to rates of 65% in 2 weeks for the natural coral graft (Shors, 1999). It is 

thought that the inability of coralline HA to be resorbed in vivo is due to the highly crystalline nature 

of the HA coating, which is less soluble (Harris and Cooper, 2004). Therefore, although Pro-Osteon 

can conduct bone formation and has been shown to be an effective bone graft for several applications 

(Coughlin et al., 2006), it should be considered a permanent or slow-resorbing biomaterial and does 

not provide the half-way house of resorption rate between coral and CaP that might have been 

expected.  

 

Current commercially available materials use high pressure-temperature synthesis to achieve the HA 

coating on the coral surface. Several other fabrication techniques, such as replication and microwave 

synthesis, have also been investigated (table 2). Recently, research into the use of corals as bone 

substitutes has focused on the hydrothermal conversion of alternative species such as a coral from the 

Gulf of Mannar, off the coast of India (Sivakumar et al., 1996); modifications to the conversion process 

such as the addition of a second coating step to improve the mechanical properties (Hu et al., 2001); 

or the use of alternative, more sustainable species (Abramovitch-Gottlib et al., 2006).  The slow 

growth rate of corals makes sustainability a major concern for their continued use in bone tissue 

engineering. To meet the market demand, BiometInterpore (manufacturers of Pro-OsteonTM ) 

requires 2-4 tons of coral per year from the Pacific and Indian Oceans (Ritter, 1997).   



 

Since 1990, all species of stony coral have been listed under the Convention on International Trade in 

Endangered Species (CITES) treaty Appendix II (vulnerable to exploitation but not yet at risk of 

extinction) (Harriott, 2003). Compared to the damage inflicted on coral reefs by environmental 

stresses such as pollution and storm damage and by intensive fishing methods such as dynamite 

fishing, commercial coral harvesting probably has a relatively low impact. However, extensive farming 

of accessible reefs may lead to localized habitat destruction and overfishing of one or two target 

species may mean the reef overall is maintained but individual species are lost (Harriott, 2003).  

 

Options for farming corals include strict management and control over the reef such as occurs in 

Australia, on the Great Barrier Reef in particular, or culturing corals in aquaria – one of the benefits 

cited by Abramovitch-Gottlib et al for using the hydrocoral Millepora dichotoma in their recent studies 

(Abramovitch-Gottlib et al., 2006) For some of the branching corals, small pieces can be harvested 

grown in aquaria to commercially suited sizes and sold, by which time stocks in the wild have also 

replenished. In general, there is a location- and species-specific answer to the question of whether 

coral can be harvested sustainably (Harriott, 2003). Some algal species also have a calcareous 

skeleton and with a growth rate of 2.6cm/year, compared to an average of 1cm/year for coral species 

(Harriott, 2003), they may provide a more sustainable alternative for bone tissue engineering (Felicio-

Fernandes and Laranjeira, 2000).  

 

Algae 

There are three types of algae – red, brown and green, but it is species of red algae (phylum 

Rhodophyta), specifically a group of coralline algae, that have been used in bone tissue engineering. 

Coralline algae deposit calcium carbonate, in the form of calcite, in their cell wall and, in warm marine 

environments, have been shown to participate in reef building (Castro and Huber, 2008).  

 



Unlike the corals, coralline algae have not been used in the native form as a scaffold or bone substitute 

but have instead been converted to calcium phosphate using similar hydrothermal conversion 

methods as those used to synthesise Pro-Osteon. This was first described using Corallina officinalis 

by Roy and Linnehan in 1974 (Roy and Linnehan, 1974) and later developed by Kasperk et al in the 

late 1980’s (Kasperk et al., 1988). This latter research group has published an extensive body of work 

in the intervening decades. Despite the fact that the pores of this algae, although interconnected, are 

approximately 5-10 m (figure 1) (Schopper et al., 2005; Walsh et al., 2008) and therefore considered 

suboptimal for tissue and vascular ingrowth (Felicio-Fernandes and Laranjeira, 2000), the coralline 

HA scaffold has been shown to support the attachment, proliferation and differentiation of both 

primary human bone-derived cells (Turhani et al., 2005a; Turhani et al., 2005c) and mesenchymal 

cambial-layer precursor cells (Turhani et al., 2005b). Furthermore, a commercially available CaP 

product derived from C. officinalis, AlgiPore (also marketed as C GRAFT, Algisorb and AlgOss) has a 

relatively long history of clinical use in maxilla sinus grafting: in 2005, Ewers reported the long term 

follow-up (up to 13 years) of over 200 sinus grafts with a 95.6% survival rate (Ewers, 2005).  

 

As the algal-derived HA is produced by similar methods to coral-derived HA, there are similar 

concerns about the resorptive capacity of this graft. Ewers reported that there was only a 14% volume 

loss of the material after six months in his clinical study of AlgiPore and some graft material was still 

visible even after six years (Ewers, 2005). In an attempt to increase the resorption rate, biphasic CaP 

materials were produced from the algal template, with various ratios of HA to  tricalcium phosphate 

(TCP) (Spassova et al., 2007). In a cortico-cancellous defect model in sheep, biphasic materials with 

HA:TCP ratios of 50:50 and 30:70 did show a statistically significant decrease in residual graft volume 

and an increase in bone volume after 6 months compared to 100% HA but there was no further 

reduction in the material volume of any of the materials at 12 months and considerable amounts of 

even the 30:70 graft remained (Schopper et al., 2005).  

 



Another strategy for counteracting the lack of resorption of the coralline HA grafts may be to use 

alternative production techniques. In 2008, Walsh et al described production of an HA bone graft from 

C. officinalis using low temperature hydrothermal synthesis that resulted in semi-amorphous HA 

rather than the highly crystalline material produced by previous methods (Walsh et al., 2008). In 

theory, this material should be more resorbable in vivo but we must await further publications 

confirming both this and biocompatibility of the graft.  

 

Cuttlefish 

Although there are tens of thousands of marine unicellular and multicellular organisms that produce 

some form of mineral, species from only four further invertebrate phyla have been investigated for 

bone tissue engineering, namely Mollusca, Arthropoda, Echinodermata and Porifera (Table 3).  Of 

these, cuttlefish (Phylum Mollusca, Class Cephalopoda) have been the most extensively studied. Four 

groups have described the conversion of a single species of cuttlefish, Sepia officinalis, from the 

natural aragonite calcium carbonate mineral to carbonated HA (Ivankovic et al., 2009; Kasioptas et al., 

2010; Lee et al., 2007; Rocha et al., 2005b). The resulting structure (figure 1) has a high percentage 

porosity (80%-94%) and with pore sizes in the range of 200-600 m (Kim et al., 2008) may provide a 

more optimized scaffold for bone tissue ingrowth and revascularization than either coral or coralline 

algae.  

 

To date, however, this remains untested as the current in vitro and in vivo testing published is of a 

very limited nature (Rocha et al., 2006; Rocha et al., 2005a) or has only been presented in short paper 

form (Kim et al., 2008). In vitro studies were short-term (up to 72 hours) and were concerned with 

initial biocompatibility of the material and therefore tested proliferation and alkaline phosphatase 

expression of primary osteoblasts in the presence of, and not directly attached to, powdered converted 

cuttlefish bone (Rocha et al., 2005a) or whole constructs (Rocha et al., 2006). No cytotoxic results 

were reported. In vivo, no inflammatory response to converted cuttlefish (Sepia esculenta) implanted 

in a rabbit femoral condylar defect was reported but no quantification of healing or bone formation 



was performed (Kim et al., 2008). One study has suggested that cuttlefish "bone" can directly support 

bone formation, without requiring hydrothermal conversion to HA, and may be suitable as a potential 

xenograft for bone healing as Sepia officinalis was tested in a bone defect model against currently 

available synthetic graft and xenograft materials (Okumus and Yildirim, 2005). Again, this requires 

further investigation and there are some concerns about the mechanical strength of the raw material 

as it is malleable and easily shaped, but in general this represents a potential new direction for bone 

tissue engineering. Carbonated HA is closer to the chemistry of natural human bone than 

stoichiometrically pure HA (Bigi et al., 1997)and has been shown experimentally to have enhanced 

biocompatibility (Ellies et al., 1988; Landi et al., 2003). The methods described to convert cuttlefish 

aragonite seemed to result in substitution of carbonate ions in a similar location within the HA 

structure to bone (Ivankovic et al., 2009; Kasioptas et al., 2010) and with cuttlefish in relative 

abundance in tropical and temperate seas (Okumus and Yildirim, 2005), sustainability may not be a 

concern making this resource of significant interest. 

 

Arthropoda and Echinodermata 

Ion substitution of HA has been a strategy employed extensively to improve the biological 

performance of calcium phosphate and two groups of the phylum Echinodermata, sea stars (class 

Asteroidea) and sea urchins (class Echinoidea), have ossicles and spines made of Mg-rich calcite. 

Ossicles from the seastar, Pisaster giganteus, have been shown to support human bone-derived 

osteoblast and human bone marrow stromal cell attachment directly to the porous structure (Martina 

et al., 2005) whereas spines from two species of sea urchins, Heterocentrotus trigonarius and 

Heterocentrotus mammillatus, were converted to CaP before use (Vecchio et al., 2007b) The biogenic 

Mg-rich calcite spines resulted in Mg-substituted tricalcium phosphate (TCP) rather than HA when 

converted. The structure had pores in the range of 20-50 m with trabecular struts of 100 m and 

showed no inflammatory reaction and bony apposition when implanted in a rat femoral defect model 

(Vecchio et al., 2007b). These are very early results but using an ion-rich biogenic source of calcite or 

aragonite as a starting material may provide scaffolds with optimal biocompatibility using simple 



processing methodology, avoiding the need for complex reactions to obtain ion-substitution, such as 

those employed by Kannan et al to obtain fluorine ion substitution during conversion of cuttlefish 

bones (Kannan et al., 2007).  However, most sea urchin spines are too small to be of practical use and 

with only two species currently identified as having spines large enough to provide useful scaffolds, 

sustainability must be a concern.  

 

Conversely, seashells and the exoskeletons of many arthropods such as crab and lobster are large 

enough to provide structures for any application. In a study examining the conversion of Giant clam 

(Tridacna gigas) and conch (Strombus gigas) shells, Vecchio et al showed that even when partially 

converted to HA (i.e. the structure has an outer HA shell and inner CaCO3 core) the mechanical 

strengths were similar to that of human bone perhaps allowing this particular material to be used for 

load bearing applications (Vecchio et al., 2007a). A further advantage of this biogenic source is that 

the large pieces can be machined into any shape. The authors give screws as an example and potential 

application, however, the material is non-porous and even though initial in vivo studies demonstrated 

bone apposition in a rat femoral defect model, with no evidence of material resorption at 6 wks, long 

term removal of the material may be a problem.  

 

Crustacean exoskeletons may provide a solution to this. Studies of lobster (Homarus americanus) 

(Raabe et al., 2005) and the sheep crab (Loxorhynchus grandis) (Chen et al., 2008b) showed that their 

mineralized chitin exoskeletons have excellent material properties, high degrees of strength due to 

the ‘twisted plywood’ structure and, in the case of the lobster, a porous honeycomb structure at the 

micron level. Use of these exoskeletons as graft materials has not been investigated, however, as 

CaCO3 has been shown to support bone growth in some of the studies outline previously, and chitin 

has been extensively studied as part of composite materials for biomedical devices (Khoushab and 

Yamabhai), there is no reason to suppose that crustacean exoskeletons will not support bone 

formation. Even if, however, they are not directly suitable as xenografts, studying their complex 



architecture and morphology may provide inspiration for synthetic nanocomposite material design 

(Chen et al., 2008a; Giraud-Guille et al., 2004).  

 

Porifera 

The final group of marine invertebrates investigated for the ability to support bone formation is the 

sponges (Porifera). Some sponges have a CaCO3 skeleton but the majority has a protein skeleton made 

from spongin with or without additional support from siliceous spicules (Castro and Huber, 2008). 

Spongin is comparable to vertebrate collagen and as such has been extracted for use as a functional 

additive to composite biomaterials. In one study, sponge (Chondrosia reniformis)- derived collagen 

was used in conjunction with silica templating to produce hydrogels which supported attachment and 

growth of an osteoblast-like cell line (Heinemann et al., 2007). Sponges themselves have also been 

examined as suitable scaffolds for bone tissue engineering. In two separate studies, six different 

“unidentified” sponges were found to support human BMSC (Green et al., 2003) and mouse calvarial-

derived primary osteoblasts (Zheng et al., 2007) attachment and differentiation demonstrated by 

alkaline phosphatase expression or activity. Green et al subsequently identified their sponge as 

Spongia officinalis, a Mediterranean bath sponge, and showed that it also supported ectopic bone 

formation when implanted in a subcutaneous pouch athymic mouse model (Green, 2008).  

 

More recently, three sponges from the genus Spongia (S. officinalis, S. zimocca, and S. agaricina) were 

used as precursors, or templates, to produce porous HA scaffolds by a replication technique 

(Cunningham et al., 2010). Of the three sponges examined, Spongia agaricina produced the most 

promising replicated scaffold for bone tissue engineering as it had approximately 60% porosity with 

pore sizes in the range of 100-500 m and 99.9% interconnectivity (figure 1). Therefore sponges 

could prove to be useful on a number of fronts, either as a source of collagen for hydrogel production 

or as an additive to synthetic CaP or polymer scaffolds, as templates for producing biomimetic ceramic 

scaffolds or directly as osteoconductive grafts. There is one serious drawback to the continued use of 

sponges as biomaterials, however, and that is one of sustainability. Sponges have been used for 



centuries for numerous applications, most notably in the cosmetics industry. Those species that 

produce bioactive compounds are also increasingly being sought for use in biomedical fields. Demand 

now far outweighs supply of some species, particularly Mediterranean bath sponges, and has resulted 

in their inclusion on endangered and protected species lists (Baldacconi et al., 2010; Corriero et al., 

2004). Currently, methods of farming these sponges (Corriero et al., 2004; Muller et al., 1999), or of 

transplanting them back into protected areas from which they have become extinct (Baldacconi et al., 

2010) are being investigated. Unless these studies prove successful or alternative species of sponge 

which are not endangered are found, these animals may not prove to be suitable for orthopaedic 

applications in the long term.  

 

Future Directions 

The philosophy of biomimetics has provided a new direction for biomaterial design. Early forays in 

this area began with researchers trying to recreate the natural structure of bone on a microscale by 

mimicking the trabecular porous structure and collagen fibre/mineral composite chemistry and has 

now progressed to mimicking cortical bone on a macroscale, producing materials with a dense outer 

layer and inner cavity (Zhang et al., 2007a). Reproducing the porosity of human bone has provided 

some degree of success but may be limited by production methods, for example the use of synthetic 

performs, which often result in partially closed porous structures with limited connectivity or low 

tortuosity (the ease of a path through the porous structure). This has driven a search for naturally 

occurring porous structures which can either be used directly as scaffolds or to provide templates for 

producing novel biomaterials.  

 

We have seen above that the seas and oceans are a rich source of mineralized organisms that may be 

of benefit for this purpose. Research into these sources is in its relative infancy and there remains 

much work to be done with those already identified and many hundreds more that are yet untapped. 

As we progress towards ‘smart’ biomaterials that are application specific and have tailored resorption 

and osteoconductive profiles, it may be that we can utilize many of these resources – using the more 



resorbable CaCO3 structures directly for short term support, using sources rich in Mg, Si or other ions 

to produce ion-substituted CaP with intermediate resorption profiles, or converting porous CaCO3 

skeletons with optimal pore size and connectivity to provide long term scaffolds for ex vivo bone 

tissue engineering. The opportunities in the marine environment are almost limitless – in fact, as long 

as we ensure from the beginning that the resources we use are truly sustainable, the seabed is the 

limit.  
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Figure Legends 

 
Figure 1. Scanning electron micrographs of (a) cuttlefish (Sepia officinalis), (b) sponge (Spongia 

agaricina), (c) red algae (Corallina officinalis) and (d) coccolithophores (Emiliania 

huxleyi)demonstrating a range of macro and microporous structures. E.huxleyi micrograph courtesy of 

Katherine Fee. 
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 Table 1. Commercially available bone graft products from marine sources. 

 

 

Product Manufacturer 
Country of 

Origin  
Genera Chemistry 

Biocoral Inoteb France 

Porites, 

Acropora, 

Lobophyllia,  

Montastrea, 

Dichocoenia 

CaCO3 

ProOsteon 

200R 

Biomet 
US 

Porites HA/CaCO3 

ProOsteon 

500R 

Biomet 
US 

Goniopora HA/CaCO3 

Algipore DENTSPLY 

Friadent 
Germany  

Corallina 

officinalis 

HA 

 



Table 2. Examples of manufacture processes used to fabricate marine-derived/inspired bone grafts. Key: CS 

= Closed System, autoclave  OP = Open System, reaction vessel  HPT – High Pressure-TemperatureHT – High Temperature TCP = 

Tri-calcium phosphate TCMP = Mg-substituted tri-calcium phosphate  

 

Common 

Name 
Genera/Species  Source  Fabrication Technique  Chemistry Yr Ref 

Clams Tridacna gigas Unspecified 

HT Synthesis with superheated 

steam (CS)  - 180C (20 days)  
Complete transformation 

to HA 
2007 

(Vecc

hio et 

al., 

2007

a) 

Corals 

Goniopora  

Gulf of 

Mannar, 

India 

Microwave irradiation - 800 W 

for 40 mins at 2.45 GHz 

Complete transformation 

to biphasic CaP with HA: 

TCP Phases 

2003 

(Mur

ugan 

and 

Rama

krish

na, 

2004) 

Porites Unspecified 

HT Synthesis with vapour 

pressure (CS)  - 160 - 200C at 1-

2 MPa (8-14hrs)  

Complete transformation 

to HA 
2002 

(Jina

wath 

et al., 

2002) 

Goniopora 

Great 

barrier 

Reef, 

Australian 

(1) Acid digest (5%NaClO); (2) 

HPT Synthesis (CS) - 250C at 

2.8MPa 

Complete transformation 

to a monophasic HA 
2001 

(Hu 

et al., 

2001) 

Goniopora  

Gulf of 

Mannar, 

India 

(1) Pyrolysis 900C (12hrs) 

(2) HPT Synthesis 

HA – Process destroyed 

structure 
1996 

(Sivak

umar 

et al., 

1996) 

Goniopora; Porites 

 
Unspecified 

HPT Synthesis (CS) - 270C at 

103MPa 

Complete transformation 

of coral to a monophasic 

CaP 

1974 

(Roy 

and 

Linne

han, 

1974) 

Goniopora; Porites Unspecified Replication using wax casting 

TiO2, Al2O3 and HA 

synthetic replicas of coral 

structures 

1972 

(Whit

e et 

al., 

1972) 

Cuttlefish 

Sepia officinalis 

New South 

Wales, 

Australia 

Hydrothermal Synthesis with 

superheated steam (CS)  - 80C 

(32hrs) – 190C (1.5hrs) 

Complete transformation 

to a monophasic HA 
2010 

(Kasio

ptas 

et al., 

2010) 

Sepia officinalis  Adriatic Sea 

(1) Pyrolysis 350C (3hrs) 

(2) HT Synthesis, superheated 

steam (CS) - 200C (48 hrs)  

Complete transformation 

to monophasic HA 
2009 

(Ivan

kovic 

et al., 

2009) 

Sepia esculenta Unspecified 
(1) Acid digest (4%NaClO);  

(2) Pyrolysis 180C (16hrs) 
Predominantly HA 2008 

(Kim 

et al., 



HT Synthesis superheated steam 

(CS) - 200C (24 hrs)  

2008) 

Red algae 

Corallina officinalis 
Donegal, 

Ireland 

(1) Pyrolysis 650C (12hrs) 

(2) LP Hydrothermal Synthesis - 

(OS)  - 100C (24hrs) 

Complete transformation 

to a biphasic CaP with  

95 % HA: TCP Phases 

2008 

(Wals

h et 

al., 

2008) 

Rhodophyta 

(species 

unspecified) 

Santa 

Catarina 

Island  

(1) Acid digest (10%NaClO); (2) 

HT Hydrothermal Synthesis  (CS) 

superheated steam - 200C 

(48hrs) 

Complete transformation 

to a monophasic HA with 

trace Mg 
2+ 

Na
+
 ions 

2000 

(Felici

o-

Ferna

ndes 

and 

Laran

jeira, 

2000) 

Sea urchins 

Paracentrotus 

lividus;                

Heterocentrotus 

mammillatus 

Unspecified Precipitation- 20C (2 Mths) HA 2009 

(Marc

hegia

ni et 

al., 

2009) 

Heterocentrotus 

mammillatus 

Heterocentrotus 

trigonarius 

Unspecified 
HT Hydrothermal Synthesis with 

superheated steam (CS)  - 180C 

Complete transformation 

of spines to TCMP 
2007 

(Vecc

hio et 

al., 

2007

b) 

Unspecified Unspecified 
Replication using polymer 

casting 
CaCO3 2006 

(Guill

emin 

et al., 

1987) 

Snails Pomacea lineata Unspecified 
Precipitation- Room 

Temperature – 7, 14, 30 days 
Aragonite with HA coating  2010 

(dePa

ula et 

al., 

2010) 

Sponges Spongia agaricina Caribbean 
Replication using HA slurry and 

sintering at 1300
o
C (5hrs) 

HA 2010 

(Cunn

ingha

m et 

al., 

2010) 



 

Table 3. Examples of mineralizing marine organisms. Those that have already been investigated 

for bone tissue engineering are highlighted in bold. 

 

Phylum Class Common Name Skeletal Mineral 

    

Heterokontophyta Bacillariophyta Diatoms Silica 

Haptophyta Prymnesiophyceae Coccolithophorids CaCO3 

Radiolaria Polycystina Radiolarians silica 

Foraminifera Granuloreticulosa Foraminiferans CaCO3 

Rhodophyta Florideophyceae Red algae CaCO3/calcite 

Ectoprocta Stenolaemata Bryozoans CaCO3 

Porifera Demospongia Sponges CaCO3 and/or silica 

Cnidarians Anthozoa Corals CaCO3/aragonite 

Mollusca Gastropoda Snails, limpets CaCO3/aragonite 

 Bivalvia Clams, mussels CaCO3/aragonite 

 Cephalopods Squid, cuttlefish CaCO3/aragonite 

Arthropoda Crustacea Lobster, crab, shrimp CaCO3/aragonite 

Brachiopoda e.g. Lingulata Lampshells CaCO3 or CaPO4 

Echinodermata Asteroidea Starfish CaCO3/calcite 

 Echinoidea Sea urchins CaCO3/calcite 

 Ophiuroidea Brittle stars CaCO3/calcite 

 Holothuroidea Sea Cucumbers CaCO3/calcite 

 

 

 

http://en.wikipedia.org/wiki/Heterokont
http://en.wikipedia.org/wiki/Florideophyceae
http://en.wikipedia.org/wiki/Stenolaemata

