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Abstract

Motion information has been widely exploited for group activity recognition in sports
video. However, in order to model and extract the various motion information between
the adjacent frames, existing algorithms only use the coarse video-level labels as super-
vision cues. This may lead to the ambiguity of extracted features and the omission of
changing rules of motion patterns that are also important sports video recognition. In
this paper, a latent label mining strategy for group activity recognition in basketball videos
is proposed. The authors’ novel strategy allows them to obtain the latent labels set for
marking different frames in an unsupervised way, and build the frame-level and video-level
representations with two separate levels of supervision signal. Firstly, the latent labels of
motion patterns are digged using the unsupervised hierarchical clustering technique. The
generated latent labels are then taken as the frame-level supervision signal to train a deep
CNN for the frame-level features extraction. Lastly, the frame-level features are fed into
an LSTM network to build the spatio-temporal representation for group activity recog-
nition. Experimental results on the public NCAA dataset demonstrate that the proposed
algorithm achieves state-of-the-art performance.

1 INTRODUCTION

Content-based sports video analysis has been attracting signif-
icant attentions from the field of computer vision, owing to
its widespread applications in real world [1–4]. Among all the
related directions in content-based analysis for sports videos,
effective group activity recognition has wide range applications
in facilitating athletic training improvement, fast video brows-
ing and accurate video retrieval [5, 6]. For the popular broad-
cast basketball videos, the task of group activity recognition
becomes more significant. This task, however, may easily suf-
fer from some severe difficulties, including the frequent interac-
tions between players, cluttered background and high similarity
among different categories, thus is quite challenging.

To solve the challenges in group activity recognition, the
motion patterns across video frames are mostly extracted, which
can both help avoid the interference of background noise and
discover the intrinsic distinctions between group activity classes.
The motion patterns, as a particular and effective modality of
data, are actually composed of global motion patterns and local
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motion patterns. Global motion means the camera movement,
while local motion basically refers to the players’ movement. In
a video clip, there are often some different kinds of motion pat-
terns with fixed changing rules, which can be exploited as the
intrinsic and discriminative features for recognizing the specific
group activity class. Take the class of the three-point as an exam-
ple, there are both different types of global and local motion
patterns, the global camera motion includes panning or tilting
firstly and zooming in on the basket lastly, meanwhile, the local
motion includes one player in a certain region moving vigor-
ously and others moving slightly. Both these different motion
patterns and their typical changing rules can be very helpful to
define the group activity.

Existing works utilize the motion patterns for group activ-
ity recognition mainly in two ways: (i) take an optical flow cal-
culation method to estimate the motion fields, from which the
features representing the motion information are extracted by
a neural network model; (ii) employ a 3D CNN to implic-
itly extract the motion information across different frames
for improving the recognition accuracy. For example, some
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algorithms [7–9] take the two-stream neural networks to extract
the two kinds of features separately. Thereinto, one stream
works on extracting the appearance features from the RGB
frames, the other stream works on extracting the motion fea-
tures from the motion fields. The classification results from
the two streams are added lastly with equal weights. There are
also some other algorithms [10–13], which utilize the 3D CNN
to extract the spatial and temporal features simultaneously. By
using the filters that can operate across different frames, the
motion information is extracted implicitly.

For both (i) and (ii), only one single kind of supervision sig-
nal, that is, the video-level labels, is used for the construction
of feature representation. This may lead to a deficiency that the
embeddings are unable to represent the rich and various motion
information associated with the sequential multi-frames within
one same video clip. Besides, for (ii), the 3D CNN framework
normally requires high computational complexity and is weak
at modeling long term information variation, which may lead to
the omission of significant motion features and the reduction of
recognition accuracy.

In view of these problems, this paper aims at mining the
latent labels of motion patterns from the frames and further
combining two levels of supervision signal to obtain the effec-
tive spatio-temporal representation. Specifically, we explore an
unsupervised way to mine the latent labels for frames, includ-
ing the motion field estimation, statistic features extraction and
hierarchical clustering steps. Each cluster is tagged with a latent
label of motion pattern. The generated latent labels are then
used as the frame-level supervision signal to train a deep CNN
for the frame-level features extraction. Lastly, the frame-level
features are fed into an LSTM (Long Short-Term Memory) net-
work, which takes the video-level labels as supervision signals to
obtain the spatio-temporal representation. The spatio-temporal
representation can thus depict various motion patterns and their
particular changing rules more explicitly and effectively improve
the group activity recognition performance. The main contribu-
tions of this work are summarized as follows:

∙ We propose a group activity recognition algorithm frame-
work for basketball datasets. Our method combines a latent
label mining strategy without additional network structure,
which will be more conducive to the industrial deployment
of the algorithm in basketball games.

∙ A two-stage training method combining frame-level labels is
used for network learning, which allows CNN to learn more
detailed spatial features.

∙ Extensive experiments on the basketball benchmark dataset
namely NCAA have been conducted. The results demon-
strate that our method outperforms current state-of-the-art
methods for group activity recognition, which indicates the
effectiveness of the proposed method.

2 RELATED WORK

Video understanding and analysis is one of the important task
of computer vision. We introduce the related work from two

aspects of video action recognition and group activity recogni-
tion, respectively.

2.1 Video action recognition

One major kind of the existing algorithms based on the deep
neural networks exploits the 3D CNNs or their variants. The
3D filters or pseudo-3D filters slide in both spatial and tempo-
ral dimensions to let the spatial and temporal representations be
learned simultaneously. For example, Tran et al. [10] proposed
a neural network called C3D, which extended the 2D convo-
lution to 3D convolution to capture the appearance features
and the temporal dynamics between consecutive frames at the
same time. The C3D, however, can not fully utilize the exist-
ing 2D CNN models that have been pre-trained effectively on a
large-scale dataset. To this end, Carreira and Zisserman [12] pro-
posed the I3D, which inflated the deep pre-trained 2D CNNs
for image classification into spatio-temporal feature extractors.
Furthermore, to reduce the computational complexity and pre-
vent the over-fitting problem, several algorithms [11, 13–15]
proposed to decouple the 3D convolution filter to a 2D spatial
convolution filter followed by a 1D temporal convolution fil-
ter to decrease the number of parameters. All these 3D CNNs
can enhance the recognition performance. However, they also
suffer from high computational complexity.

Another major kind of existing algorithms based on deep
neural networks is mainly based on two-stream architecture.
One of the typical examples is the model proposed by Simonyan
and Zisserman [7], which applies one stream to extract the
appearance features and another stream to calculate the motion
information from the estimated optical flow [16]. The final
predictions for videos were averaged over the two streams,
which were trained separately. This framework has attracted sig-
nificant attentions recently and extended by many works. For
example, a network called TSN [17] was proposed to use the
two-stream framework to capture the features from the short
snippets, which were extracted from the long videos by a sparse
sampling scheme. However, there is a problem that in the typi-
cal two-stream architecture, the interactions between the frames
and the modalities are actually very limited. Some algorithms
[18, 19] also noted this and studied the fusion strategies in
the middle of the two streams, but the problem still remains
open.

Apart from the 3D CNNs and two-stream architecture, the
ConvLSTM structure is also frequently used. The ConvLSTM
structure basically refers to taking the 2D CNNs and LSTM net-
work to build the frames and videos representation, respectively
[20]. Du et al. [21] further introduced the attention mechanism
into the ConvLSTM structure, so that the network only paid
attention to the areas that were strongly related to the behav-
ior category. Wu et al. [22] took the optical flow as input and
combined the sequential CNNs and LSTM for basketball event
prediction. Yang et al. [23] proposed a two-stage scheme on the
basis of the ConvLSTM structure. Briefly speaking, the Con-
vLSTM structure-based algorithms usually have less computa-
tional complexity, but the performance is uncompetitive.
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FIGURE 1 The framework of the proposed scheme.

2.2 Group activity recognition

Group activity recognition methods have attracted more and
more attention in recent years due to their important applica-
tions in sports event analysis and video surveillance [24, 30,
37]. Traditional group activity recognition methods [25, 26] were
mostly based on hand-crafted features and probabilistic graph-
ical models to predict group activities. With the rapid develop-
ment of deep learning, some methods combined with RNN
further improved the recognition performance. Ibrahim et al.
[27] used a hierarchical LSTM model to aggregate individual
actors information for the understanding of the entire activ-
ity. Shu et al. [28] proposed a two-level hierarchy of LSTMs
that minimized predicted energy and maximized confidence.
Bagautdinov et al. [29] maintained the temporal consistency of
each actor in the video by the RNN structure. Wang et al. [31]
used LSTM to unify the interactive feature modeling process
of single-person dynamics, intra-group and inter-group interac-
tions. Li and Chuah [32] used the method of generating captions
for each video frame to infer group activities. Ibrahim and Mori
[33] constructed the relationship representation of each person
and used it for group activity prediction. PC-TDM [34] pro-
posed a Participation-Contributed Temporal Dynamic Model,
which aggregated temporal dynamics of key actors with differ-
ent participation degrees over time from each person to recog-
nize group activity. In addition to RNN-based methods, there
are some other deep learning methods worthy of attention. Azar
et al. [35] generated intermediate spatial representations (activ-
ity maps) based on individual and group activities to iteratively
refine group activity predictions. Wu et al. [36] built a flexible
and efficient Actor Relation Graph (ARG) to simultaneously
capture the appearance and position relation between actors.

This paper focuses on the ConvLSTM structure. By explor-
ing an unsupervised way to introduce the additional latent
frame-level labels into the ConvLSTM structure, we aim
to improve the recognition performance with less computa-
tional complexity.

3 THE PROPOSED SCHEME

3.1 Overview

The proposed scheme for group activity recognition, as shown
in Figure 1, mainly contains three key modules: latent label min-
ing, frame-level features extraction and video recognition with
temporal representation, respectively. Firstly, the motion fields
are estimated for each pair of adjacent frames, from which the
latent labels of various motion patterns are mined by an unsu-
pervised algorithm. Secondly, the generated latent labels are
used as the frame-level supervision signal to train a CNN model,
by which the frame-level features that can help identify various
motion patterns are extracted. Finally, an LSTM model, taking
the frame-level features as input, is utilized to get the temporal
representation for group activity recognition in video clips.

The overall loss for training is

L = Lframe−level + Lvideo−level, (1)

in which Lframe−level and Lvideo−level represent the cross entropy
losses for the construction of frame-level and video-level rep-
resentations, respectively. During the whole scheme, we employ
the Lframe−level and Lvideo−level in the second and third steps sep-
arately. Below we will introduce the three steps in detail.
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3.2 Latent label mining

To discover latent labels of various motion patterns in a video
clip, the motion field between two consecutive frames is gener-
ally estimated at first. With the motion field as basic input, the
deep motion information will be easily extracted and depicted.
Among existing works, there are many classic optical flow meth-
ods for motion field estimation [38–40]. This paper employs the
PWC-Net [41], which is an end-to-end convolutional neural net-
work and can make a good balance between the accuracy and
computational cost. By using PWC-Net, the motion field with
two channels is obtained, representing the pixel displacement in
the horizontal (x-component) and vertical (y-component) direc-
tions, respectively.

Since a motion field is obtained, an unsupervised algorithm
called Motion Characteristic Histogram (MCH) is introduced to
map the motion field into statistic features. The MCH mainly
focused on summarizing the appearance characteristics of each
point in the motion field. Specifically, a point in the motion
field is characterized by its motion direction and amplitude. The
point can be regarded as stationary when its motion amplitude
is less than or equal to 0.2 pixels. To improve the robustness of
MCH and alleviate the inference from noise points, the motion
field is further divided into n × n local non-overlapping regions
of equal size, the MCH for each local region is computed inde-
pendently. Lastly, MCHs of all local regions are concatenated in
sequence to form the ultimate statistical representation of the
motion field.

Based on the statistical representation of the motion field for
the frame, a bottom-up aggregation strategy using a hierarchical
clustering algorithm is proposed for the latent labels mining. As
shown in Algorithm 1, the frames in the training set are clus-
tered into k classes hierarchically by an unsupervised way, each
class has a representative vector, that is, the cluster center. The
resulting total k classes are namely the desired latent labels set.
For each frame in training set, the label of motion pattern could
be obtained by the nearest distance between its MCH and all
representative vectors, that is, {r1, r2, … , rk}. Sequential frames
in one video clip are thus tagged with different labels, delivering
rich motion information that can help improve the recognition
performance. Several samples of the motion fields tagged with
different labels are visualized in Figure 2. We can see that both
the motion intensity and motion direction are similar in certain
regions for the three motion fields in each row, which have the
same latent label.

3.3 Frame-level features extraction

The latent labels generated from the previous step actually form
the additional high-level semantic information besides initial
video labels. These additional labels could act as a frame-level
supervision signal for frame-level features extraction. Compar-
ing with a scheme using video labels for both frame-level and
video-level features extraction in existing works [22, 23], the
scheme using the frame and video labels for frame-level and

ALGORITHM 1 Hierarchical Clustering for Frame-level Latent Labels
Generation

Input: Statistical feature vectors { f1, f2, … , fm} for different frames

Output: Representative vectors {r1, r2, … , rk} for latent labels

// Distance matrix construction

for i = 1 to m do

for j = 1 to m do

Di j = cos( fi , f j );

D ji = Di j ;

end for

end for

Find the smallest value Di∗ j∗ in D;

// Hierarchical clustering

k ← m;

Copy { f1, f2, … , fm} into {r1, r2, … , rk};

while Di∗ j∗ < 𝜃 do

Merge ri∗ and r j∗ : ri∗ = Avg(ri∗ + r j∗ );

for j = j∗ + 1 to k do

Renumber the cluster r j as r j−1;

end for

Delete the j∗-th row and j∗-th column of D;

k ← k − 1;

for j = 1 to k do

Di∗ j = cos(ri∗ , r j );

D ji∗ = Di∗ j ;

end for

Relocate the smallest value Di∗ j∗ in D;

end while

return remaining cluster centers {r1, r2, … , rk}, i.e., representative vectors
for latent labels

FIGURE 2 Visualization of the samples of motion fields tagged with
different latent labels. Each row corresponds to the one same latent label.
Color hue indicates the motion direction and color value denotes the motion
intensity.
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video-level features extraction separately is more reasonable by
precisely depicting the various frames.

After latent labels as frame-level supervision signals are deter-
mined, the frame-level features could be effectively extracted
through a deep CNN. This paper employs the common VGG-
11 network [42] with batch normalization layers [43], yet makes
a minor modification. Specifically, the output dimensions of
the first two fully-connected layers in the original VGG-11 are
both adjusted to 1024, since the number of classes to be recog-
nized is rather few. After the second fully-connected layer, the
frame-level features, that is, output vectors of length 1024, are
just extracted.

The cross entropy loss function is widely used in group
activity recognition task, so the loss function is defined as
follows:

Lframe−level= −
1
n

n∑

i=1

k∑

j=1

fi j log(xi j ), (2)

where n denotes there are n samples in a batch, k is the number
of categories of latent labels, fi j means the j th latent label of
the ith image, and xi j means the probability that the ith image
belongs to the j th latent label outputed by CNN.

3.4 Video recognition with temporal
representation

Frame-level feature extraction by using deep CNN intrinsically
produce the spatial representation of frames. To construct the
temporal representation for video recognition, this paper takes
an additional LSTM network [44]. LSTM has a function of
judging the important degree of features at each time node
due to its unique memory cells and gate operations. Hence the
discriminative features can be just preserved and the redun-
dant information can be just forgotten over time. LSTM also
introduces the notion of memory state, which can suppress
the vanishing gradient and exploding gradient problems effec-
tively. By integrating the VGG-11 network with frame-level
labels as supervision signal and the LSTM network with video-
level labels as supervision signal, a new ConvLSTM structure
that models the spatio-temporal representation of video clips is
established.

At the end of the ConvLSTM structure, a fully connected
layer with softmax activation is utilized for group activity clas-
sification. Thereinto, the number of neurons is set as the total
number of group activity categories. It is worth noting that the
cross entropy loss function is still used as the loss function for
LSTM network training, which is defined as follows:

Lvideo−level= −
1
n

n∑

i=1

m∑

j=1

fi j log(xi j ), (3)

where n denotes there are n samples in a batch, m is the num-
ber of categories of video-level labels, fi j means the j th video-
level label of the ith image, and xi j means the probability that
the ith image belongs to the j th video-level label outputted by
LSTM network.

4 EXPERIMENTS

In this section, we show that the proposed scheme can signif-
icantly improve the performance of group activity recognition
on basketball videos. All experiments are conducted on the pub-
lic NCAA dataset. Firstly, different parameters are tested to find
the optimal setting. Using the optimal parameter setting, an abla-
tion study is made to verify the effectiveness of the latent label
mining strategy. At last, comparison with the state-of-the-arts
is performed.

4.1 Experiment settings

4.1.1 Dataset

NCAA is a challenging public dataset for group activity recog-
nition in broadcast basketball videos, which was released by
Ramanathan et al. [1]. This dataset is collected from Youtube,
in which videos across different venues and different periods of
time are contained. There are 257 basketball videos in NCAA,
each lasts about 1.5 h long. All videos are randomly split into
training, validation and testing set with 212, 12 and 33 videos,
respectively. To understand and analyze these videos, the 6 types
of group activities are defined, including three-point, free-throw,
lay up, two-point, slam dunk and steal, as shown in Figure 3.
For each activity, the start and endpoints are marked manually
through a crowdsourcing platform, generating the video clip.
As shown in Figure 4, each group activity class has different
number of video clips. Average length of a video clip is about
45 frames, which covers the essential context for group activ-
ity recognition.

4.1.2 Evaluation metrics

We use two evaluation metrics to measure the recognition effec-
tiveness, accuracy and confuse matrix, which are defined as
follows:

∙ Accuracy is the most basic evaluation index in recognition. It
is the percentage of the samples with correct prediction in all
the samples, and accuracy is computed as:

Accuracy =
TP + TN

TP + TN + FP + FN
, (4)
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FIGURE 3 Some example points from the NCAA dataset, we randomly selected five consecutive frames from each type of event for display, the first row is
three-point, the second row is free-throw, the third row is lay up, the fourth row is two-point, the fifth row is slam dunk, and the last row is steal.

FIGURE 4 The data distribution of the NCAA dataset

where TP is the number of samples that were predicted to
be positive and were actually positive, FP is the number of
samples that were predicted to be negative and were actually
positive, FN is the number of samples that were predicted to
be positive and actually were negative, and TN is the number
of samples that were predicted to be negative and actually
were negative.

∙ The confusion matrix reflects the confusion degree of clas-
sification results, and the effect of classification can be seen
intuitively through visualization. In general, its vertical axis
is the predicted category of the sample, and its horizontal
axis is the true category of the sample. Suppose a confusion
matrix is An×n, then Ai j represents the number of samples
that are actually class i but are identified as class j . The diago-
nal line Ai j represents the number of samples that are actually
class i and identified as class j , that is, the number of samples
that are correctly predicted.
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TABLE 1 Comparison of classification accuracies using different numbers
of non-overlapping regions

Regions number Features dimension Accuracy (%)

3 × 3 81 67.10

4 × 4 144 68.23

5 × 5 225 66.54

4.1.3 Implementation details

During the data pre-processing stage, linear transformation is
utilized for the motion field, which serves as input for latent
label mining and frame-level features extraction. After transfor-
mation, element values within the motion field are limited to the
range of [0, 255]. Taking the processed motion field as input,
the two networks for frame-level and video-level representation
construction are sequentially trained. For frame-level features
extraction, the VGG-11 network is initially pre-trained on Ima-
geNet dataset [45] and then fine-tuned on the NCAA dataset.
During the fine-tuning stage, an oversampling algorithm is used
to ensure that the sample numbers for all categories are basically
equal within a mini-batch. In order to achieve video-level rep-
resentation construction, the LSTM network contains 16 units,
allowing 16 frames in one video clip as input. For the training
of both networks, the optimizer of Stochastic Gradient Descent
(SGD) is employed. Specifically, the weight decay is set to 5e-4,
the momentum is set to 0.9, and the batch size is set to 64 and 30
for VGG-11 and LSTM, respectively. The whole training pro-
cess is implemented on the deep learning framework Pytorch
with a Nvidia Titan X GPU.

4.2 How do the parameters influence the
performance

4.2.1 Number of non-overlapping regions

To improve the robustness of features for mining latent labels
in Section 3.2, we divide the motion field into n × n local
non-overlapping regions of equal size and compute the statistic
features of each local region independently. For an experiment
designed to find the optimal setting, different values of n,
including 3, 4, 5 are tested, respectively. With the increment of
sub-regions from 3 × 3 to 5 × 5, the dimension of generating
statistic features increases from 81 to 225. It is a common
idea that a higher feature dimension can represent the motion
field more accurately, which ought to generate better clustering
results and achieve higher classification accuracy. However, as
shown in Table 1, the accuracy drops when the number of
sub-regions increases from 16 to 25. This may be in part due to
the existence of noise components in the motion field, such as
scoreboard regions and the motion generated by the audiences.
In these circumstances, the finer division of the motion field
will easily amplify the inference from the noisy component.
Hence the best result is obtained by n = 4, which is utilized
through the following experiments.

TABLE 2 Comparison of classification accuracies using different merging
threshold 𝜃

𝜽 Categories number Accuracy (%)

0.4 110 55.61

0.5 44 62.47

0.6 14 68.23

FIGURE 5 Visualization of clustering result of feature embeddings using
different n and 𝜃

4.2.2 Merging threshold 𝜃

In Algorithm 1, a merging threshold denoted by 𝜃 is used as
the maximal distance between two examples that are allowed
to be merged into one cluster. To evaluate the influence of 𝜃,
different values including 0.4, 0.5 and 0.6 are tested, respec-
tively. The bigger the 𝜃 is, the weaker the merging constraint
becomes, thus the fewer categories will be remained. As shown
in Table 2, the number of categories reduces from 110 to 14 as
the 𝜃 changes from 0.4 to 0.6, while the classification accuracy
increases progressively from 55.61% to 68.23%. This is prob-
ably because among numerous categories, the lack of data for
certain categories can easily lead to the over-fitting problem. In
consequence, the 𝜃 is set to 0.6 for an optimal setting.

We further visualize the clustering result of feature embed-
dings that belong to different classes of motion patterns. By
using the t-SNE algorithm, the result with different n and differ-
ent 𝜃 is shown in Figure 5. It can be seen that the distribution of
features is always more regular when 𝜃 = 0.6. Based on this, the
result in Table 2 also becomes easier to understand. Therefore,
by using 𝜃 = 0.6, the proposed latent label mining algorithm is
believed that it will obtain an effective frame-level feature repre-
sentation and help improve the video recognition performance.
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FIGURE 6 Comparison of confusion matrices between the frameworks with and without latent label mining

4.3 Ablation study

We conduct an ablation study for the proposed latent label min-
ing strategy. For the framework without latent label mining, the
motion field is directly fed into a ConvLSTM structure, which
only takes the video labels as supervision signals to obtain both
the frame-level and video-level representation. To make a fair
comparison, the deep CNN and LSTM network in ConvLSTM
structure is exactly the same across the frameworks with or
without latent label mining.

The confusion matrices are compared and shown in Figure 6.
We can observe that the proposed framework with latent label
mining clearly outperforms the framework without latent label
mining for almost all group activity categories except the slam
dunk. This may be because the slam dunk owns too few exam-
ples, and during the hierarchical clustering, its motion patterns
could be easily mixed into those of other categories and then
fade out in the average operation. As a whole, the comparison
results fully prove the effectiveness of the proposed latent label
mining strategy.

4.4 Comparison with state-of-the-arts

To evaluate the performance of the proposed scheme, we apply
the state-of-the-art algorithms for the purpose of comparison.
The core results are summarized in Table 3. It is not hard to see
that the two lowest accuracies are achieved by GMP based Con-
vLSTM and On_GCMP, which, respectively, utilizes the typical
ConvLSTM structure and the two-stream architecture. The

TABLE 3 Comparison of accuracies with state-of-the-arts on the public
NCAA dataset

Method Accuracy (%)

GMP based ConvLSTM [22] 60.28

On_GCMP [23] 60.96

C3D [10] 65.02

R(2+1)D [11] 65.21

P3D [13] 66.83

I3D [12] 67.56

Iterative optimization-based model [46] 68.80

Ours 70.92

C3D, R(2+1)D, P3D and I3D are all based on the 3D CNNs or
their variants, which obviously achieve better performance than
GMP based ConvLSTM and On_GCMP. However, the 3D
CNNs based algorithms usually require much higher computa-
tional complexity. Among the four 3D CNNs based algorithms,
C3D is a regular 3D CNN, which is improved by the following
R(2+1)D, P3D and I3D. R(2+1)D and P3D both decouple the
3D convolution filter to a 2D spatial convolution filter followed
by a 1D temporal convolution filter to reduce the number of
parameters. Fewer parameters enable R(2+1)D and P3D to
have a deeper structure of neural networks, and obtain better
recognition performance than C3D which only has eight con-
volution layers. The I3D performs even better than R(2+1)D
and P3D, and achieves the second-best recognition accuracy.
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FIGURE 7 Some prediction results of our method

It is mainly due to the fact the I3D takes full advantage of the
2D CNN models that are pre-trained on a large-scale dataset.
Iterative optimization-based model decoupled global motion
and local motion to get better efficiency, the performance of
local motion is 68.80% better than that of the global motion and
mix motion, but is still 2.12% lower than our algorithm. Com-
paring with these different algorithms, our proposed scheme

achieves the highest accuracy 70.92%. We surpass both the
typical GMP based ConvLSTM and the advanced 3D CNNs
based algorithms, which fully demonstrates the effectiveness
of the proposed scheme. Besides, we take an unsupervised way
to introduce the additional latent frame-level labels into the
ConvLSTM structure, hence the computational complexity
is relatively low. Figure 7 shows some visualization results of
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successful and failure cases of our method. The first five rows
are, respectively, successful cases for three-point, free-throw
and two-point, while the last row shows the unsuccessful case
for lay-up. From the optical flow field, it can be seen that the
motion patterns adopted in our algorithm for three classes, that
is, three-point, free-throw and two-point, are significantly dif-
ferent, they have latent labels with certain rules of variation, and
are thus discriminative for recognition. Therefore, our proposed
algorithm can effectively improve the group activity recognition
performance. However, there are still some unsuccessful cases.
It can be seen that the motion patterns for lay up and two-point
are quite similar, which may lead to the misclassification.

5 CONCLUSION

In this paper, we introduce a latent label mining strategy
for group activity recognition in basketball videos. Through
an unsupervised hierarchical clustering technique, the latent
frame-level labels for categorizing various motion patterns are
generated. Taking the latent labels as supervision signals, the
frame-level features extracted by a deep CNN are attached
with more explicit semantics. Following the deep CNN, a novel
LSTM network is utilized to build the final spatio-temporal rep-
resentation, which reflects the fixed changing rules of motion
patterns over time and can significantly improve the recogni-
tion performance. Experimental results on the public NCAA
dataset fully demonstrate the effectiveness of our proposed
scheme. In the future, we plan to introduce the latent label
mining strategy into the two-stream architecture for further
performance improvement.
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