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Data integration is an important component of Big Data analytics. One of the key challenges in data integration 
is record linkage, that is, matching records that represent the same real world entity. Because of computational 
costs, methods referred to as blocking are employed as a part of the record linkage pipeline in order to reduce 
the number of comparisons among records. In the past decade a range of blocking techniques have been 
proposed. Real-world applications require approaches that can handle heterogeneous data sources and do 
not rely on labelled data. We propose high-value token-blocking (HVTB), a simple and efficient approach 
for blocking that is unsupervised and schema-agnostic, based on a crafted use of Term Frequency-Inverse 
Document Frequency. We compare HVTB with multiple methods and over a range of datasets, including a 
novel unstructured dataset composed of titles and abstracts of scientific papers. We thoroughly discuss results 
in terms of accuracy, use of computational resources, and different characteristics of datasets and records. 
The simplicity of HVTB yields fast computations and does not harm its accuracy when compared to existing 
approaches. It is shown to be significantly superior to other methods, suggesting that simpler methods for 
blocking should be considered before resorting to more sophisticated methods. 

 
1 INTRODUCTION 
Society worldwide is generating more and more data giving rise to the data deluge problem. In the 
world of big data, data integration technology is crucial for maximising the capability of data-driven 
decision making. For example, analysis of the health data coming from sources such as electronic 
health records, drug and toxicology databases, genomics and social media environments, is a key 
driver toward advancing precision medicine. As a part of the data integration process, records
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(from multiple data sources) that refer to the same real world entity (e.g. a person) need to be linked. 
This process is referred to as record linkage (RL), data/record matching, or entity resolution. 

An overview of a general RL process is depicted in Figure 1. Records are first standardised in order 
to remove inconsistencies between otherwise matching values. This may consist of removing non- 
alphanumeric characters or replacing multiple spelling variations of the same word with a single 
common spelling (e.g., "𝐽𝐽𝐽𝐽ℎ𝑛𝑛", "𝐽𝐽𝐽𝐽ℎ𝑛𝑛𝑛𝑛𝑛𝑛", "𝐽𝐽𝐽𝐽𝑛𝑛" "𝐽𝐽𝐽𝐽ℎ𝑛𝑛"). Record pair comparisons may then be 
performed with each record pair classified as either a matching, non-matching or possibly matching 
record pair requiring further manual review. However, naively performing RL would involve 
comparing every record of a data source with every other record (i.e., quadratic complexity). For 
even moderately sized datasets this would result in a very large number of record pair comparisons, 
incurring significant cost to time and computational resources. Therefore, in order to improve 
efficiency, a blocking algorithm is typically applied before the linkage phase: Records are grouped 
in a smart manner such that matching pairs are placed together as much as possible. Subsequently, 
only records of a same group are compared against each other to find matching pairs. 

 
Fig. 1. General overview of record linkage process. 

 

 
Many existing blocking algorithms make different assumptions regarding data sources. Com- 

monly they assume that the data are structured or that some amount of labelled data (i.e., with 
known matching status of each record pair) is available. Given the ever increasing amount of 
heterogeneous data sources, these assumptions are rather unrealistic. To address this issue some 
schema-agnostic blocking methods have been proposed. They however tend to be inefficient with 
respect to run time and/or memory, and require tuning of parameters for good performance. For 
any blocking method that requires tuning of parameter values, one may need to perform potentially 
multiple evaluations upon a set of labelled data representative of the target dataset. Such labelled 
data is often not readily available. 

We propose a simple unsupervised blocking approach that is very efficient in time and memory 
use, does not require fine tuning of parameters and it is easy to implement. In addition, such a simple 
approach has the further advantages of being unsupervised and being applicable to both structured 
and unstructured data. The contribution is not restricted to creating yet another blocking method, 
but to highlight that simple and thoughtful approaches shall be fully considered before creating 
more and more sophisticated methods. The evaluations show that this simple approach performs 
well against a range of competitors from the literature, including schema/non-schema agnostic and 
supervised/unsupervised methods. As a byproduct, we have created a novel unstructured dataset, 
which we have made publicly available. 
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2 RELATED WORK 
In a RL task we are given (one or more) datasets with (possibly unstructured) records where some 
records may refer to the same entity, that is, they are matching records. For simplicity, we will 
assume in the discussion that a single dataset is given (the case of multiple datasets can be tackled 
by an analogous approach). The goal of blocking is to cluster the records in small groups such 
that matching record pairs are placed in the same group. This is a hard task, as the blocking 
methods need to maximise the number of matching pairs whose records fall in the same group 
while minimising the sizes of the groups, thus allowing for fewer comparisons between records in 
the later stage when records of a same group are checked against each other. This brings the overall 
complexity of finding the matching record pairs from quadratic in the total number of records to 
quadratic only in the largest group size (while linear in the total number of records). 

Existing blocking approaches are designed for either structured, semi-structured or unstructured 
data. Structured blocking scheme learning approaches use labelled data to evaluate potential 
individual blocking predicates and/or propositional combinations of them. Depending on the 
approach, they either assume that labelled data is available (supervised) [3, 26], or they apply an 
automatic method for data labelling (unsupervised) [20, 22]. The efficiency and efficacy of blocking 
scheme learning approaches are dependent upon the number and choice of predicates considered, 
and the quality and quantity of labelled data used. Sorted Neighbourhood [5, 11, 36, 44] is another 
unsupervised approach for structured datasets in which a window of fixed size is slid over records 
ordered by a key and only records that lie within the window form record pairs for comparison. 
Like the previous approaches Sorted Neighbourhood also requires appropriate parameter selection 
for good performance, namely the choice of sorting key and size of sliding window. 

Some blocking approaches have been proposed for semi-structured data. In [31], authors combine 
Token-Blocking with Attribute Clustering in order to improve its efficiency. Attribute clustering 
is a form of schema matching in which a similarity value is assigned to attribute column pairs. 
Highly similar attribute columns are clustered together and thought of as referring to the same 
value. Token-Blocking is then performed in a manner so that only records that share a common 
token by clustered attributes are grouped together. Token-Blocking is explained again later on. 

Schema-agnostic blocking methods may be applied to any type of data regardless of structure. 
Canopy Clustering [2, 3, 19, 21, 25] groups records using a computationally inexpensive (potentially 
schema-agnostic) distance metric with records being placed in the group of chosen (potentially at 
random) centroids. The performance of Canopy Clustering is heavily dependent upon appropriate 
selection of parameters such as the distance metric and similarity threshold values for forming 
canopies. Overly low threshold values result in a small number of large clusters, failing to reduce 
the number of record pairs sufficiently. Whereas overly high similarity threshold values result in 
many small clusters that fail to form many of the matching record pairs of a dataset. 

Another type of schema-agnostic blocking methods are Locality Sensitive Hashing (LSH) tech- 
niques [10, 12, 15, 23, 29, 40], including the prominent MinHash LSH [6, 18, 24, 37, 42]. LSH blocking 
methods form k-shingles (i.e., sub-strings of length k) for each record, then form a boolean matrix 
using the universal set of all k-shingles to indicate which shingles are present in each record. Hash 
functions may then be used to identify records that share the same k-shingles and place them in the 
same block for comparison. Alternatively, MinHash-LSH forms MinHash signatures for each record 
by randomly permuting the rows of the boolean matrix, and identifying the index position of the 
first 1 value of each record. As only identical records would have identical MinHash signatures, 
the MinHash signatures are partitioned into bands, with each record placed into a block for each 
respective band. MinHash-LSH removes the need for manual specification of any hash functions, 
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but is still highly sensitive to parameter choices such as the choice of k, MinHash signature length 
and bandwidth for partitioning. 

Another commonly used schema-agnostic blocking approach is Token-Blocking. Token-Blocking 
places records into blocks for each of their respective tokens with records that share common 
tokens being placed into the same blocks. Token-Blocking tends to capture most matching record 
pairs, but often fails to reduce the number of comparisons sufficiently due to the high commonality 
of some tokens e.g., "the" [14]. 

Some blocking methods generate block collections that contain many of the matching record 
pairs, but fail to reduce the number of record pair comparisons sufficiently. This can be addressed by 
using Block-Refinement techniques. Block-Purging [28] removes blocks above a specified maximum 
block size limit of a block collection. Block-Filtering [34] removes records from a proportion of their 
largest sized blocks. Both require appropriate parameters for good performance. Recently, it has been 
proposed to improve schema-agnostic token-blocking using Meta-Blocking [7, 31, 33, 35, 38, 39], 
which computes an inexpensive weight for each record pair relation and discards weak ones. 
Meta-Blocking frameworks model the record to record relations of a block collection as nodes 
(i.e., records), connected by weighted edges (i.e., relations) with respective edge weight values 
determined by an inexpensive weighting function. The weaker record pairs (indicated by a low edge 
weight value) are then pruned. In [32], five different weighting schemes are proposed. In [31, 34], 
weight based pruning tended to retain most matching record pairs but not reduce the comparisons 
sufficiently, with the opposite being true for cardinality based pruning. Although some Meta- 
Blocking frameworks are shown to work well for some datasets, there is little consensus as to how 
to determine which framework should be used for any particular new dataset. In 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 [37], Meta- 
Blocking is combined with Attribute Clustering [31] in order to avoid pairing records that share 
tokens by different attributes. In 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 [7], the non-redundant record pairs of a block collection 
are accurately labelled by banding them by their similarity according to a defined metric. 

The overall goal of blocking is to reduce the search space of the RL process through reduction of 
the number of record comparison. The candidate record pairs provided as an output of the blocking 
process are further compared with a selected RL algorithm and determined as match or non-match 
based on their similarity. The existing RL approaches can be broadly divided into two categories. 
The first category of approaches rely on applying generic rules and different similarity measures to 
identify those pairs of records that are similar enough to be considered as matching [13, 41]. The 
second category of approaches relies on the application of Machine Learning algorithms [9]. With 
structured data, each pair of records is represented as a comparison vector representing a set of 
similarities, each calculated with a similarity measure on the corresponding pair of attributes values 
of the two vectors. Following the construction of the comparison vectors, a Machine Learning 
models can be trained to classify each vector (i.e., pair of records) as match or non-match. RL can 
also be performed in unsupervised or semi-supervised setting using techniques such as self-learning 
[16] or active learning [43]. Recently, Deep Learning based approaches applied with different text 
embedding models have been proposed for linking structured [8] and unstructured records [17]. 

3 HIGH-VALUE TOKEN-BLOCKING (HVTB) 
The proposed HVTB algorithm (shown in detail in Algorithm 1) is inspired by, and based on, the 
well-known Term Frequency-Inverse Document Frequency (TF-IDF) and its ability to identify 
high-value tokens. TF-IDF values indicate the significance of a token based on their commonality 
within a dataset, with lower values indicating highly frequent insignificant tokens, and higher 
values indicating rarer significant tokens. In [20, 22], it is used to automatically generate labelled 
data to then rank individual blocking predicates with. The best are then used to form standard 
blocking schemes for structured and semi-structured datasets in an automatic and unsupervised 
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manner. In [22], schema matching is additionally used so that RL may be performed between 
datasets with differing schemas. By contrast, the proposed HVTB algorithm uses TF-IDF to block 
the records of a dataset in a manner comparable to that of the highly efficient Token-Blocking but 
only using the most significant tokens of each record. As such, it is completely schema-agnostic in 
manner and can be applied efficiently to any dataset regardless of structure. 

It consists of the following steps. First, tokens of each record are standardised and inverted 
indices are updated: one for the tokens of each record and another for the document frequencies 
of each token. Then TF-IDF is calculated for each distinct token of each record together with the 
average TF-IDF values (𝐵𝐵 𝐹𝐹 -𝐼𝐼 𝐷𝐷𝐹𝐹𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 ) of all non-unique tokens (i.e., those with a document-frequency 
greater than one) of each record. 

In order to discriminate between the least and most discriminative tokens of each record, we 
use the implicitly defined 𝐵𝐵 𝐹𝐹 -𝐼𝐼 𝐷𝐷𝐹𝐹𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 value for each record as a threshold. Unique tokens tend 
to have relatively high TF-IDF values due to their rarity but inherently can not form any record 
pairs making them redundant. As the inclusion of unique tokens would skew this threshold for 
each record, we therefore do not include them when calculating 𝐵𝐵 𝐹𝐹 -𝐼𝐼 𝐷𝐷𝐹𝐹𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 . Finally, each record is 
assigned to a respective block for each of its tokens with a TF-IDF value greater than 𝐵𝐵 𝐹𝐹 -𝐼𝐼 𝐷𝐷𝐹𝐹𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 , 
i.e., their high-value tokens. 

A key property of the approach is to perform a similar but much more efficient alternative to 
Meta-Blocking in which we index each record pair of this already efficient block collection by 
their number of common blocks, to then prune those record pairs with a below average number of 
common blocks. This similarity to existing Meta-Blocking approaches lies in that all individual 
record pairs of a block collection are weighted by the number of common blocks of each record 
pair [7, 31, 33, 35, 38, 39]. However, instead of forming an inter-connected graph of all their relations, 
we only form a simple index that uses much less memory. The chosen weighting also allows us to 
implement what is referred to as the Least Common Block criterion [1, 30], which avoids redundant 
record pair comparisons from being performed at negligible additional cost. For each record pair of 
a block collection, the list of blocks for each record are first inspected. If the first (lexicographically 
speaking) common token of both lists corresponds to that of the currently inspected block of the 
block collection, then and only then is that record pair indexed. Therefore even if the same record 
pair is placed in multiple different blocks of a block collection, it is only inspected once when the 
least common block criterion is met, and ignored in all other cases. 

Indexing record pairs by their number of common tokens also allows for a much more efficient 
alternative to pruning than is used in related Meta-Blocking literature. Meta-Blocking approaches 
inspect the individual edge-weight values of a blocking graph, allowing the respective record pair of 
those that exceed a minimum threshold value to be compared. As our record pairs have already been 
indexed by their number of common tokens, we instead only consider for linkage those indexed 
record pairs with an above threshold number of common tokens. For our threshold we select 
the average number of common blocks of all indexed record pairs. In addition to being implicitly 
defined, this value can also be calculated instantly using the index. In summary, HVTB is simple 
and combines the best of token-blocking, block-refinement techniques and Meta-Blocking but with 
much less computational demand and need for fine tuning of explicit parameter values. By first 
removing many of the less significant tokens of each record prior to token-blocking, an efficiently 
structured block collection is initially generated. This is in contrast to an inefficient block collection 
being first generated (as per normal token-blocking) and then improved via block-refinement 
techniques. Secondly, as the set of tokens (i.e., blocks) associated with each record has been reduced, 
finding the number of common blocks of each record pair of a block collection is made much more 
efficient than normal. Furthermore, as only the more significant tokens of each record are retained, 
for two records to share a common token is more indicative of a matching record pair than normal. 
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Algorithm 1: High Value Token Blocking (HVTB) 
Input :𝑛𝑛 records: D = 𝑟𝑟1, ..., 𝑟𝑟𝑛𝑛 
Output : Set of record pairs, 𝑟𝑟𝑖𝑖, 𝑟𝑟 𝑗𝑗 , ..., 𝑟𝑟𝑖𝑖′, 𝑟𝑟 𝑗𝑗′ 
// Tokenize records 

1 Create index of tokens of each record, T = {} 
2 Create index of document frequencies, F = {} 
3 foreach record 𝑟𝑟 D do 
4 Tokenise 𝑟𝑟 as a set of standardised tokens, 𝐵𝐵𝑟𝑟 
5 Add 𝐵𝐵𝑟𝑟 to T 

// Update document frequencies 

6 foreach distinct token 𝑡𝑡 𝐵𝐵𝑟𝑟 do 
7 if document frequency of t 𝑓𝑓𝑡𝑡 F then 
8 increment 𝑓𝑓𝑡𝑡 by 1 
9 else 

10 assign 𝑓𝑓𝑡𝑡 = 1 and add to F 
 

// Calculate TF-IDF values 

11 foreach record 𝑟𝑟 D do 
12 foreach distinct token 𝑡𝑡 𝐵𝐵𝑟𝑟 do 
13 calculate TF-IDF value of 𝑡𝑡 
14 Compute average non-unique token TF-IDF value, 𝐵𝐵 𝐹𝐹 -𝐼𝐼 𝐷𝐷𝐹𝐹𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 

// Block records by their high value tokens 

15 Create empty block collection, B = {} 
16 foreach record 𝑟𝑟 ∈ D do 
17 foreach distinct token 𝑡𝑡 ∈ 𝐵𝐵𝑟𝑟 do 
18 if 𝐵𝐵 𝐹𝐹 -𝐼𝐼 𝐷𝐷𝐹𝐹𝑡𝑡 ∈𝑇𝑇𝑟𝑟 > 𝐵𝐵 𝐹𝐹 -𝐼𝐼 𝐷𝐷𝐹𝐹𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 then 
19 if respective block of t 𝐵𝐵𝑡𝑡 B then 
20 add 𝑟𝑟 to 𝐵𝐵𝑡𝑡 
21 else 
22 assign 𝐵𝐵𝑡𝑡 = {𝑟𝑟 } and add to B 

// Improve block collection as an index 

23 Create index of weig{hts fo}r record pairs, W = {} 
 

26 Calculate average weight value in W as 𝑤𝑤𝐴𝐴𝑎𝑎𝑎𝑎 
27 foreach record pair 𝑟𝑟𝑖𝑖, 𝑟𝑟 𝑗𝑗  ∈ W do 

 

30 Return record pairs of W, 
{
𝑟𝑟𝑖𝑖, 𝑟𝑟 𝑗𝑗 

} 
, ..., 

{
𝑟𝑟𝑖𝑖′, 𝑟𝑟 𝑗𝑗′ 

}
 

 

from W 
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Finally, by indexing the record pairs by their number of common blocks, rather than graphing their 
relations via a more computationally demanding weighting function, we can easily and instantly 
prune those with a below threshold number of common blocks. This is in contrast to Meta-Blocking 
approaches in which the edge-weight value of each record pair must be individually inspected for 
comparison. 

Algorithm 1 has clearly a very low computational complexity. The loop of lines 3–10 spends 
linear time in the dataset size, as it runs over all tokens of all records updating a frequency table. 
The loop of lines 11–14 has the same linear complexity if the appropriate counts are kept in order 
to obtain TF-IDF. Lines 16–22 summarise the block information again by a single pass over the 
dataset. If an efficient dictionary data structure is used, this again can be done in (amortised) linear 
time in the dataset set. Lines 24–25 and 27–29 clearly spend time that is asymptotically bounded 
by the output size (that is, number of returned record pairs). Therefore, the overall asymptotic 
complexity of HVTB is linear in the dataset size and in the number of pairs it proposes. This is an 
optimal complexity, as no algorithm can be faster than that (any algorithm needs to at least read 
its input, which already spends linear time in the input size, and return its output, which is linear 
time in the output size). Obviously, the algorithm can be slow if it yields too many record pairs, but 
empirically we will see that this is not the case. 

4 EXPERIMENTAL SETUP 
We evaluate blocking results using reduction ratio or RR for short (1 minus the number of returned 
record pairs divided by the total number of pairs), pair completeness or PC for short (overall 
percentage of returned matching pairs divided by the total number of matching pairs) and 𝐹𝐹𝑅𝑅𝑅𝑅,𝑃𝑃𝑃𝑃 
(the harmonic mean of them). We additionally present time and memory usage of each blocking 
approach to better understand the required resources. All algorithms were coded using Java Eclipse 
Mars.1 and run using a Dell Optiplex 9020 with 16G of RAM, an Intel(R) Core(TM) i7-4790 with 
3.60GHz and 64x Windows 7 Enterprise for fairness of comparisons. 

We compare HVTB to a number of competitors. First are the unsupervised blocking approaches 
Sorted Neighbourhood (SoNe), Canopy Clustering (CaCl), MinHash-LSH (MinH), the unsupervised 
blocking scheme learning approach named simply (C) of [20] as well as 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 [37] and the Meta- 
Blocking frameworks (referred to as Meta) described in [32, 34]. We also include 2 supervised 
blocking scheme learning approaches (A, B) [3, 26] that assume labelled data are available (while 
these have limited applicability in unlabelled settings, it is worth to run a comparison to understand 
the differences in performance). 

For all competing methods we use the same default parameter values of their seminal papers. 
For those that require training for parameter choices (i.e., 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , 𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 , 𝑀𝑀𝑀𝑀𝑡𝑡𝐶𝐶, 𝐵𝐵, 𝐵𝐵, 𝐶𝐶) we use the 
optimal parameter values found for a respective training set consisting of 50% of the original dataset. 
Optimal in this context refers to values that are found to achieve the highest harmonic mean of pre- 
cision and recall by TF-IDF linkage in the least amount of time [27]. For the Sorted Neighbourhood 
approach, window size is set to 20 and records are sorted by each attribute lexicographically. For 
Canopy Clustering optimal parameter values are found for each dataset by varying the lower and 
upper threshold parameter values from 0.00 1.00 in increments of 0.01 for the respective 
training set. For MinHash-LSH optimal parameter values are found for each dataset by setting 
shingle length to 2, varying MinHash signature length from  20    2, 000  in increments of 20, 
and setting band width to 5 for the respective training set. For the unsupervised blocking scheme 
learning approach of [20], we use the same default values for the automatic labelling algorithm 
as described in the same paper to generate the necessary labelled data. For 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 we use the 
same default values for Block-filtering and Block-purging as described in [37], however as all 
of the datasets used in the experiments share the same respective schemas there is no need for 
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Table 1. Properties table for evaluated datasets. 
 

Name Number of 
Attributes 

Number of 
Records 

Number of 
Matches 

Restaurant 5 864 112 
Cora 4 1,295 17,184 

Clean-Synth 10 10,000 2,000 
Dirty-Synth 9 10,000 26,692 
Discs25000 7 25,000 1,007 
DBLP-ACM 4 2,616+2,294 2,224 

Amazon-Google 4 1,362+3,225 1,300 
DBLP-Scholar 4 2,616+64,263 5,347 

Abt-Buy 4 1,081+1,092 1,097 
Abstracts-Titles 1 6,704+6,704 6,704 

Walmart-Amazon 10 2,554+22,074 1,154 
 
 

Attribute-Clustering. For the Meta-Blocking frameworks we use the same 5 weighting schemes, 
and 4 pruning schemes of [32, 34], forming 20 different Meta-Blocking baselines. We enhance these 
frameworks with Block-filtering and Graph-partitioning using the same default values as described 
in [34]. For the standard blocking scheme learning baselines (A, B and C) we evaluate using ten-fold 
cross-validation and restrict conjunctions to a maximum length of 2, as higher values typically 
result in longer evaluation times with little or no gain to performance. Out of the eight baseline 
methods, SoNe, A, B and C were designed for structured data (i.e. represented by pre-defined 
attributes), while CaCl, MinH, Meta and Blast were presented as schema-agnostic methods in their 
original papers. It is clear that all those approaches have more intricate setups than HVTB. 

Existing Datasets: In the experimental evaluation we used 10 existing datasets including 8 real- 
world datasets, which are commonly applied by the Record Linkage (RL) community and 2 syn- 
thetically generated datasets. Five of the datasets (Restaurant, Cora, Discs25000, Clean-Synth and 
Dirty-Synth) are used for de-duplication (i.e., matching pairs exist within a single dataset), and five 
(DBLP-ACM, Amazon-Google, DBLP-Scholar, Abt-Buy and Walmart-Amazon) are across multiple 
datasets. To generate the synthetic datasets (Clean-Synth, Dirty-Synth) we use a modified version 
of the synthetic data generator defined by Christen [4]. In Table 1 we indicate different properties 
of each dataset such as their number of attributes, total number of records and total number of 
matching record pairs. 

New Dataset: The majority of the publicly available RL datasets are structured. To provide better 
benchmark for schema-agnostic blocking techniques, as a part of this work we constructed an 
unstructured dataset which is composed of titles and abstracts of medical scientific articles. The 
linking task involves identifying pairs of titles and abstract that refer to the same publication. 
The dataset was obtained from the PubMed Central (PMC) archive using PMC ESearch API for 
collecting IDs of full text research articles and EFetch API for obtaining the full text content for each 
article ID. For each article we extracted the title and abstract. The dataset contains 6,704 matching 
record pairs and it has been made publicly available.1 

 
1https://github.com/DrKevinOHare/Titles-Abstracts-dataset 
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5 RESULTS AND DISCUSSIONS 
In this section, we present results obtained in the experimental evaluation of the proposed blocking 
methods and the baseline techniques. We evaluated all the methods with respect to the quality of 
the output block collections, performance of RL methods on the obtained blocks and the efficiency. 

5.1 Blocking Quality 
In Tables 2 to 4 we present blocking results in terms of RR, PC and 𝐹𝐹𝑅𝑅𝑅𝑅,𝑃𝑃𝑃𝑃. In these tables, 𝑀𝑀𝑀𝑀𝑡𝑡𝐶𝐶 
refers to the best individual results of the 20 different Meta-Blocking frameworks of [32, 34] (hence 
such meta-approach could have an unfair advantage because of that). All methods’ details are 
presented in Section 4. We observe that HVTB achieves the overall best 𝐹𝐹𝑅𝑅𝑅𝑅,𝑃𝑃𝑃𝑃 for most datasets. It 
was marginally outperformed by Meta, B and C on Abt-Buy, and by Meta on Abstracts-Titles. For 
Walmart-Amazon, HVTB was outrun by Meta and C and for Discs25000, it was beaten by SoNe, 
Meta, BLAST and C. It is worth noting that even though HVTB did not always win, the difference 
in performance (𝐹𝐹𝑅𝑅𝑅𝑅,𝑃𝑃𝑃𝑃) was rather small (between 0.002 and 0.038) in those losing cases (apart 
from Meta on Walmart-Amazon). We can also see that HVTB performs consistently well across all 
the datasets while every other method obtains relatively low result for some datasets. For example, 
Meta obtained 𝐹𝐹𝑅𝑅𝑅𝑅,𝑃𝑃𝑃𝑃 below 0.8 for Cora and below 0.9 for Amazon-Google. HVTB also performed 
consistently well in terms of 𝑅𝑅𝑅𝑅 and 𝑃𝑃𝐶𝐶. It can also be observed from Table 4 that HVTB and Meta 
significantly outperformed any of the other techniques on the new Abstracts-Titles dataset, which 
is the only formally unstructured dataset under comparison. Methods such as SoNe, MinH and C 
failed to provide a good performance. 

In order to reach conclusions, we have run a non-parametric hypothesis testing using Wilcoxon 
signed-rank test using the results in terms of 𝐹𝐹𝑅𝑅𝑅𝑅,𝑃𝑃𝑃𝑃 for each method and dataset. Results in 
Table 5 show that HVTB is superior to each one of the competitors (the median of 𝐹𝐹𝑅𝑅𝑅𝑅,𝑃𝑃𝑃𝑃 HVTB 
𝐹𝐹𝑅𝑅𝑅𝑅,𝑃𝑃𝑃𝑃 competitor is always positive), while such difference is statistically significant for all but 
Meta and C (even in those two comparisons, the estimated 95% confidence interval of the median 
is mostly on the positive side). This suggests that most sophisticated approaches fail to improve on 
a simple idea such as HVTB, actually being significantly inferior to it. 

5.2 Efficiency and Scalability 
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Fig. 2. Blocking run time of each blocking method for each dataset. 
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Table 2. RR value of each baseline for each dataset. 

 
Dataset HVTB SoNe CaCl MinH Meta BLAST  A B C 

Restaurant  0.993 0.772 0.999  0.984 0.990  0.981 0.990 0.728 0.991 
Cora 0.966 0.884 0.926 0.574 0.986 0.976 0.963 0.964 0.967 

Clean-Synth 1.000 0.960 0.995 0.991 0.998 0.997 1.000 0.999 1.000 
Dirty-Synth 0.999 0.964 0.993 0.966 0.993 0.996 0.999 0.999 0.999 
Discs25000 1.000 0.990 0.929 0.999 1.000 0.997 0.999 1.000 0.999 
DBLP-ACM 0.997 0.939 0.824 0.953 0.994 0.677 0.998 1.000 0.999 

Amazon-Google 0.978 0.918 0.997 0.439 0.815 0.572 0.996 0.990 0.998 
DBLP-Scholar 0.999 0.969 0.699 0.926 1.000 0.797 0.999 0.999 0.999 

Abt-Buy 0.988 0.891 0.619 0.800 0.982 0.813 0.929 0.968 0.950 
Abstracts-Titles 0.998 0.994 1.000 0.771 0.994 0.854 0.905 0.993 0.028 

Walmart-Amazon 0.887 0.913 0.941 0.309 0.995 0.378 0.993 0.994 0.992 
 

 

Table 3. PC value of each baseline for each dataset. 
 

Dataset HVTB SoNe CaCl MinH Meta BLAST  A B C 
Restaurant  1.000 1.000 0.973  0.955 1.000  1.000 1.000 0.998 1.000 

Cora 0.940 0.867 0.940 0.969 0.615 0.881 0.921 0.919 0.916 
Clean-Synth 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000 
Dirty-Synth 1.000 1.000 0.998 0.999 1.000 1.000 1.000 1.000 1.000 
Discs25000 0.946 0.997 0.775 0.886 0.977 0.998 0.827 0.774 0.950 
DBLP-ACM 0.996 0.990 0.989 0.967 0.998 1.000 0.977 0.825 0.987 

Amazon-Google 0.945 0.632 0.719 0.785 0.934 0.999 0.825 0.812 0.724 
DBLP-Scholar 0.993 0.936 0.972 0.987 0.977 1.000 0.946 0.972 0.976 

Abt-Buy 0.920 0.772 0.965 0.781 0.935 0.997 0.926 0.966 0.982 
Abstracts-Titles 0.947 0.071 0.810 0.453 0.962 0.997 0.930 0.912 1.000 

Walmart-Amazon 0.999 0.913 0.860 0.913 0.991 0.999 0.818 0.863 0.964 
 

 

Table 4. 𝐹𝐹𝑅𝑅𝑅𝑅,𝑃𝑃𝑃𝑃 value of each baseline for each dataset. 
 

Dataset HVTB SoNe CaCl MinH Meta BLAST  A B C 
Restaurant  0.996 0.871 0.986  0.970 0.995  0.990 0.995 0.835 0.996 

Cora 0.953 0.876 0.933 0.721 0.757 0.926 0.941 0.941 0.941 
Clean-Synth 1.000 0.980 0.997 0.995 0.999 0.999 1.000 1.000 1.000 
Dirty-Synth 1.000 0.982 0.996 0.982 0.996 0.998 1.000 1.000 1.000 
Discs25000 0.972 0.994 0.845 0.939 0.988 0.998 0.905 0.872 0.974 
DBLP-ACM 0.997 0.964 0.899 0.960 0.996 0.807 0.987 0.903 0.993 

Amazon-Google 0.961 0.749 0.836 0.563 0.870 0.727 0.903 0.890 0.839 
DBLP-Scholar 0.996 0.952 0.813 0.955 0.988 0.887 0.972 0.985 0.988 

Abt-Buy 0.953 0.827 0.754 0.790 0.958 0.895 0.926 0.967 0.966 
Abstracts-Titles 0.972 0.132 0.895 0.571 0.978 0.920 0.914 0.951 0.054 

Walmart-Amazon 0.940 0.913 0.899 0.462 0.993 0.548 0.896 0.918 0.978 
 

 
 

This section reports about run time and memory consumption for each of the blocking methods. 
First, we present run time values over the 11 already discussed datasets. Figure 2 shows that HVTB 
has one of the lowest blocking run time values among all approaches. The only consistent exception 
is SoNe, which has equal or marginally lower time than HVTB in all cases and CaCl in a single case. 

Looking to the memory consumption of each blocking method for each dataset (Figure 3), 
we observe that HVTB is the least memory demanding of the evaluated approaches (often by a 
considerable margin). This low memory cost relates to the fact that HVTB reduces the sets of tokens 
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Table 5. Hypothesis testing on 𝐹𝐹𝑅𝑅𝑅𝑅,𝑃𝑃𝑃𝑃 results between HVTB and competitors over 11 datasets using 
Wilcoxon signed rank test. Estimated median value (and 95% confidence interval C.I.) of 𝐹𝐹𝑅𝑅𝑅𝑅,𝑃𝑃𝑃𝑃 (HVTB) − 
𝐹𝐹𝑅𝑅𝑅𝑅,𝑃𝑃𝑃𝑃 (competitor) (hence positive means HVTB is superior). 

 
Method p-value Median 95% C.I. for Median 

SoNe 
CaCl 

0.005 
0.001 

0.074 
0.075 

[0.023, 0.409] 
[0.022, 0.130] 

MinH 0.001 0.150 0.028, 0.282 
Meta 0.688 0.001 0.011, 0.090 

BLAST 0.007 0.074 [0.006, 0.197] 
B 0.024 0.053 0.011, 0.097 
C 0.441 0.008 [−0.017, 0.463]  
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Fig. 3. Memory consumption (in Mb) of each baseline for each dataset. 
 
 

for each record prior to the token-blocking phase, as well as not having to retain in memory the 
record to record relations of a block collection (as per Meta-Blocking). Some of the best competitors 
are observed to have quite significant memory footprints. 

In Figures 4 and 5, we respectively present the time (in seconds) and memory consumption (in 
Mb) for the different blocking methods for varying dataset sizes. We generate datasets of different 
sizes up to 1 Million records using the same synthetic data generator used to generate Clean-Synth 
and Dirty-Synth. Note that a discontinued line indicates that the corresponding blocking method 
was incapable of completing for larger dataset sizes under our experimental setup limitations (in 
particular 16Gb of RAM). For the largest evaluated dataset of 1 Million records, HVTB was capable 
of running in under 30 seconds, while the next quickest approach (SoNe) required nearly 25 minutes 
to perform blocking. Most notably, Meta and BLAST are most similar in concept to HVTB but 
are much less efficient. A similar situation is observed in Figure 5 about the memory usage. We 
also see that HVTB has a linear increase, indicating that one may be able to accurately predict the 
necessary memory for an especially large dataset. 
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Fig. 4. Blocking run time (in seconds) of different approaches using a synthetic dataset of increasing size. 
Some curves stop early because the corresponding method was not able to run beyond such a dataset size. 

 

5.3 Blocking Diversity 
We further analyse how HVTB differ from competitiors. First, we check how much the methods 
overlap in terms of the true matches captured during blocking. In other words, we wanted to see 
whether the methods tend to make the same mistakes or perhaps they outperform each other 
on distinct subgroups of records. Table 6 shows the number of true matches that were placed 
in the same blocks by HVTB but were missed by the other baseline methods and vice versa. In 
this analysis we only included the unsupervised techniques (i.e. SoNe, CaCl, MinH, Meta and 
BLAST) that do not require cross-validation. There is very little or no disagreement for Restaurant, 
Clean-Synth, Dirty-Synth and DBLP-ACM datasets. This can be explained by the fact that majority 
of the methods performed well with those four datasets and a small number of mistakes have been 
made overall. 

The largest disagreements between HVTB and others can be observed for Cora, Discs25000, 
Amazno-Google, Abt-Buy and Abstract-Titles datasets. The large disagreement might simply reflect 
the fact that HVTB performed better than others. In some cases, however, the disagreement is 
high even though both methods performed equally well. This can be observed, for example, for 
HVTB versus Meta on Abt-Buy and Abstract-Titles datasets. This suggests that these methods 
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Fig. 5. Memory consumption (in Mb) of different approaches using a synthetic dataset of increasing size. 
Some curves stop early because the corresponding method was not able to run beyond such a dataset size. 

 
Table 6. Percentage disagreement on true matching record pairs between HVTB and the baseline methods 
for each of the datasets. 

 
 
 
 
 
 
 
 
 

Abstracts-Titles 5 16 5 52 89 
AmazonWalmart 9 14 1 9 9 
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make different mistakes, which may indicate that they are capable of detecting distinct subgroups 
of matching records pairs. 

On Abstract-Titles, both HVTB and Meta performed best when record pairs had larger number 
of words (both with p-value < 10−6) and larger number of unique characters (both with p-value 
< 10−5). The two methods performed differently when there was more long words (p-value < 10−6) 
and fewer short words (p-value < 10−3). Over the records that they disagreed, HVTB performed 
best when there were more short words (p-value 0.041). On Abt-Buy, HVTB performed best when 
record pairs had more letters (p-value < 0.005), more long words (p-value < 10−3) and fewer short 
words (p-value 0.001), while Meta did best when there were fewer numbers (p-value < 10−4), fewer 
characters (p-value < 0.001), fewer long words (p-value < 10−4) and fewer short words (p-value 
< 10−4). They differed in prediction over record pairs with fewer short words (p-value < 0.01). 
Over the records that they disagreed, HVTB performed best when there were more numbers 
(p-value < 10−6), more characters (p-value < 10−4) and more long words (p-value < 10−4). All these 
hypothesis tests were performed using the non-parametric Wilcoxon (Mann-Whitney) rank sum 
test. 

These analyses between HVTB and Meta on Abstract-Titles and Abt-Buy may help us to un- 
derstand the differences in performance in these particular cases, but it is hard to generalise the 
results by looking to particular datasets. With that more general goal in mind, we have run the 
non-parametric Wilcoxon (Mann-Whitney) rank sum test to identify characteristics associated to 
each of the methods based on when the particular method has correctly blocked together matching 
record pairs. The hypothesis test is run for each blocking method within each dataset. In order to 
consolidate results, Table 7 reports only the characteristics that were recurrent in more than half 
of the datasets (with high statistical significance), so they likely represent characteristics of the 
methods that might generalise across datasets. In order to clarify the meaning of the table, let us 
consider the row Numbers and the column for method CaCl. Table 7 reports that, among all record 
pairs that should have been matched, CaCl performs best in blocking those pairs correctly when 
there is a difference in the amount of “numerical words” among the pairs to be matched. Let us 
consider the row Short words and column MinH. Here, the table shows that MinH performs better 
in blocking pairs correctly that have fewer short words (when considering all words of both records 
in the pair). This also happens for HVTB, CaCl and SoNe, as shown in the respective columns of 
Table 7. Results appear in the table only if they repeatedly happened in at least 6 of the 11 datasets. 

 
Table 7. Association between methods and record-pair characteristics that are repeatedly significant (Mann- 
Whitney p-value < 0.05) in at least 6 of the 11 employed datasets. They show when a characteristic is 
prominently different between correctly and incorrectly blocked matching pairs (hence the test is run within 
each dataset and considers all record pairs that should have been matched). Difference means that the method 
indicated in the column performed better when there was a difference in that characteristic (described in the 
row) between compared records in the pair, while the adjectives fewer and more regard both records of the 
pair. 

 
Characteristic HVTB BLAST CaCl Meta MinH SoNe 
Characters – – – – fewer – 
Numbers difference – difference  – fewer   – 
Non-numbers difference – difference difference more   – 
Short words (len.< 4)  fewer –  fewer difference fewer  fewer 
Long words (len.> 8)  more –  more  – more difference 
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6 CONCLUSIONS 
This work focuses on the blocking task and proposes a simple but effective method named High- 
Value Token-Blocking (HVTB). Despite its simplicity, HVTB has been the fastest blocking method 
in the empirical study, has shown significantly less memory consumption and has always obtained 
good blocking results. It has been able to consistently achieve high reduction ratio of comparisons, 
high pair completeness and high harmonic combination of those values. Statistical hypothesis 
testing shows that HVTB was superior to other methods. Based on the characteristics of the datasets, 
it is suggested that HVTB is more suitable for datasets that are unstructured or have attributes 
represented as lengthy unstructured text. While some of the existing methods do perform well in 
some particular cases, these experiments suggest that a simple approach such as HVTB should be 
strongly considered before resorting to more sophisticated methods. 

Many of the competitors are schema-aware/dependable, and have a hidden cost of time and 
effort for sourcing of labelled data and tuning of parameter values (typically requiring multiple 
evaluations). HVTB has performed consistently well despite being unsupervised, schema-agnostic, 
and only making use of implicitly defined parameter values, therefore avoiding the need for a 
domain expert. 

In future work we would like to explore whether the proposed blocking method can be even 
further improved in terms of automatic selection of linkage parameter values based on distribution 
of record pair similarities of block collections, as this would allow for an effective end-to-end 
record linkage solution that may be applied to any dataset and without the need for labelled data 
or domain expertise. 
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