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Clinical Positioning of the IAP Antagonist Tolinapant
(ASTX660) in Colorectal Cancer
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Cheryl Latimer1, Jennifer P. Fox1, Joanne M. Munck2, Tomoko Smyth2, Alpesh Shah2, Vanessa Martins2,
Mark Lawler1, Philip D. Dunne1, Emma M Kerr1, Simon S. McDade1, Vicky M. Coyle1, and Daniel B. Longley1

ABSTRACT
◥

Inhibitors of apoptosis proteins (IAPs) are intracellular proteins,
with important roles in regulating cell death, inflammation, and
immunity. Here, we examined the clinical and therapeutic relevance
of IAPs in colorectal cancer. We found that elevated expression of
cIAP1 and cIAP2 (but not XIAP) significantly correlated with poor
prognosis in patients with microsatellite stable (MSS) stage III
colorectal cancer treated with 5-fluorouracil (5FU)–based adjuvant
chemotherapy, suggesting their involvement in promoting che-
moresistance. A novel IAP antagonist tolinapant (ASTX660)
potently and rapidly downregulated cIAP1 in colorectal cancer
models, demonstrating its robust on-target efficacy. In cells
co-cultured with TNFa to mimic an inflammatory tumor micro-
environment, tolinapant induced caspase-8–dependent apopto-
sis in colorectal cancer cell line models; however, the extent of
apoptosis was limited because of inhibition by the caspase-8
paralogs FLIP and, unexpectedly, caspase-10. Importantly,

tolinapant-induced apoptosis was augmented by FOLFOX in
human colorectal cancer and murine organoid models in vitro
and in vivo, due (at least in part) to FOLFOX-induced down-
regulation of class I histone deacetylases (HDAC), leading to
acetylation of the FLIP-binding partner Ku70 and downregula-
tion of FLIP. Moreover, the effects of FOLFOX could be phe-
nocopied using the clinically relevant class I HDAC inhibitor,
entinostat, which also induced acetylation of Ku70 and FLIP
downregulation. Further analyses revealed that caspase-8
knockout RIPK3-positive colorectal cancer models were sensi-
tive to tolinapant-induced necroptosis, an effect that could be
exploited in caspase-8–proficient models using the clinically
relevant caspase inhibitor emricasan. Our study provides evi-
dence for immediate clinical exploration of tolinapant in com-
bination with FOLFOX in poor prognosis MSS colorectal cancer
with elevated cIAP1/2 expression.

Introduction
Colorectal cancer is the second leading cause of cancer-related

deaths in the Western world. In stage IV metastatic disease, 5-year
and 10-year overall survival (OS) rates are <6% and <1%, respective-
ly (1). Fluoropyrimidine-based chemotherapy is the mainstay of
standard-of-care (SoC) treatment for colorectal cancer in both early
and advanced disease. However in early-stage disease, the benefit of
fluoropyrimidine monotherapy is limited, with OS gains of less than
5% and 10% to 15% reported for stage II and III disease, respectively,
with a small additional survival gain for use in combination with
oxaliplatin (2, 3). Improved approaches are therefore urgently needed
not only for the treatment of advanced colorectal cancer, but also in the
adjuvant disease setting for patients who are destined to relapse but
whose disease is resistant to SoC chemotherapy.

Cancer cells are frequently “addicted” to a small number of anti-
apoptotic proteins that are necessary for their survival. These include

the inhibitor of apoptosis proteins (IAPs), cIAP1, cIAP2, and XIAP.
XIAP directly binds to, and inhibits the activation of, caspases-3, -7,
and -9 (4). cIAP1 and cIAP2 act as E3 ubiquitin ligases at complex I,
which is formed following binding of the proinflammatory cytokine,
TNFa, to TNF receptor 1 (TNFR1). cIAP1 and cIAP2 polyubiquitinate
RIPK1 resulting in the activation of the canonical NFkB signaling
pathway, which in turn results in the transcription of antiapoptotic
proteins, including cIAP1, cIAP2 and inflammatory cytokines
(including TNFa itself) in a prosurvival/inflammatory feedforward
loop (5). Complex I dissociates following deubiquitination of RIPK1
to form the death-inducing platform, complex IIa composed of
FADD, RIPK1, TRADD, and procaspase-8 (6). In the absence of
cIAPs, RIPK1 is not polyubiquitinated, and the cell death inducing
platform complex IIb (containing of FADD, RIPK1, and caspase-8)
is formed, which can also activate cell death. Hence targeting IAPs
have potential to both activate cell death and inhibit antiapoptotic
and proinflammatory signaling.

Multiple IAP antagonists, based on the endogenous inhibitor
SMAC (second mitochondrial activator of caspases), have been
developed and several of these are currently under early-phase
clinical evaluation including LCL-161, Xevinapant (Debio 1143),
Birinapant (TL32711), APG-1387, and tolinapant (ASTX660).
Xevinapant is the most clinically advanced IAP antagonist, currently
being evaluated in a phase III combination trial with platinum-based
chemoradiotherapy in high-risk head and neck squamous cell
carcinoma (NCT04459715), following promising results in a phase
II trial (7). Xevinapant is also under investigation in combination
with the immune checkpoint inhibitor pembrolizumab in multiple
cancers, including a specific metastatic colorectal cancer cohort
(NCT03871959). Although the majority of these IAP antagonists
have inherent selectivity for cIAP1 over XIAP, others, including
APG-1387 and tolinapant (ASTX660) target cIAP1/2 and XIAP.
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Tolinapant (Astex Pharmaceuticals) is a novel, non-peptidomimetic
IAP antagonist with balanced nanomolar potency against cIAP1/2
and XIAP that was discovered utilizing fragment-based drug
design (8). The first-in-human phase I trial of tolinapant indicated
a manageable safety profile and had evidence of clinical activity;
phase II studies are ongoing (9).

In this study, we assessed the activity of tolinapant in preclinical
models of colorectal cancer as a single agent and in combination with
both SoC chemotherapeutics and novel therapies rationally selected on
the basis of mechanistic insights.

Materials and Methods
Data analysis

The microsatellite stable (MSS) stage III treated colorectal cancer
patient cohort was extracted from the GSE39582 (10) datasets, from
the National Center for Biotechnology Information Gene Expression
Omnibus, and the expression matrix was processed by collapsing to
one probeset per gene using MaxMean from the WGCNA pack-
age (11). The IAP mRNA levels were normally distributed, high and
low level of expression was determined using a median split. Kaplan–
Meier estimators and Cox proportional hazards regression analysis
were assessed using the survival and survminer R packages. Tumor cell
type profiling based on gene signature method has been performed by
xCELL (12). The single-sample gene set enrichment analysis (ssGSEA)
method was implemented through GenePattern web tool (13) using
the Hallmark gene set molecular signature (14). Heatmaps were
generated after mean z-score normalization. Gene level cell line
expression values were assessed from Cancer Cell Line Encyclopedia,
curated by the Broad Institute (15).

Compounds
Tolinapant was obtained from Astex Pharmaceuticals. Entinostat,

necrosulfonamide, and emricasan (IDN-6556) were supplied by Sell-
eckchem. Z-VAD-fmk was purchased from Calbiochem. TNFa was
supplied by Prospec. 5-Fluorouracil (5FU) and oxaliplatin were
obtained from Belfast City Hospital Pharmacy (Belfast, NI).

In vitro models
LoVo, HCT116, DLD-1, SW620, and HT29 cells were purchased as

authenticated stocks fromATCC, and frozen stocks were immediately
established from early passage cells. Cell lines were cultured for no
more than 20 passages following thawing. All cell lines were screened
everymonth forMycoplasma usingMycoAlertMycoplasmaDetection
Kit (Lonza). HT29 and LoVo cells were maintained in DMEM
(Invitrogen) supplemented with 10% FBS (Invitrogen). HCT116 and
SW620 cells were maintained in McCoys 5A medium (Invitrogen)
supplemented with 10% FBS (Invitrogen). DLD-1 cells were main-
tained in RPMI medium (Invitrogen) supplemented with 10% FBS
(Invitrogen).

VillinCreER;Apcfl/fl;KrasG12D/þ;Trp53fl/fl (AKP) and VillinCreER;
Apcfl/fl;KrasG12D/þ (AK) organoids were generated from genetically
engineered mouse models as described previously (16, 17). Organoids
were cultured in ADF complete media: Advanced DMEM/F12 media
(Invitrogen), supplementedwith 10mmol/LHEPES (Sigma), 2 nmol/L
L-Glutamine (Invitrogen), N2 supplement (Invitrogen), B27 supple-
ment (Invitrogen), 50 ng/mL recombinant human EGF (Peprotech),
and 100 ng/mL recombinant murine Noggin (Peprotech). Organoids
were harvested in cell recovery solution (Corning), washed with PBS
and resuspended in 1:1 ratioMatrigel (Corning):Media and cultured in
complete media.

Measuring diameter of organoids
Organoids were cultured and treated as detailed. Pictures of the

organoids were taken with an EVOS XL core cell imaging system
(Thermo Fisher Scientific) with 10 x magnification. Diameter of
organoids, in arbitrary units (AU), were determined utilizing ImageJ
software.

Cell line screen
A total of 36 cell line screen was carried out by Chempartner. Each

cell line was tested once in duplicate following incubation with 10
different concentration of tolinapant (0.0005–10 mmol/L) alone and in
combination with TNFa (1 ng/mL) for 72 hours. Cell viability was
assessed by CellTitreGlo.

Western blotting
Western Blotting was carried out as described previously (18). Mcl-

1 (No. 4572S), XIAP (No. 2042S), BAX (No. 5023S), SMAC (No.
2954), RIPK1 (No. 3493), RIPK3 (No. 13526), MLKL (No. 14993),
acetylated lysine (No. 9441L), pMLKL (Ser358; No. 91689), pRIPK3
(Ser227; No. 93654), pRIPK1 (Ser166; No. 65746), and PARP (No.
9542) antibodies were purchased from Cell Signaling Technology.
Murine RIP3 (No. 95702S) and pRIP3 (Thr231/Ser232; No. 91702S)
were also purchased from Cell Signaling Technology. cIAP1 (No.
ALX-803-335-C100), cIAP2 (No. ALX-803-341-C100), and caspase-8
(No. ALX-804-242-C100) antibodies were purchased fromEnzo. FLIP
(No. AG-20B-0056-C100) antibody was from AdipoGen and hyper-
acetylated H4 (No. 06-946) was from Millipore. FADD (No. 556402)
antibody was purchased from BD Biosciences, caspase-10 (No. M059-
3) from MBL, Ku70 (No. Sc-17789) from Santa Cruz Biotechnology,
and b-actin (No. A5316) from Sigma.

siRNA transfections
ON-TARGET plus SMART pool Murine cFLIP siRNA and SCR,

cFLIP(L), cFLIP(S), cFLIP(T) and caspase-10 siRNA’s was purchased
from Dharmacon. siRNA transfections were carried out with Lipo-
fectamine RNAiMAX (Invitrogen) transfection reagent according
to themanufacturer’s instructions. siRNA sequences: SCR:UUCUCC-
GAACGUGUCACGU, FLIP(L): AACAGGAACTGCCTCTACTT,
FLIP(S): AAGGAACAGCTTGGCGCTCAA, FLIP(T): AAGCAGTC-
TGTTCAAGGAGCA. Ku70 siRNA transfections were carried out as
described previously (19).

Quantitative PCR
RNA was extracted using High Pure RNA Isolation kit (Roche)

according to the manufacturer’s instructions. cDNA was synthesized
using Transcriptor First Strand cDNA synthesis kit (Roche) according to
the manufacturer’s instructions. qPCRwas carried out using Syber green
on LC480 light cycler (Roche) according to the manufacturer’s instruc-
tions. Primer sequences: cFLIP(L): F:CCTAGGAATCTGCCTGA-
TAATCGA, R:TGGGATATACCATGCATACTGAGATG, FLIP(S): F:
ATTTCCAAGAATTTTCAGATCAGGA, R:GCAGCAATCCAAAA-
GAGTCTCA, 18S: F:GTAACCCGTTGAACCCCATT, R: CCATCCA-
ATCGGTAGTAGCG, RIPK3: GCCTCCACAGCCAGTGAC, TCGG-
TTGGCAACTCAACTT, Murine cFLIP: F:GCAGAAGCTCTCCCA-
GCA, R:TTTGTCCATGAGTTCAACGTG, Murine 18S: F:GCAAT-
TATTCCCCATGAACG, R:GGGACTTAATCAACGCAAGC.

Cell line generation
HCT116 cells overexpressing cFLIP(S) or cFLIP(L) were generated as

described previously (18). HCT116, DLD1, LoVo, HT29, and SW620
caspase-8 CRISPR cell lines were generated by retroviral infection with
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pLentiCRISPR with guideRNA AAGTGAGCAGATCAGAATTG, a
kind gift from Galit Lahav. HCT116 and HT29 FADD CRISPR cell
lines were generated by retroviral infection with pLentiCRISPR with
guideRNAGCGGCGCGTCGACGACTTCG.Cellswere clonally select-
ed for complete knockdown by Western blot analysis. HCT116 Cas-
pase10 CRISPR cell lines were generated as described previously (20).

Immunoprecipitations
Caspase-8 and acetylated lysine immunoprecipitations were carried

out as described previously (18, 19).

Cell surface flow cytometry
TNFR1 cell surface staining was carried out a described

previously (18).

Cell viability assay
Two-dimensional cell viability was assessed using CellTiter-Glo

Luminescent Assay (Promega) according to the manufacturer’s
instructions. Three-dimensional (3D) cell viability was determined
withCellTitre-Glo 3DCell ViabilityAssay (Promega), according to the
manufacturer’s instructions.

Annexin V/propidium iodide staining
FITC-tagged Annexin V (BD Biosciences), propidium iodide (PI;

Sigma), and Hoechst stain (Invitrogen) were used to assess cell death.
Annexin V/PI staining was assessed by high content microscopy on an
Array Scan XTI microscope (Thermo Fisher Scientific).

In vivo experiments
A total of 2� 106 HCT116, HT29, and DLD-1 cells in PBS:Matrigel

(Corning) suspensionwere implanted singleflank into 8- to 10-week-old
male BALB/c nudemice.When tumors of approximately 100mm3were
established, mice were randomized and treated with vehicle and toli-
napant. Tolinapant was administered orally with H2O as a vehicle daily,
1 week on, 1 week off, and 1 week on. A total of 50 AKP organoids in
PBS:Matrigel (Corning) suspension were subcutaneously injected into
C57BL-6J mice and treatment started when average tumor size approx-
imately 150 mm3. Mice were treated with 10 mg/kg 5FU (vehicle:PBS)
and 1 mg/kg oxaliplatin (vehicle:H2O) intraperitoneally and 16 mg/kg
tolinapant (vehicle:H2O) orally. Mice were treated for 3 weeks: once a
weekwith oxaliplatin, daily with 5FU, and tolinapant daily with a 1 week
on, 1 week off, and 1 week on schedule. All procedures were carried out
in accordance with the Animals (Scientific Procedures) Act, 1986 under
project licenses PPL 2590b and PPL 2874 and maintained as described
previously (21). Tumor volume was assessed using digital calipers, three
times a week. Tumor volume was calculated by the following formula:
shortest tumor diameter2 � longest tumor diameter � 0.5.

Statistical analysis
Results were compared using a two-tailed Student t test, �, P < 0.05;

��, P < 0.01; and ���, P < 0.001.

Results
Elevated cIAP1 and cIAP2 expression correlates with worse prog-

nosis of patients with stage III MSS with colorectal cancer treated with
adjuvant chemotherapy. Analysis of patients with colorectal can-
cer (10) revealed that elevated expression of cIAP1/BIRC2 (HR,
0.47; P ¼ 0.05) and cIAP2/BIRC3 (HR, 0.34; P ¼ 0.009) [which are
normally distributed (Supplementary Fig. S1A)], but not XIAP/XIAP
correlated with worse OS in patients with stage III MSS treated with

chemotherapy postsurgery (adjuvant chemotherapy; Fig. 1A; Supple-
mentary Fig. S1B), whereas no significant association in stage III
patients treated by surgery alone. Although cIAP-1 and cIAP-2 exp-
ression were significantly correlated [Pearson r ¼ 0.47, P ¼ 1.3e(-8)],
not all cIAP1-high tumors were also cIAP2-high (Fig. 1C; Supple-
mentary Fig. S1C). ssGSEA comparing cIAP1-high or cIAP2-high and
-low groups identified significant enrichments for several key inflam-
matory signaling pathways in both the cIAP1- and cIAP2-high groups,
including “TNFa signaling via NFkB” and other inflammatory path-
ways (Fig. 1B andC). Consistent with this, the tumors from the cIAP1-
and cIAP2-high groups were enriched for the presence of several key
immune cell types, with significant enrichment of CD4þ memory
T cells, TH2 cells, and M1-polarized macrophages in both groups
(Fig. 1D and E). In addition to apoptosis signaling, there was also a
significant enrichment for KRAS signaling in both the cIAP1- and
cIAP2-high groups (Fig. 1B). IAP expression was not higher in KRAS-
mutant tumors (andwas not correlatedwith TP53 or BRAFmutations;
Supplementary Fig. S1C and S1D), indicating that the correlations
between cIAP1/2 expression and survival (Fig. 1A) are not due to
enrichment for KRAS-mutant tumors, which have a worse, but not
significantly worse prognosis in this MSS stage III cohort (Supple-
mentary Fig. S1E).

Sensitivity of colorectal cancer cell lines to tolinapant in vitro
and in vivo

The analysis of the clinical cohort suggested potential for cIAP1 and
cIAP2 as therapeutic targets for improving the efficacy of SoC che-
motherapy inMSS stage III disease.We therefore next assessed the cell
death inducing activity of the novel IAP antagonist tolinapant by
screening a panel of 36 colorectal cancer cell lines alone or in the
presence of low concentrations of TNFa (Fig. 2A); to reflect the
enrichment for TNFa signaling in the cIAP1/2-high groups (Fig. 1B
and C) and the presence of immune cells such as M1 macrophages
(Fig. 1D and E), which are rich sources of TNFa (22). In the absence of
TNFa, tolinapant had modest growth inhibitory effects across the
panel, whereas in the presence of TNFa, a high number of cell lines
exhibited significant sensitivity to tolinapant (Fig. 2A). These effects
were further assessed in a subset of colorectal cancer cell line models
with a range of sensitivities (Supplementary Fig. S2A), each of which
expressed all the components of the TNFR1 complex II interactome
andXIAP at the protein level (albeit to varying levels;Fig. 2B) aswell as
cell surface TNFR1 (Fig. 2C). On-target activity of tolinapant, as
evidenced by degradation of cIAP1 (the pharmacodynamic biomarker
for IAP antagonists), was confirmed at nM potency in all five models
(Fig. 2D; Supplementary Fig. S2B); whereas cIAP2 was also down-
regulated (albeit to a lesser extent than cIAP1) by tolinapant in three of
five models. XIAP was unaffected, consistent with the expected effects
of IAP antagonists which disrupt XIAP’s protein–protein interactions
with caspases-3, -7, and -9, but do not typically cause XIAP degra-
dation (23). Downregulation of cIAP1 in response to tolinapant, which
is a result of triggering its autoubiquitination and degradation via the
proteasome (24), was found to be rapid and sustained (Supplementary
Fig. S2C). Loss of IAPs has been widely reported to result in the
formation of the cell death platform, complex II. In the presence of
TNFa, tolinapant indeed promoted the formation of complex II as
evidenced by the interaction of caspase-8 with RIPK1; this was also
detected in response to tolinapant alone in three of five models.
HCT116, HT29 and LoVo cells albeit to a much lower level than in
response to tolinapant/TNFa (Fig. 2E; Supplementary Fig. S2D).

In agreement with the cell line screen, significant cell death mea-
sured by Annexin V/PI flow cytometry, was observed in response to
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tolinapant in the presence of TNFa in the HCT116 model (Fig. 2F).
Similar results were observed in the HT29 model, albeit the extent of
cell death at 24 hours was less; however, lower levels of cell death were
observed in the DLD-1 model despite complex II formation (Fig. 2E
and F). In the in vivo setting, we hypothesized that murine TNFa (as
well as xenograft-derived human TNFa) could potentially drive
complex II formation as murine TNFa can bind the human TNFR1.
Moreover, IAP antagonists have been reported to promote production
of TNFa bymonocytic cells (25). Significant albeit limited retardations

of tumor growth were observed in HCT116 and HT29 xenografts but
not DLD-1, results which were in line with the relative in vitro
sensitivity of these models (Fig. 2G).

Tolinapant enhances sensitivity to SoC chemotherapy
Having established the effects of tolinapant/TNFa combinations,

we next evaluated whether the addition of tolinapant could increase
sensitivity to SoC chemotherapy FOLFOX (5-fluorouracil plus oxa-
liplatin). Statistically significant enhancement of FOLFOX-induced
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Figure 1.

Correlation between high cIAP1/2 expression and prognosis. Analysis of patients with stage III MSS who received adjuvant fluorouracil-based treatment extracted from
GSE39582 cohort.A,Kaplan–Meier plots of 5-year OS. Graphs comparing thedifference in survival probability basedonBIRC2 andBIRC3 expression levels alone. Results
are shownwith the log-rank test, the HRwith its 95% confidential interval and theWald test of significance.B–E,Difference of pathway activation by ssGSEA (B) and cell
type profiling (D) by xCELL between cIAP1 or cIAP2 high and low expressing patients was assessed by one-way ANOVA model. Numbers shown are the calculated P
values. Heatmap were drawn showing the Z-scores of the significantly different ssGSEA pathways (C) and immune or stroma infiltration by xCELL (E).
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Figure 2.

Sensitivity of colorectal cancer cell lines to IAP inhibitor, tolinapant. A, Cell viability assay in 36 colorectal cancer cell line panel following 72 hours treatment with
tolinapant (tolin; 10-point assay 0.0005–10 mmol/L) alone and in combination with TNFa (1 ng/mL), represented as relative activity area (%), calculated as
(experimental AUC/maxAUCpossible). Cell lines categorized as sensitive to tolinapant/TNFa are highlighted in green, intermediate inwhite, and resistant in orange.
B,Western blot analysis of basal expression of FLIP(L), FLIP(S), Mcl-1, cIAP1, cIAP2, XIAP, BAX, SMAC, RIPK1, FADD, procaspase-8, procaspase-10, RIPK3 and MLKL
and b-actin in a panel of colorectal cancer cell lines.C,Cell surface expression of TNFR1 in DLD1, SW620, LoVo, HT29, andHCT116 cell lines, represented as%of TNFR1-
positive cells compared with an IgG isotype control. D,Western blot analysis of cIAP1, cIAP2, XIAP, and b-actin in HCT116, HT29, and DLD-1 cells following treatment
with 1 mmol/L, 100 nmol/L, 10 nmol/L, 1 nmol/L, and 0.1 nmol/L tolinapant for 24 hours. E, Western blot analysis of RIPK1 and procaspase-8 following
immunoprecipitation of caspase-8 from HCT116, HT29, and DLD-1 cells treated with 1 ng/mL TNFa, 1 mmol/L tolinapant and a combination of TNFa/tolinapant
for 3 hours in the presence of 20 mmol/L z-VAD-fmk. An IgG isotype control was used as a control. F,Annexin V/PI analysis in HCT116, HT29, and DLD-1 cells following
treatment with 1 ng/mL TNFa, 1 mmol/L tolinapant, or a combination of TNFa/tolinapant for 24 hours.G, Tumor volume (mm3) in HCT116, HT29, and DLD-1 xenograft
models treated with vehicle and 16 mg/kg tolinapant. Data show mean tumor volume per treatment group per timepoint� SEM (HCT116; vehicle n¼ 10, tolinapant
n¼ 10, HT29; vehicle n¼ 7, tolinapant n¼ 7, SW620; vehicle n¼ 10, tolinapant n¼ 12). Resultswere compared using a two-tailed Student t test, � ,P <0.05; �� ,P<0.01;
and ��� , P < 0.001
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apoptosis was observed in three of five models (HCT116, SW620, and
HT29) cotreated and tolinapant/TNFa (Fig. 3A and B). Tolinapant
alone also significantly enhanced FOLFOX-induced apoptosis in
the HCT116 and SW620 models, albeit to a lesser extent than in the
tolinapant/TNFa combination group (Fig. 3A and B). In contrast, the
DLD1 model was relatively resistant to the combination (Supplemen-
tary Fig. S3A), whereas interestingly, LoVo cells, which were relatively
insensitive to the tolinapant/TNFa combination alone, exhibited
significantly increased chemotherapy-induced apoptosis when
cotreated with tolinapant alone as well as tolinapant/TNFa (Supple-
mentary Fig. S3A and S3B). These results were reflected by qualitative
assessment of apoptosis by PARP cleavage (Fig. 3B; Supplementary
Fig. S3B).

We extended these studies to Apc-null, Kras-mutant(AK) murine
colorectal cancer organoid models (16, 17). We also examined the
impact of p53 status in these models given the high frequency of its
mutation in advanced colorectal cancer. We observed striking com-
binatorial effects when both p53-proficient “AK” and p53-deficient
“AKP” organoids were cotreated with FOLFOX and tolinapant/TNFa
(Fig. 3C and D). cIAP1 expression was similar in the two organoid
models, and tolinapant effectively targeted murine cIAP1 (Fig. 3E).
Taking the AKP model into the in vivo setting in immune-competent
syngeneicmice, we found that the combination treatment of FOLFOX/
tolinapant resulted in significant tumor regression compared with the
individual treatments (Fig. 3F), and in vivo on-target activity of
tolinapant was confirmed (Fig. 3G; Supplementary Fig. S3C).

FLIP downregulation in response to FOLFOX sensitizes
colorectal cancer cells to tolinapant

We and others have previously demonstrated the importance of the
caspase-8 paralog and regulator FLIP/CFLAR as a key mediator of
resistance to IAP inhibitors in multiple cancers (18, 21). Notably,
protein expression of the short FLIP splice form [FLIP(S)] and XIAP
were significantly reduced following FOLFOX treatment in all five
models; FLIP(L) was also downregulated in each model at one time-
point at least, although to a lesser extent than FLIP(S) (Fig. 3B;
Supplementary Fig. S3B). FLIP(L) was also found to be reduced in
response to FOLFOX in several tumors in the in vivoAKP experiment
(Supplementary Fig. S3D). As tolinapant is active against XIAP (8), we
hypothesized that the impact of FOLFOX on FLIP was more likely to
be responsible for the enhanced effects of tolinapant in FOLFOX-
treated colorectal cancer cells, particularly in the HCT116 and SW620
KRAS mutant models where FLIP downregulation and the extent of
synergy were most marked. Moreover, high FLIP mRNA expression
corresponded with resistance to tolinapant/TNFa in the extended cell
line panel (Figs. 2A and 4A), further supporting the importance of
FLIP in modulating response to tolinapant in colorectal cancer cells.
Somewhat surprisingly,models with high caspase-8mRNAexpression
were also more resistant to tolinapant/TNFa, although this can be
explained, at least in part, by the close correlation between caspase-8
and FLIP mRNA expression which are encoded on the same genomic
locus (Fig. 4A). Consistent with a role for FLIP inmediating resistance
to tolinapant/TNFa, RNAi-mediated downregulation of FLIP signif-
icantly enhanced the induction of apoptosis by tolinapant/TNFa in all
but the LoVo model as assessed in short-term cell death (Fig. 4B) and
longer-term cell viability (Fig. 4C) assays; moreover, these results were
confirmed qualitatively by Western blot analysis of PARP cleavage
(Fig. 4D; Supplementary Fig. S3E).

Together, these results indicate that FLIP acts as a key mediator of
resistance to tolinapant in colorectal cancer cells, consistent with
downregulation of FLIP being a major contributor to the enhanced

efficacy of tolinapant in FOLFOX-treated cells. To formally assess this,
we made use of HCT116 cell line models stably expressing retroviral
trans-genes encoding either FLIP(L), FLIP(S), or a FADD binding
deficient mutant form of FLIP(S) (F114A) compromised in its ability
to inhibit procaspase-8 homodimerization (Fig. 5A; ref. 26). Over-
expression of FLIP(S), the more potent caspase-8 inhibitory form of
FLIP (27), significantly abrogated apoptosis induced by FOLFOX in
combination with tolinapant/TNFa (Fig. 5B), whereas expression of
the FLIP(L) trans-gene failed to protect HCT116 cells from apoptosis
induced by FOLFOX in combination with tolinapant/TNFa (likely
due in part to the relatively small degree of FLIP(L) overexpression in
this model; Fig. 5A). Overexpression of the F114A mutant of FLIP(S)
failed to confer protection, indicating that it is FLIP(S)’s interaction
with FADD that blocks caspase-8–dependent apoptosis in response to
FOLFOX combination with tolinapant/TNFa.

Compared with a HCT116 caspase-8 CRISPR knockout (KO)
model in which cell death induced by the tolinapant/TNFa-FOLFOX
combination was almost completely abrogated (Fig. 5C and D),
significant cell death was still observed in response to the combination
in the FLIP(S) overexpressing model (Fig. 5B), suggesting that addi-
tional factors other than FLIP downregulation contribute to the effects
of the combination. The role of caspase-8’s other paralog caspase-10/
CASP10 as a regulator of apoptotic cell death is controversial, with both
pro- and antiapoptotic roles described previously (20, 28, 29). We
found that cotreatment of HCT116 cells with tolinapant/TNFa/FOL-
FOX dramatically reduced the levels of procaspase-10 expression
(Fig. 5C). Loss of the pro-form of procaspases can be indicative of
activation and suggested participation of procaspase-10 in the overall
mechanism of apoptosis induction. However, in the absence of
procaspase-8, relatively little decrease of procaspase-10 was observed
(Fig. 5C). In contrast to the protective effect of loss of procaspase-8, we
found that rather than attenuating cell death, siRNA-mediated down-
regulation of procaspase-10 significantly enhanced PARP cleavage and
executioner caspase activation in response to tolinapant/TNFa
(Fig. 5E and F). To further investigate this, we generated CRISPR
models with either procaspase-8, procaspase-10 or both knocked out
(Fig. 5G). In agreement with the RNAi results, KO of procaspase-10
enhanced apoptosis induction in response to tolinapant/TNFa in
the presence of caspase-8 (Fig. 5G). These results reveal a hitherto
unreported role for procaspase-10 in inhibiting the apoptotic response
to IAP antagonists. Furthermore, this is consistent with SW620 cells,
which exhibit the lowest levels of procaspase-10 expression, being the
most sensitive to tolinapant/TNFa, whileDLD-1 cells, with the highest
levels of procaspase-10, are highly resistant (Fig. 2B and F). Indeed,
siRNA-mediated depletion of procaspase-10 also enhanced the sen-
sitivity of DLD-1 cells to tolinapant/TNFa (Fig. 5E).

Mechanistically, the effects of FOLFOX on FLIP expression were
not due to suppression of transcription; mRNA expression of FLIP(S)
was upregulated at 24 hours by approximately twofold and FLIP(L)
was upregulated by approximately fivefold at 48 hours (Supplementary
Fig. S4A). Inhibition of histone deacetylases (HDAC) has previously
been reported by us and others to result in reduced expression of both
splice forms of FLIP, at transcriptional and posttranslational levels and
augment cell death induced by activators of extrinsic cell death (19, 20).
It was therefore notable that FOLFOX treatment downregulated
expression of the class I HDACs (HDAC-1, HDAC-2, and HDAC-3)
as did tolinapant/TNFa (Fig. 5H). Moreover, downregulation of
HDAC1 and HDAC3 by both FOLFOX and tolinapant/TNFa
was attenuated in CASP8-null cells, indicating that these effects
are caspase-8–dependent and therefore potentially consequences of
caspase-8 activation. In contrast, FOLFOX-mediated downregulation
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Figure 3.

Tolinapant synergizes with chemotherapy. A, Annexin V/PI analysis in HCT116, SW620, and HT29 cells treated with 1 ng/mL TNFa, 1 mmol/L tolinapant, or a
combination of tolinapant/TNFa in the presence and absence of 5 mmol/L 5FU and 1 mmol/L oxaliplatin (OX) for 72 hours. B,Western blot analysis of PARP, cIAP2,
cIAP1, XIAP, FLIP(L), FLIP(S), and b-actin in HCT116, SW620, and HT29 cells treated with 5 mmol/L 5FU and 1 mmol/L oxaliplatin (FOLFOX), 1 mmol/L tolinapant and a
combination of FOLFOX/tolinapant (COMBO) for 24 and 48 hours. C, Pictures from AKP and AK organoids treated with 1 mmol/L tolinapant/1 ng/mL TNFa (tolin/
TNF), 5 mmol/L 5FU and 1 mmol/L oxaliplatin (FF) or combination (COMBO) for 72 hours. Diameter in AU fromAKP (n¼ 75 for each treatment group) and AK (n¼ 75
for each treatment group) organoids treated with 1 mmol/L tolinapant/1 ng/mL TNFa (tolin/TNF), 5 mmol/L 5FU and 1 mmol/L oxaliplatin (FOLFOX) or combination
(COMBO) for 72 hours. D, Cell viability assays in AKP and AK organoids treated with 1 mmol/L tolinapant/1 ng/mL TNFa (tolin/TNF), 5 mmol/L 5FU and 1 mmol/L
oxaliplatin (FOLFOX) or combination (COMBO) for 72 hours.E,Western blot analysis of basal expression of cIAP1, p53, andb-actin inAK andAKPorganoids.Western
blot analysis of cIAP1 and b-actin in AK andAKP organoids treatedwith 1 mmol/L tolinapant for 24 hours. F, Tumor volume (mm3) of AKP organoids transplanted into
C57BL/6mice treatedwith vehicle (n¼ 3), 5FU (10mg/kg)þ oxaliplatin (1mg/kg; FOLFOX; n¼ 4), tolinapant (16mg/kg; n¼ 4) and combination (n¼ 4). Data show
mean tumor volume per treatment group per timepoint � SEM. G, Densitometry from Western blot analysis of cIAP1 normalized to b-actin in AKP organoids
transplanted into C57BL/6 mice and treated with vehicle (n ¼ 3), 5FU (10 mg/kg) þ oxaliplatin (1 mg/kg; FOLFOX; n ¼ 4), tolinapant (16 mg/kg; n ¼ 4), and
combination (n ¼ 3). Results were compared using a two-tailed Student t test, � , P < 0.05; �� , P < 0.01; and ��� , P < 0.001.
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ofHDAC2was caspase-8–independent, suggesting that this is an event
upstream of caspase-8 activation. We previously found that HDAC
inhibitorsmodulate FLIP expression at the posttranscriptional level by
inducing acetylation of Ku70, a central component of the non-
homologous end-joining (NHEJ) DNA damage repair pathway (19).
In its nonacetylated form, Ku70 binds FLIP and inhibits its protea-
somal degradation; however, its acetylation in response to HDAC

inhibitors blocks this interaction, leading to FLIP degradation. It was
therefore notable that FOLFOX caused significant Ku70 acetylation
(Fig. 5I). Moreover, silencing Ku70 not only resulted in decreased
levels of FLIP, it also enhanced apoptosis induced by tolinapant/TNFa
as assessed by PARP cleavage and executioner caspase activation
(Fig. 5J). In further support of this mechanism, we also found that
entinostat, a class I–selective HDAC inhibitor potently induced

Figure 4.

Role of FLIP in determining sensitivity to tolinapant.A, Expression of caspase-8 and FLIPmRNA [log2 (TPM (transcripts per million)þ 1] in colorectal cancer cell lines
categorized as sensitive or resistant to tolinapant/TNFa in the cell line screen in Fig. 2A. B, Annexin V/PI analysis in HCT116, SW620, HT29, DLD-1, and LoVo cells
transfected with control (SCR) and FLIP(T) siRNA for 24 hours prior to treatment with 1 mmol/L tolinapant and 1 ng/mL TNFa for a further 24 hours. C, Cell viability
assays in HCT116, SW620, HT29, DLD-1, and LoVo cells transfected with control (SCR) and FLIP(T) siRNA for 6 hours prior to treatment with 1 mmol/L tolinapant and
1 ng/mL TNFa for a further 24 hours. D,Western blot analysis of PARP, FLIP(L), FLIP(S), cIAP1, and b-actin and in HCT116, SW620, and HT29 cells transfected with
control (SCR) and FLIP(T) siRNA for 24 hours prior to treatment with 1 mmol/L tolinapant and 1 ng/mL TNFa for a further 24 hours. Results were compared using a
two-tailed Student t test, � , P < 0.05; ��, P < 0.01; and ��� , P < 0.001.
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Figure 5.

Mechanism of chemotherapy-induced sensitization to tolinapant.A,Western blot analysis of FLIP(L), FLIP(S), and b-actin in HCT116 cells retrovirally overexpressing
pbabe empty vector (EV), pbabe FLIP(S), pbabe FLIP(S) F114A, and pbabe FLIP(L). B, Annexin V/PI analysis of in HCT116 cells retrovirally overexpressing pbabe
empty vector (EV), pbabe FLIP(S), pbabe FLIP(S) F114A, and pbabe FLIP(L) following treatment with 1 mmol/L tolinapant/1 ng/mL TNFa, 5 mmol/L 5FU, and 1 mmol/L
oxaliplatin (FOLFOX) or combination for 48 hours.C,Western blot analysis of PARP, cIAP1, FLIP(L), FLIP(S), procaspase-8, procaspase-10, and b-actin in HCT116WT
andHCT116 caspase-8 KO cells treatedwith 1mmol/L tolinapant/1 ng/mL TNFa (tolin/TNFa), 5 mmol/L 5FU and 1 mmol/L oxaliplatin (FF) or combination for 48 hours.
D, Annexin V/PI analysis in HCT116 WT and HCT116 caspase-8 KO cells treated with 1 mmol/L tolinapant/1 ng/mL TNFa, 5 mmol/L 5FU, and 1 mmol/L oxaliplatin
(FOLFOX) or combination for 72 hours. E,Western blot analysis of procaspase-10, PARP, cleaved caspase-3, FLIP(L), FLIP(S), cIAP1, and b-actin in HCT116 and DLD1
cells transfected with control (SCR) and caspase-10 (siC10) siRNA for 24 hours prior to treatment with 1 mmol/L tolinapant and 1 ng/mL TNFa for a further 24 hours.
F,Caspase-3/7 activity assay in HCT116 cells transfectedwith control (SCR) and caspase-10 siRNA (siC10) for 24 hours prior to treatmentwith 1mmol/L tolinapant and
1 ng/mL TNFa (tolin/TNFa) for a further 24 hours.G,Western blot analysis of procaspase-10, procaspase-8, and b-actin in HCT116WT, HCT116 caspase-8 KO, HCT116
caspase-10 KO and HCT116 caspase-8/caspase-10 DKO cells, and Annexin V/PI analysis in HCT116 WT and HCT116 caspase-8 KO, HCT116 caspase-10 KO and HCT116
caspase-8/caspase-10 DKO cells treated with 1 mmol/L tolinapant/1 ng/mL TNFa, 5 mmol/L 5FU and 1 mmol/L oxaliplatin (FOLFOX) or combination for 48 hours.
H,Western blot analysis of HDAC1, HDAC2, HDAC3, and b-actin in HCT116WT and HCT116 caspase-8 KO cells treated with 1 mmol/L tolinapant/1 ng/mL TNFa (tolin/
TNFa), 5 mmol/L 5FU, and 1 mmol/L oxaliplatin (FF) or combination for 48 hours. I,Western blot analysis of Ku70 following immunoprecipitation of acetylated lysine
(AcK) fromHCT116 cells treatedwith 5 mmol/L 5FU and 1 mmol/L oxaliplatin (FOLFOX) for 24 hours. An IgG isotype control was used as a control. J,Western blot and
caspase-3/7 activity analyses of Ku70, FLIP(L), FLIP(S), procaspase-10, PARP, cIAP1, CIAP2, XIAP, and b-actin and in HCT116 cells transfected with control (SCR) and
Ku70 siRNA (siKU70) for 24 hours prior to treatment with 1 mmol/L tolinapant and 1 ng/mL TNFa (tolin/TNFa) for a further 24 hours.
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acetylation of Ku70 (Supplementary Fig. S4B) downregulated FLIP(L)
and FLIP(S) (Supplementary Fig. S4C) and sensitized all but the LoVo
cells to tolinapant/TNFa (Supplementary Fig. S4D); this is consistent
with the latter’s lack of sensitization by FLIP silencing (Fig. 4B;
Supplementary Fig. S3E). Moreover, HCT116 and DLD-1 cells cas-
pase-8 KO cells were resistant to cell death induced by the entinostat/
tolinapant/TNFa (Supplementary Fig. S4E) as was an HCT116
FADD-deficient model (Supplementary Fig. S4F). In addition, over-
expression of either FLIP(L) or FLIP(S) abrogated the sensitization of
HCT116 cells to tolinapant/TNFa by entinostat (Supplementary
Fig. S4G), indicating that entinostat-mediated sensitization is more
FLIP dependent than FOLFOX-mediated sensitization, which was
only inhibited by the more highly overexpressed and more potent
caspase-8 inhibitor FLIP(S) (Fig. 5B).

Loss or inhibition of caspase-8 leads to necroptosis induction in
response to tolinapant/TNFa in RIPK3 positive colorectal
cancer models

Entinostat was also shown to sensitize HT29 wild-type (WT)
cells to tolinapant/TNFa (Fig. 6A); however, unlike the rescue that
was observed in HCT116 and DLD-1 cells (Supplementary
Fig. S4E), CRISPR KO of caspase-8 in HT29 cells resulted in
enhanced sensitivity to tolinapant/TNFa (and tolinapant alone),
even in the absence of entinostat (Fig. 6A). This effect was
abrogated by the necroptosis inhibitor, necrosulfonamide, but not
by the pan-caspase inhibitor zVAD, indicating that it is due to the
induction of necroptosis rather than apoptosis (Supplementary
Fig. S5A). Necroptosis is a proinflammatory, RIPK1/RIPK3-
dependent, but caspase-independent form of programmed cell
death. Of the human colorectal cancer cell lines profiled for
tolinapant activity, only HT29 and SW620 cells expressed RIPK3
at the protein (Fig. 2B) and mRNA levels (Supplementary
Fig. S5B). Necroptosis induction was also observed in SW620
CASP8 KO cells (Supplementary Fig. S5C). These results were
further supported by Western blot analyses, which demonstrated
phosphorylation of RIPK1, RIPK3 and the effector of necroptosis,
MLKL (mixed lineage kinase domain-like) in caspase-8–deficient
HT29 (Fig. 6B) and SW620 cells (Supplementary Fig. S5D). More-
over, direct assessment of cell death (propidium iodide positivity)
further confirmed that the mechanism of cell death induced by
tolinapant/TNFa in caspase-8–deficient HT29 (Fig. 6C) and
SW620 cells (Supplementary Fig. S5E) was via necroptosis. Fur-
thermore, FADD-deficient HT29 cells were also sensitive to toli-
napant/TNFa, a cell death phenotype that was not rescued through
inhibition of caspases (Supplementary Fig. S5F).

Notably, the pan-caspase inhibitor zVAD induced necroptotic cell
death in response to tolinapant/TNFa in parental HT29 cells (Fig. 6C;
Supplementary Fig. S6A), but was less efficient at doing so in SW620
cells (Supplementary Fig. S5C and S5E). zVAD also sensitized AK and
AKPmouse organoids to tolinapant/TNFa (Supplementary Fig. S6B).
We therefore investigated the potential of caspase inhibition as a
combination partner for tolinapant in RIPK3-positive colorectal can-
cer using emricasan (IDN-6556), a pan-caspase inhibitor already
under evaluation in clinical trials in chronic liver disease (30). Pre-
treatment of HT29 or SW620 cells with emricasan resulted in marked
sensitization to necroptosis induced by tolinapant/TNFa (Fig. 6D and
E; Supplementary Fig. S6C–S6E) and was considerably more effica-
cious than zVAD. These findings were mirrored in the AK and AKP
mouse organoid models, where significant combinatorial effects and
necroptotic pathway activation were also observed (Fig. 6F and G;
Supplementary Fig. S6F).

Discussion
Colorectal cancer is the second leading cause of cancer deaths in the

Western world, with resistance to programmed cell death contributing
to treatment failure. Multiple IAPs are overexpressed in colorectal
cancer and correlate with therapy resistance and poorer survival rates,
making them an attractive target for cancer therapy (31, 32). Here, we
report that stage III chemotherapy-treated patients with MSS colo-
rectal tumors with elevated expression of cIAP1 or cIAP2 (but not
XIAP) have a poor prognosis. This finding makes cIAP1/2-high MSS
colorectal cancer a particularly attractive subpopulation for IAP-
targeted therapeutics.

Preclinically, IAP antagonists, including tolinapant, synergize with
multiple anticancer therapies, including radiotherapy, chemotherapy,
TRAIL receptor agonists, and hypomethylating agents as well as
showing promise in combination with PD-1/PD-L1 blockade (33, 34).
Overall, despite demonstrating potent on-target activity through rapid
and sustained downregulation of cIAP1, colorectal cancer cell lines
showed a limited response to tolinapant alone, although sensitivity was
significantly enhanced in many cell lines in the context of cotreatment
with TNFa. This cotreatment reflects the significant enrichment for
TNFa signaling in cIAP1/2-high tumors (Fig. 1C) presumably due to
elevated levels of immune cells (Fig. 1D) despite these being MSS
tumors that are reported to be predominantly immune cold (35).
cIAP1/2 are both canonical target genes of NFkB (36), suggesting that
elevation of TNFa signaling may be the driver for enhanced IAP
expression in these poor prognostic tumors. Moreover, we found that
tolinapant/TNFa enhanced cell death induced by FOLFOX, the SoC
regimen for colorectal cancer, in several human and mouse colorectal
cancer models in vitro, with preclinical antitumor activity also dem-
onstrated in vivo, where it was well tolerated, suggesting its potential in
combination with SoC chemotherapy.

Mechanistically, FOLFOX downregulated expression of FLIP, a
pseudoenzyme paralog of caspase-8 leading to enhanced caspase-8–
dependent cell death in response to tolinapant. FLIP negatively
regulates apoptosis induction from complex II by inhibiting procas-
pase-8 homodimerization, a prerequisite for the latter’s activation to its
apoptosis-inducing catalytic form (37). The caspase-8/FLIP(L) hetero-
dimer [but not the caspase-8/FLIP(S) heterodimer] also has catalytic
activity, which can inhibit necroptotic signaling from complex IIa/b
through the cleavage and inactivation of RIPK1/3 (38). We and others
have previously identified FLIP as a mediator of resistance to IAP
antagonist therapy in multiple cancers, including mesothelioma and
castrate-resistant prostate cancer (18, 21). Class IHDACs (HDAC1/2/3)
have been found to be overexpressed in colorectal cancer and promote
resistance to chemotherapy (39). Here, we found that FOLFOX
treatment resulted in downregulation of the class I HDACs and
acetylation of their substrate Ku70, an essential component of the
NHEJ DNA damage repair machinery that repairs double-strand
breaks, including those induced by DNA-damaging chemotherapy,
such as FOLFOX (40).We have previously reported that Ku70 binds to
and enhances FLIP stability when in its nonacetylated form (19), a
finding corroborated by others. Consistent with this, silencing Ku70
resulted in FLIP downregulation and enhancement of tolinapant/
TNFa-induced cell death. Moreover, the oral class I HDAC inhibitor,
entinostat, which is well tolerated in humans, also acetylated Ku70 and
downregulated FLIP expression resulting in sensitization to tolinapant
in the majority of colorectal cancer models.

Procaspase-10 shares significant homology with procaspase-8: they
are 46% identical in their catalytic domains, and overexpression of
procaspase-10 splice forms 10A and 10D has been shown to resensitize
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caspase-8–deficient cells to TRAIL (28). However, caspase-10 has also
been shown to inhibit caspase-8 activation by the Fas/CD95 death
receptor, supporting earlier studies in which it was shown that the
caspase-8/-10 heterodimer is inactive (29, 41).Ourmechanistic studies
are consistent with an inhibitory role for procaspase-10 in regulating

apoptosis signaling from the death complexes induced by tolinapant/
TNFa. To our knowledge, this is the first study to identify caspase-10
as an inhibitor of complex IIa/b.

Necroptosis induced by TNFa signaling is a caspase-independent
form of programmed cell death, dependent on RIPK1, RIPK3, and

Figure 6.

Necroptotic cell death induced by tolinapant in RIPK3-expressing colorectal cancer cells. A, Cell viability assays in HT29 caspase-8WT and HT29 caspase-8 KO cells
pretreated with 2.5 mmol/L entinostat for 24 hours then addition of 1 mmol/L tolinapant and 1 ng/mL TNFa for a further 24 hours. B,Western blot analysis of PARP,
p-MLKL(Ser358), total MLKL, p-RIPK3(Ser227), total RIPK3, p-RIPK1(Ser166), total RIPK1, cIAP1, caspase-8, and b-actin in HT29 caspase-8 WT and HT29 caspase-8
KO cells 24 hours following treatment with 1 mmol/L tolinapant and 1 ng/mL TNFa. C, PI analysis in HT29 caspase-8 WT and HT29 caspase-8 KO cells pretreated for
30 minutes with 10 mmol/L z-VAD and 2 mmol/L necrosulfonamide then addition of 1 mmol/L tolinapant and 1 ng/mL TNFa for 24 hours. D, Annexin V/PI analysis in
HT29 cells pretreated with 10 mmol/L z-VAD, 5 mmol/L emricasan or 10 mmol/L emricasan for 30 minutes then addition of 1 mmol/L tolinapant and 1 ng/mL TNFa for
24 hours. E, Western blot analysis of p-MLKL(Ser358), total MLKL, p-RIPK3(Ser227), total RIPK3, p-RIPK1 (Ser166), total RIPK1, cIAP1, and b-actin in HT29 cells
pretreated with 10 mmol/L emricasan for 30 minutes then addition of 1 mmol/L tolinapant and 1 ng/mL TNFa for 24 hours. F, Pictures from AK and AKP organoids
pretreatedwith 10mmol/L emricasan for 30minutes then addition of 1mmol/L tolinapant and 1 ng/mLTNFa for 48 hours.G,Western blot analysis of p-RIPK3 (Thr231/
Ser232), total RIPK3, cIAP1, and b-actin in AKP organoids pretreatedwith 10 mmol/L necrostatin-1 and 10 mmol/L emricasan (Emri) for 30minutes before the addition
of 1 mmol/L tolinapant and 1 ng/mL TNFa (tolin/TNF) for 24 hours. Resultswere compared using a two-tailed Student t test, � , P <0.05; �� , P <0.01; and ��� , P <0.001.
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MLKL (42, 43). Necroptosis, unlike apoptosis, results in the activation
of inflammatory responses through the release of damage-associated
molecular patterns from dying cells, which promote antitumor immu-
nity through recruitment of inflammatory cells, maturation of den-
dritic cells, and elicit cross-priming of CD8þ T cells (44, 45). RIPK3
expression is lost in multiple cancers, including many colorectal
cancers, and correlates with cancer progression (46, 47). Loss of RIPK3
expression and necroptosis resistance is correlated with BRAF gain-of-
functionmutations, AXL overexpression, and RIPK3 promoter hyper-
methylation (48). CRISPR-mediated KO of caspase-8 or FADD in
RIPK3-positive colorectal cancer models resulted in dramatic induc-
tion of necroptosis by tolinapant/TNFa. Thus, if clinical resistance to
FOLFOX/tolinapant combination therapy emerges due to procaspase-
8 or FADD mutations, BRAF inhibitors, AXL inhibitors or epigenetic
modifying agents that upregulate RIPK3 expression may make these
resistant tumor cells sensitive to tolinapant-induced necroptosis.

Emricasan is an orally active caspase inhibitor that is well tolerated
in humans. We found that tolinapant and emrciasan cotreatment
potently activated necroptosis in the presence of TNFa, but only in
RIPK3-positive colorectal cancer models. Compared with zVAD,
emricasan is a more potent inhibitor of the enzymatic activity of the
caspase-8/FLIP(L) heterodimer that cleaves RIPK1 (49). Our data
therefore suggest that tolinapant/emricasan combinations may be
effective in proinflammatory, RIPK3-positive colorectal cancers.

Multiple IAP antagonists, including tolinapant, are currently in
clinical trials, and single-agent clinical response was observed pre-
dominantly in lymphoma for tolinapant while responses in solid
tumors weremore limited (9). Tolinapant was recently granted orphan
drug designation for the treatment of patients with T-cell lymphomas.
Here, we have highlighted the potential of combining tolinapant with
FOLFOX in colorectal cancer. This SoC chemotherapy is the mainstay
of treatment in MSS colorectal cancer in the neoadjuvant, adjuvant,
and advanced disease settings, hence strategies to overcome treatment
resistance are required. There is a particular rationale for considering
an oxaliplatin-based SoC combination, as preclinical modeling in
other cancer types has demonstrated induction of expression of
immunogenic cell death markers and enhanced response to radiation
both in vivo (50) and clinically (7) in head and neck cancer. The
potential mechanisms by which IAP antagonists may induce antitu-
mor immune effects and hence antitumor activity beyond overcoming
tumor cell resistance to apoptosis are under evaluation. While check-
point inhibitorsmay seem a rational potential combination partner for
IAP antagonists, at present, SoC chemotherapy remains a more
attractive treatment option given the failure to date of checkpoint
inhibitors alone or in combination with other agents in the immune-
cold tumor microenvironment of MSS colorectal cancer. This com-
bination could be particularly beneficial in the treatment of stage III,
cIAP1/2-high MSS disease, which, as we have reported here, has a
particularly poor prognosis when treated adjuvantly with FOLFOX
alone. We have also identified FLIP as an intrinsic resistance mech-

anism to IAP antagonist therapy in colorectal cancer, the inhibitory
effects of which can be overcome (at least in a subset of diseasemodels)
by FOLFOX treatment and the clinically relevant class I HDAC
inhibitor, entinostat. Moreover, in RIPK3-positive colorectal cancer,
the clinically well-tolerated caspase inhibitor, emricasan induces
necroptotic cell death. Of note, this may be the preferred mode of
cell death in the predominantly immune-cold MSS disease setting due
to potent pro-inflammatory effects of necroptosis.
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