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Abstract
Background: Systems Medicine is a novel approach to medicine, that is, an interdisciplinary �eld that considers
the human body as a system, composed of multiple parts and of complex relationships at multiple levels, and
further integrated into an environment. Exploring Systems Medicine implies understanding and combining con-
cepts coming from diametral different �elds, including medicine, biology, statistics, modeling and simulation,
and data science. Such heterogeneity leads to semantic issues, which may slow down implementation and fruit-
ful interaction between these highly diverse �elds.
Methods: In this review, we collect and explain more than100 terms related to Systems Medicine. These include
both modeling and data science terms and basic systems medicine terms, along with some synthetic de�nitions,
examples of applications, and lists of relevant references.
Results: This glossary aims at being a �rst aid kit for the Systems Medicine researcher facing an unfamiliar term,
where he/she can get a �rst understanding of them, and, more importantly, examples and references for digging
into the topic.

Keywords: systems medicine; multiscale modeling; multiscale data science

Introduction
Although death has always been the end of every hu-
man�s life, mankind has been trying to delay that as
much as possible. It is, thus, not surprising that one of
the most ancient forms of science, if not the �rst, has
been medicine, starting with documents going back to
ancient Egypt and Greece.1 In the previous century,
technical advances (from vaccines to genome sequenc-
ing) have supposed a revolution in medicine, and
have allowed a substantial reduction in mortality
rates. However, this trend is now experiencing dimin-
ishing returns: New drugs are nowadays being devel-
oped less frequently and at a higher cost; they are
bene�cial to smaller subsets of the population, and con-
sequently have less impact on life expectancy. In paral-
lel, mankind has recently witnessed an Information
Technology (IT) revolution, in which data are gathered
and processed at unprecedented rates, given birth to ap-
plications that would have appeared as science �ction as
recently as 20 years ago. Following the theory of Kon-
dratiev waves,2 postulating the existence of waves of
40�60 years with high sectoral growth, could it be that
the next wave will have medicine at its focus, and spe-
ci�cally through the merging of both revolutions?

Such merging is actually taking the form of the so-
called Systems Medicine, an interdisciplinary �eld of
study that looks at the human body as a system, com-
posed of interacting parts, and further integrated into
an environment.3,4 It considers that these complex re-
lationships exist on multiple levels, and that they have
to be understood in light of a patient�s genomics, be-
havior, and environment. The analysis of a disease
then starts with real data, coming from a large number
of patients (thus to ensure that the natural variability is
taken into account) and covering all aspect of them,
from genetics to the environment. Machine-learning
and mathematical models are then developed, aimed
at �nding the most ef�cient way of disrupting the dis-
ease in a speci�c patient.

Even after this oversimpli�ed description, it is clear
that systems medicine requires skills and knowledge
not considered in standard medical curricula, or alter-
natively the collaboration between researchers of dif-
ferent backgrounds. The revolutionary idea behind
systems medicine is, thus, responsible for its main
drawback: the need for understanding and combining
concepts coming from diametral different �elds, in-
cluding statistics, modeling and simulation, and data
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science.5 The researcher wanting to enter this world
will face an additional problem: Although a large num-
ber of books and papers can be found on, for example,
data-mining concepts, these are usually not written
with a medical practitioner in mind. Not just the re-
quired background, but even the basic terminology
can become a major barrier.

This review addresses the semantic issues this
implies, which may slow down implementation and
fruitful interaction between these highly diverse �elds,
by providing the �rst version of the Systems Medicine
Dictionary.* Speci�cally, the practitioner coming
from medicine will �nd in it a large number of mod-
eling and data science terms, along with some syn-
thetic (although comprehensive) de�nitions and a
list of relevant references. Similarly, a researcher
with a background in modeling and data will here
�nd an explanation of the basic systems medicine
terms. It is worth noting that these de�nitions are
not exhaustive, as both their selection and the corre-
sponding content have been guided by the personal
view of the authors. In addition, some terms described
here represent �elds of research on their own, whose
characterization can hardly be contained in a mono-
graphic book. This work, thus, represents the �rst
aid kit for the systems medicine researchers facing
an unfamiliar term. They will here get a �rst under-
standing of it; and, more importantly, examples and
references for digging into the topic.

Science, in general, and medicine, in particular, can
bene�t from approaches that are different from what
was done earlier, as these can have multiplicative effects
on knowledge and understanding in general; this may
lead to new insights and ideas for new hypotheses, and
eventually to breakthroughs unattainable via the old
and tested ways of thinking and acting. In turn, this re-
quires crossing discipline boundaries and provides new
angles to old information. We expect this glossary to
be especially useful to the younger readership, for exam-
ple, PhD students and early career researchers, as they
are at a better position to break away from old conven-
tionalisms while signi�cantly boosting their careers.

Concepts from Systems Medicine, Modeling,
and Data Science
All terms are included here in alphabetical order, and
they are further listed in Table 1. Table 2 also reports

a list of the acronyms that appear in the text, and the
corresponding meaning. Finally, underlined words,
for example, agent-based modeling (ABM), refer to
terms that are de�ned here.

Agent-based modeling
ABM (also known as Individual-based modeling,
Multi-agent Systems, and Multi-agent autonomous
Systems) is a modeling/simulation paradigm that is es-
pecially suited for studying complex systems, that is,
systems composed of a large number of heterogeneous
interacting entities, with each having many degrees of
freedom. A very open de�nition of this mathematical
discrete modeling paradigm is to represent a physical
or biological system on the basis of entities (called
agents) with de�ned properties and behavioral rules,
and then to simulate them in a computer to reproduce
the real phenomena and to perform what-if analysis.6

Agents have, thus, to be understood as autonomous en-
tities, each one with an internal state representing its
knowledge about the environment, and rules (or algo-
rithms) to interact with other agents. This broad de�-
nition can then encompass from simple particles to
autonomous software with learning capabilities. To il-
lustrate, these can be from ��helper�� agents for web
retrieval,7,8 robotic agents to explore inhospitable envi-
ronments,9 up to lymphocytes in an immune system
reaction simulation.10�12 Roughly speaking, an entity
is an ��agent�� if it is distinguishable from its environ-
ment by some kind of spatial, temporal, or functional
attribute: An agent must be identi�able. In addition,
agents can be identi�ed on the basis of four basic prop-
erties: autonomy, that is, the behavior of each agent
is not guided by rules de�ned at a higher tier; social
ability, that is, their capacity of interacting with other
agents; reactivity, in that they react to perceived
changes in the environment; and pro-activeness, that
is, the ability to take the initiative. Moreover, it is
also conceptually important to de�ne what the agent
��environment�� in an ABM is. This can be implicitly
embedded in the behavioral rules or be explicitly repre-
sented as a different ��modeled object�� with a well-
de�ned set of characteristics that in�uence the agent�s
behavior.

An ABM simulation may start from simple agents,
locally interacting with simple rules of behavior,
responding to perceived environmental cues and try-
ing to achieve a local goal. However, the simplicity
of the composing elements does not derive in the sim-
plicity of the overall dynamics. From this simple

* We plan this glossary to be updated in the future; we will, therefore, welcome any
suggestion coming from readers.
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con�guration, a synergy may emerge, which leads to a
higher-level whole with much more intricate behavior
than the component agents (holism, meaning all, en-
tire, total).

If the �rst examples of agent-based models were de-
veloped in the late 1940s, only computers could really
show their modeling power. These include the Von
Neumann machine, a theoretical machine capable of
reproduction,13 that is, of producing an identical
copy of itself by following a set of instructions. This
idea was then improved by Ulam,14 by suggesting ma-
chines to be built on paper, as collections of cells on a
grid. This idea inspired von Neumann to create the �rst
of the models later termed cellular automata (CA).
Building on top of these, John Conway constructed
the well-known ��Game of Life,�� a simple set of rules
that allow evolving a virtual world in the form of a
two-dimensional checkerboard, and which has become
a paradigmatic example of the emergence of order in
nature. How do systems self-organize themselves and
spontaneously achieve a higher-ordered state? These
and other questions have been addressed in-depth in

the �rst workshop on Arti�cial Life (ALife) held in
the late 1980s in Santa Fe. This workshop shaped the
ALife �eld of research,15 in which ABM models are
the main form of modeling and simulation.

The ABM proved very successful in theoretical biol-
ogy. In this speci�c research domain, ABM is emerging
as the best modeling paradigm that is able to accom-
modate the need to represent more than one level of
space-time description, thus �tting the multiscale spec-
i�cation. Beyond the aforementioned works on the im-
mune system, examples include cancer modeling,16,17

or epidemics predictions.18,19 For further discussions
and examples, the reader may refer to An et al.20

Arti�cial neural networks
Arti�cial neural networks (ANN) are inspired by the
neural networks that exist in mammal brains.21 They
represent a programming paradigm that helps a com-
puter to process complex information to learn from
the observational data. The network itself consists of
connected units or nodes called arti�cial neurons
(based on neurons in a biological brain) that are

Table 1. List of the terms described here

Agent-based modeling Artificial neural networks Bayesian filtering
Bayesian networks Bayesian smoothing Bayesian statistics
Bio�uid mechanics Bioheat transfer Biological networks
Biomaterials Biomechanics Cellular automata
Clinical decision support systems Clustering Complex networks
Complex systems Computational drug repurposing Constraints
Context awareness systems Correlation networks CRISP-DM
Cross-validation Data analysis software Data fusion and data integration
Data mining Decision Tree Decision support systems
Deep learning Digital Health Digital Twin
Dissipative particle dynamics Erd}os�Re·nyi model Exposome
FAIR principles Feature selection Finite element method
Finite volume method Frequentist statistics Functional networks
Gene set enrichment analysis Granger causality Graph embedding
Hidden conditional random �elds Imputation In silico modeling
Integrative analysis Interactome Internet of things
Lattice Boltzmann method Machine learning Mediation analysis
Medical informatics metaboAnalyst Metabolomics
Model robustness Model verification and validation Morphometric similarity networks
Multiphysics systems Multilayer networks Multiscale biomolecular simulations
Multiscale modeling Network analysis software networkAnalyst
Network medicine Null models Nvidia Clara
Object-oriented modeling Ontologies Parameter estimation
Parameter identi�ability Parameter sensitivity analysis and uncertainty quantification Permutation test
Phase transition Physiome Precision medicine
Probabilistic risk analysis Quantitative systems pharmacology Random forest
Random graphs Scale-free networks Simulated annealing
Small-world network Smoothed-particle hydrodynamics Solid�fluid interaction
Statistical bioinformatics Statistical networks Support vector machine
Surrogate model Systems biology Systems bioinformatics
Systems dynamics Systems engineering Systems medicine
System of systems Standards Structural covariance networks
Time-evolving networks Time-scale separation Variation partitioning
Virtual physiological human

CRISP-DM, Cross-Industry Standard Process for Data Mining; FAIR, Findability, Accessibility, Interoperability, and Reusability.
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organized in layers. The �rst layer is called the input
layer and is connected to the input signals. The input
layer is followed by one or more hidden layers, all the
way to the output layer connected to the output signals.
Analogous to the synapses in a biological brain, signals
are transmitted from one neuron to another. The output

of one arti�cial neuron is computed when a nonlinear
function is applied on the sum of its inputs. Usually,
the weights and biases are added to adjust the learning
process. Weights increase or decrease the strength of
the signal at a connection, and biases represent the
threshold to delay the triggering of the activation func-
tion. Mathematically, this can be represented as (Fig. 1):

Output = f +weight � input þ bias
� �

:

For ANN to learn from the provided data, they need
to have a huge amount of information used as a train-
ing set. During the training period, the ANNs output is
compared to the human-provided description of what
should be observed (called target). If they are the
same, weights are validated, and in case of incorrect
classi�cation, its learning will be adjusted.22 In the end,
an unknown signal (not used in the training set) will
be used as the input, and we expect the network to cor-
rectly predict the output (this process is called general-
isation). As an example, in the process of classi�cation
of images as images with a dog or cat, the training set
would be thousands of images already classi�ed as dog
or cat image. After the training, the ANN should be
able to classify future images based on the trained model.

Although ANNs were originally aimed at solving
speci�c biology problems, over time their application
extended to a wide spectrum of tasks, including sys-
tems medicine through genomics, drug repurposing,
or personalized medicine. Not surprisingly, many re-
views are available. For instance, Awwalu et al. investi-
gated the adequacy of using ANN, among other
arti�cial intelligence (AI) algorithms, in solving per-
sonalized medicine and precision medicine problems.23

Ching et al. have developed an ANN framework called
Cox-nnet to predict patient prognosis from high-
throughput transcriptomics data.24 Bica et al. have
introduced a novel neural network architecture for ex-
ploring and integrating modalities in omics datasets,
especially in cases where a limited number of training
examples was available.25 Also, some examples of ap-
plication of deep neural networks could be found in
using neural networks to learn an embedding that sub-
stantially denoises expression data, making replicates
of the same compound more similar.26 Donner et al.
used ANNs to identify drugs with shared therapeutic
and biological targets, even for compounds with struc-
tural dissimilarity, revealing functional relationships
between compounds and making a step forward to-
ward the drug repurposing based on expression data.26

Table 2. List and explanation of the acronyms
used throughout the review

2SSP Two-Stage Stochastic Programming
AAL Ambient-assisted living
ABM Agent-based modeling
AI Artificial intelligence
ANN Artificial neural networks
BI Business intelligence
BIC Bayes information criteria
BPPV Benign paroxysmal positional vertigo
CA Cellular automata
CDSS Clinical decision support system
CFD Computational fluid dynamics
DDA Drug�disease association
DDI Drug�drug interaction
DPD Dissipative particle dynamics
DSS Decision support system
DT Decision tree
EEG Electro-encephalography
FBA Flux balance analysis
FEA Finite element analysis
FEM Finite element method
fMRI Functional magnetic resonance imaging
FVM Finite volume method
GCN Gene co-expression network
GRN Gene-regulatory network
GSEA Gene set enrichment analysis
HCRF Hidden conditional random fields
HMS Health care monitoring system
HSH Health smart homes
ICT Information and communication technologies
IoMT Internet of medical things
IoT Internet of things
IT Information technology
LB Lattice Boltzmann
LDL Low-density lipoprotein
MEG Magneto-encephalography
MFA Metabolic flux analysis
MICE Multiple imputation by chained equations
MMS Multiscale modeling and simulation
MSC Multiscale computing
NLP Natural language processing
PaaS Platform as a service
PCA Principal-component analysis
PIN Protein interaction network
PK/PD Pharmacokinetic/pharmacodynamic
PPI Protein�protein interaction
PRA Probabilistic risk analysis
QM/MM Quantum mechanical and molecular mechanical
QSP Quantitative systems pharmacology
RF Random forest
RFE Recursive feature elimination
RSM Response surface models
SA Simulated annealing
SDK Software Development Kit
SPH Smoothed-particle hydrodynamics
TF Transcription factor
t-SNE t-Distributed stochastic neighbor embedding
UPR Unfolded protein response
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Bayesian �ltering
A class of methods that allows estimating the current
state, that is, the value of the observed variable(s),
based on noisy measurements of the current and previ-
ous states. For instance, the spread of infectious dis-
eases could be modeled with the help of Bayesian
�lters, where the time-varying variables are, for exam-
ple, estimations of the number of susceptible, infected,
healed, and dead individuals taken in the current and
some previous time moments.27 For more information,
see Sa¤rkka¤.28

Bayesian networks
Bayesian networks (also known as Bayes networks, be-
lief networks, Bayes/Bayesian models, and probabilistic
directed acyclic graphical models) are a type of directed
graphical model (i.e., a graph expressing the condi-
tional dependencies between variables) that combines
graph theory and probability theory (see also the
Bayesian Statistics section). They present a formalism
designed to address problems involving uncertainty
and complexity. The Bayesian network approach can
be seen as both a statistical and an AI-like knowledge-
representation formalism. It is a useful tool for describing
mechanisms involving stochasticity, cohort heterogene-
ity, and knowledge gaps, which are common features
of medical problems, and has been utilized for diagnosis,
treatment selection, and prognosis29 as well as for analyz-
ing probabilistic cause�effect relationships (i.e., estimat-
ing the likelihood of a set of factors to be contributing
to an observation, e.g., the relationship between symp-
toms and potential underlying mechanisms). Bayesian
networks are constructed as directed acyclic graphs,
where nodes represent unique variables that have a �nite
set of mutually exclusive states, whereas edges represent
conditional dependence and the absence of edges condi-

tional independence.30 For each variable A with parents
B1, B2, . . . , Bn, there is a conditional probability table
P given as P AjB1, B2, . . . , Bnð Þ.30 Importantly, Bayesian
networks satisfy the local Markov property, meaning
that nodes are conditionally independent of its nondes-
cendants given its respective parents. This characteristic
permits a simpli�cation of joint distributions within the
model, allowing for ef�cient computation. In the most
simple approach, a Bayesian network is speci�ed by
using expert knowledge; in the case of complex interac-
tions, the network structure and parameters need to be
learned from data.

Inference and learning in Bayesian networks. Given
probability tables of the variables in a Bayesian network
and conditional independencies, joint probability dis-
tributions can be calculated and utilized to infer infor-
mation within the network and for structural learning.
This approach can be used for different probabilistic
inference methods, for example, for estimating the
distribution of subsets of unobserved variables given
observed variables (so-called evidence variables). Fur-
ther, Bayesian networks can be utilized to express
causal relationships and combine domain knowledge
with data, and, importantly, can thus be used for prob-
abilistic parameter estimation.

Examples of the use of Bayesian networks in medicine
include the diagnosis and prediction of disease trajecto-
ry,31�33 health care planning,34,35 and molecular data
analysis.36 Although this is a popular and successful op-
tion for modeling in the medical domain, they should be
used with caution in complex problems with multiple
feedback loos and closed-loop conditions.

Most relevant limitations. Bayesian networks com-
monly rely on prior knowledge/belief for construction

FIG. 1. Graphical representation of ANN. ANN, arti�cial neural network.
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and inference; thus, the quality and usefulness of a re-
spective network is directly dependent on the usefulness
and reliability of this prior knowledge. In the case of
expert-constructed networks, it may further be challeng-
ing to translate this knowledge into probability distribu-
tions. Bayesian networks are constructed as acyclic
graphs and thus do not support the implementation of
feedback-loops,37 although this may be addressed by
using dynamic Bayesian networks.38 Bayesian networks
have limited ability to deal with continuous variables, a
limitation most commonly addressed by discretizing
these variables, which, in turn, has tradeoffs.39 Lastly,
Bayesian learning and inference can become very com-
putationally expensive, to the point that a network be-
comes impossible to compute and the search space
needs to be reduced by using different heuristics.40,41

Bayesian smoothing
This is a class of methods for reconstructing previous
state(s), having noisy measurements of the current
and the previous states. Brain imaging is an example
of an area that can take advantage of the Bayesian �lters
and smoothers relying on sensor measurements of
different values.28

Bayesian statistics
Bayesian statistics is a Bayesian interpretation of prob-
ability in which probability expresses a degree of belief
in an event, as opposed to a �xed value based on fre-
quency�see the Frequentist Statistics section.

The basic framework of Bayesian analysis is quite
straightforward. Prior distributions are associated with
parameters of interest to represent our initial beliefs
about them, for example, based on objective evidence,
subjective judgment, or a combination of both. Evidence
provided by further data is summarized by a likelihood
function, and the normalized product of prior and the
likelihood forms a posterior distribution. This posterior
distribution contains all the currently available informa-
tion about the model parameters. Note that this is differ-
ent from the standard frequentist approach, and that
both methods do not always give the same answers;
and this is fueling an ongoing debate between propo-
nents of both approaches.42�44 At the same time, the
use of a Bayesian approach yields results that go beyond
what are obtainable through a frequentist perspec-
tive.45�47 In what follows, the most important points of
Bayesian and frequentists disagreements and differences
are discussed: prior distributions, sequential analysis,
and con�dence intervals.

The (subjective) choice of prior distribution. The spec-
i�cation of prior distribution is a matter of ongoing con-
cern for those contemplating the use of Bayesian
methods in medical research.48 It is not without a reason
that frequentists object to this concept. Any conclusions
drawn from the posterior distribution will be impacted
by this choice. If the prior distribution is informative,
that is, already carries strong evidence for certain values
of unknown parameters, then new data might have no
signi�cant impact at all (which is not a bad thing if
our prior distribution re�ects the truth). Many authors
devoted their thoughts to the formalization of the
prior distribution selection,49�52 and they all have
made suggestions regarding the elicitation and quanti�-
cation of prior opinions of clinicians. However, it is still
a very dif�cult task. Even minor mistakes in the prior
elicitation can propagate to signi�cant errors in the pos-
terior inferences. The subjectivity in the elicitation of ex-
pert opinions is the main critique of the Bayesian
approach. Actually, in very complex problems, such elic-
itation might even be impossible to many parameters.
However, uninformative priors, the kind that also have
a claim to objectivity, are the Bayesian response.53 In
fact, there is a strong movement toward objective unin-
formative priors in the Bayesian community.

This struggle to develop the objective Bayesian frame-
work produced quite many different approaches on how
to devise objective prior distribution. The most famous
of these is the Jeffreys-rule prior.54 Reference priors55,56

are a re�nement of the Jeffreys-rule priors for higher di-
mensional problems and have proven to be remarkably
successful from both Bayesian and non-Bayesian per-
spectives. Maximum entropy priors57 are another well-
known type of noninformative prior, although they
often also re�ect certain informative features of the sys-
tem being analyzed. Invariance priors, as mentioned ear-
lier, matching priors,58 and admissible priors59 are other
approaches being extensively studied today. Methods on
how to select a prior distribution from this vast universe
of possible distributions are discussed in Kass and Was-
serman.60 Caution is advised when considering a nonin-
formative distribution. Sensitivity analysis should always
be performed, because in small sample cases, noninfor-
mative prior distribution can still in�uence the posterior
results.61 On the other hand, arbitrariness is not so un-
familiar to frequentists� practices as well.

Sequential analysis. The Bayesian approach includes
a generally accepted stopping rule principle: Once the
data have been observed, the reasons for stopping the
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experiment should have no effect on the evidence
reported about unknown model parameters. Frequent-
ists� practice, on the other hand, is different. If there are
to be interim analysis during the clinical trial, with the
option for stopping the trial early should the data look
convincing, frequentists feel that it is mandatory to ad-
just allowed error probability (down) to account for the
multiple analysis.42

Stopping rules are especially important in clinical
trials, and Bayesians pick up on this theme as early as
1992, with four seminal papers on colorectal cancer
clinical trials.62�66 Currently, Bayesian stopping rules
are being used in all phases of trials�see Ashby46 for
a complete review. In fact, the increasing use of Bayes-
ian statistical methods in clinical research is supported
by their capacity to adapt to information that is gath-
ered during a trial, potentially allowing for smaller,
but yet more informative trials, and for patients to re-
ceive better treatment.67

Con�dence intervals. The concept of con�dence in-
tervals is purely frequentists. However, the way it is
(wrongly) interpreted is Bayesian. Con�dence interval
represents the precision of a parameter estimate as
the size of an interval of values that necessarily include
estimate itself. A true understanding of the concept
would look like this: If new data were to be repeatedly
sampled, the same analysis carried out, and a series of
95% con�dence intervals calculated, 19 out of 20 of
such intervals would, in the long run, include the
true value of the quantity being estimated.68 However,
many researchers (mistakenly and fundamentally in-
correct) interpret this interval as a 0.95 probability
that the true parameter is in the interval. If one
would be truly Bayesian from the beginning of the anal-
ysis, Bayesian credible intervals69 would be considered
as exactly the probability that the unknown parameter
is contained in it. In fact, in certain prior distribution
cases, Bayesian credible intervals are exactly the con�-
dence intervals, only the interpretation is different.

The interplay of Bayesian and frequentist analy-
sis. Currently, there is a trend of using notions from
one type of approach to support analysis of another ap-
proach. Of many topics, several should be mentioned
in this brief note: empirical Bayesian analysis, where
prior distribution is estimated from the data70; approx-
imate model selection methods, such as BIC,71 similar
to the usage of Akaike information criteria; robust
Bayesian analysis,72 which recognize the impossibility

of complete subjective speci�cation of the model and
prior distribution, etc. From the frequentist theory
viewpoint, the most convincing argument in favor of
the Bayesian approach is that it intersects widely with
the three notions of classical optimality, namely, mini-
maxity, admissibility, and equivariance.73

Bio�uid mechanics
Bio�uid mechanics is the application of principles of �uid
mechanics on the dynamics of motion of bio�uids inside
and around of living organisms and cells.74 The main ap-
plications of bio�uid dynamics are the study of the circu-
latory system with the blood-�ow inside vessels of various
sizes, the study of the respiratory system with the air-�ow
inside the lungs, and also the lubrication of synovial
joints.75 The study of bio�uid dynamics has allowed
many therapeutic applications such as arti�cial heart
valves,76 stents, and in the future arti�cial lungs.77 Bio-
�uid dynamics can be studied with simulations and ex-
periments. Computational �uid dynamics simulations
can be used to better understand the �ow phenomena
of the bio�uids inside the complex geometry of vessels.
Bio�uid dynamics can also be studied with in vivo exper-
iments, with the use of noninvasive medical imaging
methods such as Doppler ultrasound and magnetic reso-
nance imaging (MRI), invasive methods such as angiog-
raphy but also with more straightforward methods as the
pressure cuff used to measure blood pressure.78

Bioheat transfer
Bioheat transfer concerns the rate of heat transfer be-
tween a biological system and its environment. The
main difference regarding heat transfer of biological sys-
tems to nonbiological ones is the blood perfusion through
the extended network of vasculature in biological systems
that directly affects the local temperature of the living tis-
sue.79 The main research subjects of bioheat transfer are
the thermal interaction between the vasculature and tis-
sue, tissue thermal parameter estimation,80 human ther-
mal comfort, thermoregulation, safety of heat transfer to
living tissue due to microwave, ultrasound or laser expo-
sure due to environmental exposure or for therapeutic
applications.81 Because biochemical processes are gov-
erned by local temperature, bioheat transfer also plays
a major role in the rate of these processes.

Biological networks
The concept of complex networks represents a power-
ful tool for the representation and the analysis of com-
plex systems, and especially to describe their internal
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interaction structure. Recently, the so-called network
biology approach82 has been fruitfully applied in
many different biological areas, from gene regulation,
to protein�protein interactions (PPIs), to neural sig-
nals,83 to �nally hit clinical applications: Network med-
icine is today at the forefront of modern quantitative
approaches in medical sciences.84 Here, with no claim
of exhaustiveness, we list the main types of biological
networks.

PPI networks. PPIs are physical contacts, stable or
transitory, between two or more proteins created by
electrostatic forces between the so-called protein surfaces,
that is, the ��exposed�� regions of the three-dimensional
structures of folded proteins. These contacts are at the
base of most biological functions, as, for instance, of sig-
nal transduction, cell metabolism, membrane transport,
or muscle contraction. It is, thus, clear that the analysis
of how proteins interact between each other is essen-
tial to understand cellular processes in healthy and in
pathological conditions. Sets of proteins and their in-
teractions are generally referred to as protein interac-
tion networks (PINs), mathematically represented by
undirected graphs. The speci�c analyses performed
on PINs depends on the overall goal of the study; to
illustrate, one may try to identify the most prominent
element for a given function (e.g., gene target prioriti-
zation),85 or the set of lethal proteins in a cell.86 Meth-
ods for the detection of protein interaction encompass
experimental (e.g., yeast-two-hybrids, mass spectrom-
etry) or in silico (ortholog-based) approaches.87,88

Gene-regulatory networks. Gene-regulatory networks
(GRNs) are networks of causative and regulative inter-
actions (biochemical processes such as reactions, trans-
formations, interactions, activations, inhibitions: the
links) between transcription factors (TFs) and down-
stream genes (the nodes), represented with directed
graphs and inferred by gene expression data.

Methods to extrapolate GRNs are based on
information-theoretic criteria, co-expression metrics,
or regression approaches, among others. For example,
the mutual information (MI) approach is often used,
that is, a dimensionless metric that states how much
the knowledge of a random variable tells about another
one. A value of MI of zero indicates that the two vari-
ables are completely independent; on the other hand,
MI > 0 implies that they are connected, as knowing
one of them is equivalent to (partially) knowing the
other. Thus, if MI > 0 for the expression of two

genes, we can infer that one of them is (partially, at
least) driving the other.89

Though created in an indirect way, inferred GRNs
aim at representing real physical, directed, and quanti-
tatively determined interaction events, both between
genes and, and between them and their products. The
�nal aim is the discovery of key functional relationships
between RNA expression and chemotherapeutic sus-
ceptibility.90 Recently, data from single-cell gene ex-
pression have become mature and have been
approached by using partial information decomposi-
tion to detect putative functional associations and to
formulate systematic hypotheses.91,92

Validation of GRNs has traditionally been per-
formed in two ways. On the one hand, one can resort
to ��gold standards,�� that is, sets of interactions that
have been validated; on the other hand, one can ob-
serve the biological system under study in vitro, by in-
ducing a perturbation and by observing whether the
real and predicted effects coincide.93,94

Gene co-expression networks. Gene co-expression
networks (GCNs) are basically RNA transcript�RNA
transcript association networks: Nodes of the network
correspond to genes, which are pairwise connected
when an appreciable transcript co-expression associa-
tion between them exists. Networks are then calculated
by estimating some kind of similarity score from ex-
pression data and by applying a signi�cance threshold;
the result is usually a undirected graph. In reconstruct-
ing GCNs, normalization methods, co-expression cor-
relation (e.g., Pearson�s or Spearman�s correlation
measures), signi�cance, and relevance estimation are
calculated. Graphical Gaussian Models (e.g., ��concen-
tration graph�� or ��covariance selection�� models) are
also used, along with edge removal based on gene trip-
lets analysis (e.g., the ARACNE tool), regression meth-
ods, and Bayesian networks.95

Signaling networks. Signaling pathways are cascades
of molecular/chemical interactions and modi�cations
to carry signals from cell membrane receptors to the
nucleus to arrange proper biological responses to stim-
uli, on human or microbial levels. The process of
reconstructing signaling networks has typically been
based on gene knockout techniques, which are effective
in describing cascades in a linear or branched manner.
Nevertheless, recent screens suggest a switch from such
cascades to networks with complex interdependencies
and feedbacks,96 which require methods that are able
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to infer aspects and features of signaling processes from
high-throughput -omic data in a faster and systemic
way. In general, such inference problems can be re-
duced to the de�nition of suitable optimal connected
subgraphs of a network originally de�ned by the avail-
able data; examples include the Steiner tree approaches
(based on the shortest total lengths of paths of interacting
proteins), linear programming, and maximum-likelihood
(e.g., tagging proteins as activators or repressors to ex-
plain the maximum number of observed gene knock-
out). Alternatives include the use of a probabilistic
network, for example, network �ow optimization (Bayes-
ian weighting schemes for underlying PPI networks
coupled with other -omics data), network propagation
(gene prioritization function that scores the strength-
of-association of proteins with a given disease), or in-
formation �ow analysis (based on the identi�cation of
proteins dominant in the communication of biologi-
cal information across the network).97,98

Metabolic networks. Metabolic network reconstruc-
tion is generally referred to as the annotation process
of genes and metabolites for the determination of the
metabolic network�s elements, relationships, structure,
and dynamics.83 It can be identi�ed on human, micro-
bial and their joint co-metabolic levels. It is usually pos-
sible to infer the enzymatic function of individual
proteins, or to reconstruct larger (or even whole) meta-
bolic networks. Techniques such as metabolic �ux anal-
ysis (MFA) and its improvements (e.g., isotopically
nonstationary MFA), and �ux balance analysis have be-
come largely utilized for the predictions of concurrent
�uxes of multiple reactions. Recently, computational ap-
proaches coupling MFA with mass spectrometry have
been also implemented. Single-enzyme function predic-
tion can be carried out by resorting to machine learning,
especially when the enzyme does not show signi�cant
similarity to existing proteins; or to ��annotation trans-
fer�� approaches, based on the use of reference databases
or orthologs to tag speci�c DNA sequences. Comparative
pathway prediction methods use established functional
annotations to check for the existence of new reactions,
whereas explorative pathway prediction techniques
(not using existing annotations) can be graph-theoretic
(e.g., by weighting paths of metabolite connectivity)
or constraint-based (e.g., elementary mode analysis),
or both.99,100

TF networks. When talking about disease and trans-
formation from health to disease, we cannot avoid

the TF networks that were enabled by technological ad-
vances, such as genome-wide large-scale analyses, ge-
nome editing, single-cell analyses, live-cell imaging,
etc. Enhancer locations and target genes are keys to
TF network models.101 The original de�nition of en-
hancers is that they represent functional DNA se-
quences that can activate (enhance) the rate of
transcription from a heterologous promoter, indepen-
dent of their location and orientation.102 Determining
the function of enhancers and whether TFs bind to
them was accelerated by the CRISPR/Cas9 and other
genome-editing technologies, as well as by the data col-
lected within the large-scale efforts, such as the Human
Epigenome, ENCODE, etc. If we combine the experi-
mental evidence of TFs binding to speci�c promoter
or enhancer DNA elements, at speci�c genomic loci,
we can construct TF network models and maps, to pre-
dict biological behavior in silico and further guide ex-
perimental research. In principle, the TF network
models are simple, consisting of subnetworks with
nodes (genes and proteins) and edges that link the
TFs to their functional targets. More complex models
can, nevertheless, be used, for instance integrating
Boolean and Bayesian approaches�see Brent101 for a
review.

The TFs work predominantly in a tissue-speci�c
manner to de�ne the cell phenotypes. For a maximal
output, different TFs usually cooperate and synergize,
to modulate changes in gene expression.103 A TF net-
work map is a graph where we can see which TFs di-
rectly regulate a gene by binding to one of its
promoter or enhancer elements. A TF network map
includes the basic biochemical knowledge, similarly
as the metabolic network map. It links the TFs with tar-
get genes, taking into account the proper physiological
or patophysiological conditions and signals (endoge-
nous and external), as well as the context of the time
(development, aging, circadian, etc.). Several ap-
proaches have been developed to model and/or graph-
ically represent the TF networks, such as the
PetriNets104 and the ARACNE algorithm that has
been recently upgraded to suit also the single-cell
gene expression data.105 The NetProphet 2.0106 is an-
other algorithm for TF network mapping that can as
accurately as possible identify TF targets. Another rep-
resentation of TF networks are the maps that are built
directly from transcriptome data by applying the en-
richment procedures. These maps show whether the
expression of individual TFs is related. For example,
the KEGG pathways107 and TRANSFAC database
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were used for functional enrichment studies.108 Gene
sets containing more than �ve elements were con-
structed and tested for enrichment by using the
PGSEA package, and the TFs were merged based on
their ID irrespective of their binding sites. In this man-
ner, the TF enrichment analyses con�rmed an in-
creased unfolded protein response and metabolic
decline after depleting one of the genes from cholester-
ol synthesis in the liver.109

Biomaterials
Biomaterial is a synthetic material that is used to re-
place part of a living system or to function in intimate
contact with living tissue.110,111 Although there are dif-
ferent de�nitions of a biomaterial, the Clemson Uni-
versity Advisory Board for Biomaterials has of�cially
de�ned a biomaterial as ��a systemically and pharmaco-
logically inert substance designed for implantation
within or incorporation with living systems.�� One
must differ biomaterial from biological material (i.e.,
bone matrix or tooth enamel), which is produced by
a biological system. Other materials that should be dif-
ferentiated are arti�cial materials that are simply in
contact with the skin (i.e., hearing aids and wearable ar-
ti�cial limbs), which are not biomaterials since the skin
acts as a barrier with the external world. The main ap-
plications of biomaterials include assistance in healing,
to improve function and correct abnormalities or re-
placement of a body part that has lost function due
to disease or trauma. Advances in many �elds, includ-
ing surgery, have permitted materials to be used in
many cases and wider scope.112,113

Biomechanics
Biomechanics is the application of classical mechanics
to the study of biological systems. Laws of physics for
statics, kinematics, dynamics, continuum mechanics,
and tribology are applied for the study of biological sys-
tems from a single cell to whole human bodies.114 Bio-
mechanics studies are employing both experiments and
numerical simulations. Experiments in biomechanics
are performed both in vitro and in vivo. Common ex-
periments include measurements of kinematics and dy-
namics of human motion (gait analysis),115,116 soft
tissue deformation and impact studies (tension-
compression tests, impact tests, three-point bending
tests),117 electromyography for neuromuscular con-
trol,118 but also experiments at microscopic level with
dynamic loading of cells with microscopic cantilevers
setups.119 Simulation of biomechanics systems has

allowed the testing of conditions that would be danger-
ous to test with human participants or biological tissue,
with applications ranging from vehicle safety with sim-
ulated crash tests using active human body models,
study of biological systems with complex geometries
that is not possible to measure their deformation re-
sponse with experiments, as brain deformation during
head impacts and faster and easier-to-perform para-
metric studies. However, it is important when using a
simulation model to consider the range of parameters
for which the model is valid.

Cellular automata
The CA are de�ned as abstract and discrete (spatially
and temporally) computational systems that showed
its application as general models of complexity and as
more speci�c representations of nonlinear dynamics
in a variety of scienti�c �elds. The CA are composed
of a �nite (countable) set of homogeneous and simple
units, called atoms or cells. These cells have an internal
status that can take a �nite set of values, and that is
updated at each time step through functions or dynam-
ical transition rules�generally as a function of the
states of cells in the local neighborhood. It should be
mentioned that CA are abstract, meaning they can be
speci�ed in purely mathematical terms and physical
structures can implement them. Since CA are compu-
tational systems, they can compute functions and
solve algorithmic problems, therefore displaying com-
plex emergent behavior. Because of that, they are
attracting a growing number of researchers from the
cognitive and natural sciences interested in pattern for-
mation and complexity in abstract setting.120 The CA
have also been applied to some medical problems, as,
for instance, image segmentation121,122 or infection
modeling.123�125

Clinical decision support systems
Clinical decision making involves clinicians making
decisions about patient diagnosis and treatment.126

Clinical decision making has traditionally largely
been determined by human expertise. As of now, clini-
cians still make the �nal decisions on weighing across
evidence, for example, from clinical data records.

Various statistical and mathematical methods,127

and knowledge-based approaches using dictionary-
de�ned knowledge (e.g., with ��if-then�� rules)128 have
now been used to aid clinical decision making, result-
ing in more quantitative, standardized, accurate, and
objective decisions. This has led to the development
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of medical or clinical decision support systems
(CDSSs), often in the form of computer software or
health technology, aiding human experts with interpre-
tation, diagnosis, and treatment.129

The rise of AI, particularly machine learning, has led
to another form of CDSSs that is ��non-knowledge-
based.�� Some of these approaches, for example, deep-
learning algorithms, have been claimed to outperform
human experts in diagnosis of speci�c illness.130 How-
ever, interpretability or explainability of the results of
such approaches hinder their use in practice.131 It
should be noted that CDSSs still remain not as highly
adopted by users, perhaps partially due to general
lack of engagement from clinicians, physicians, or
health specialists.132

Clustering
In data mining, any problem involving the division of
data into groups (clusters), such that each one of
them contains similar records (according to some similar-
ity measures), and that dissimilar records are organized
into different clusters. It is also called unsupervised learn-
ing, as no a priori information about the structure of the
groups is used. An alternative de�nition of clustering is
proposed in Ref.133: ��partition a given data set in groups,
called clusters, so that the points belonging to a cluster are
more similar to each other than the rest of the items be-
longing to other clusters.��

Although consensus on a unique classi�cation of
clustering algorithms has not been achieved, it is cus-
tomary to divide such algorithms according to their un-
derlying hypothesis134:

� Hierarchical-based. Hierarchical clustering com-
bines instances of the data set to form successive
clusters, resulting in a tree form called dendro-
gram. Clusters are equal to individual instances
in the lowest level of the tree, and upper levels
of the tree are aggregations of the nodes below.
Agglomerative and divisive clustering can be dis-
tinguished, depending on whether each observa-
tion starts in its own cluster, or in the complete
set.

� Partitions-based. As opposed to the previous
group, partitions-based methods start from the
complete data set and divide it into different dis-
joint subsets. Given a desired number of clusters,
the process is based on assigning instances to dif-
ferent clusters and iteratively improving the divi-
sion, until an acceptable solution is reached.

Note that partitions-based methods are different
from divisive hierarchical methods because, �rst,
they require prede�ning the number of clusters;
and second, because of their iterative nature.
The well-known K-means algorithm,135 possibly
the most commonly used clustering algo-
rithm,136,137 belongs to this class.

� Density-based. If the previously described algo-
rithms assess the similarity of instances through
a distance measure, density-based algorithms
rely on density measures; clusters are thus formed
by groups of instances that form a high-density re-
gion within the feature space. This presents the ad-
vantage of a lower sensitivity to noise and outliers.
Among the most used algorithms belonging to this
family, the DBSCAN138 is worth mentioning.

� Probability-based. Probability-based clustering
combines characteristics of both partitions-based
and density-based approaches. The most impor-
tant of these clustering approaches are mixture
models,139 which are probabilistic models used
to model heterogeneity and represent the presence
of subpopulations (latent subgroups) in an overall
population. The probabilistic component makes
them a useful approach for complex (especially
multimodal) data and they can be used to obtain
statistical inferences about the property of latent
subgroups without any a priori information about
these subgroups. In practice this is achieved by
using Expectation-Maximization algorithms.140

Important advantages are the �exibility with
regards to choosing subgroup distributions and
the possibility of obtaining ��soft�� strati�cation.

Complex networks
Born at the intersection of physics, mathematics, and
statistics, the theory of complex networks has proven
to be a powerful tool for the analysis of complex sys-
tems. Networks are mathematical objects composed
of nodes, pairwise connected by links.141�143 Their �ex-
ibility, and indeed their success, resides in the fact that
the identity of those elements is not de�ned a priori; for
instance, networks can be used to represent from peo-
ple and their social connections,144 market stocks and
their correlations or co-ownership,145 to genes and
their co-regulation.146 In all cases, networks allow re-
ducing such complex systems into simple structures
of interactions, which can easily be studied by means
of mathematical (algebraic) tools, while removing all
unnecessary details.
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The most simple way of reconstructing networks, and
indeed the �rst one from a historical perspective, is to
directly map each element composing a system to a
node, and map explicit relationships between elements
as links. Consider the example of a gene co-regulation
network: Nodes would represent genes, with pairs of
them being connected when it is known (e.g., from di-
rect biological experiments) that one of the two genes
is regulating the second. Once the full network is recon-
structed, its structure can be studied through a broad set
of existing topological metrics,147 designed to numeri-
cally quantify speci�c structural features; and by
using these metrics as input to data-mining models.148

In spite of the interesting results that could be
obtained through this simple understanding of networks,
it was soon apparent that many real-world systems
needed more detailed descriptions. Speci�cally, it is
worth noting that a simple network reconstruction
implies three hidden assumptions: that links are constant
through time; that nodes are connected by just one type
of relationship; and that relationships are explicit. Break-
ing these three hypotheses gave birth, respectively, to
time-evolving, multilayer and functional networks.

Complex systems
Systems were composed of a large number of ele-
ments, interacting in a nonlinear way between them.
As opposed to more simple systems, these interac-
tions are essential to understand the behavior of the
complete system, and in some cases, they can even
be more relevant than the individual elements.149�151

Due to this, the study of complex systems goes beyond
the reductionism paradigm, where understanding is
based on splitting to smaller subsystems that are sim-
pler to understand. In other words, although the re-
ductionistic approach works bottom-up, the systems
view required to understand complex systems is a
top-down one. Complex systems displays two impor-
tant properties. On one hand, a nonlinear behavior,
and thus tools originating in nonlinear analysis have
been used in this domain�to illustrate, the analysis
of time series describing the dynamics of complex sys-
tems often resort to the use of metrics of complexi-
ty,152 fractal dimension,153 sample entropy,154 and
other types of entropies155 to quantify the irregularity,
or detrended �uctuation analysis to quantify long-
range correlations.156 On the other hand, emergence
refers to the behaviors that may unexpectedly emerge,
leading to order or disorder, and that cannot be
explained by the dynamics of the system�s units. Adap-

tation is considered as one of the qualities of complex
systems, and this is a property that can be observed
in the biomedical domain.157

Computational drug repurposing
Drug repurposing or repositioning is the detection of
novel indications for existing drugs, to treat new dis-
eases.158 A major advantage of the drug repurposing
strategy is that it involves approved compounds that
have passed the toxicological safety screening process
and have a known pharmacokinetic (PK) pro�le: Repo-
sitioned drugs can, hence, enter directly to clinical
Phase II, making the clinical phase process much
faster than newly developed drugs, and thus more
cost-effective. Computational drug repurposing ap-
proaches aim at optimizing and accelerating the
drug repurposing procedures, also providing means
for candidate drug prioritization. Computational
drug repurposing methods include the following:
Structure-based virtual screening (molecular dock-
ing), Ligand-based methods (Pharmacophore model,
Quantitative structure�activity relationship, and Reverse
docking methods),159 Transcriptomic-based methods,160

genome-wide association study (GWAS) methods,161

Literature-based discovery methods,162 and Network-
based, Multisource data integration and Machine-
Learning approaches.163

Constraints
In mathematics, constrains are conditions that must be
ful�lled by some parameters (or solutions) of a model,
to make the latter realistic. In the case of mathematical
modeling of complex biological systems, different con-
straints can be implemented for parameters such as
value range of variables, limitations of sum of parame-
ters, transition speed, and other types of information.
To illustrate, the angle of joints in the human arm can-
not take any value, but must comply with some physi-
cal limitations.164 There are (i) general constraints that
are true for any system (mass conservation, energy bal-
ance), (ii) organism level constraints�consistent limi-
tations for all experimental and environmental
conditions for a particular organism (range of viable
metabolite concentrations, homeostatic constraint),
and (iii) experiment-level constraints�environmental
condition-dependent constraints for particular organ-
isms (biomass composition, cellular resources).165

Context awareness systems
Context awareness systems address complex environ-
ments in terms of location, identity, components, and
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relations. Context refers to the information that de-
scribes an entity (person, location, object).166 The
study of such complex environments has been made
possible by the availability of Wireless Sensor Networks
technologies, which allow heterogeneous sensors, dis-
tributed in a physical environment, to share their mea-
surements. Still, these technologies do not protect from
problems such as cross-domain sensing and coupling
of sensors; to preserve performance and reliability,
the data fusion has to be performed with caution.167

Context awareness systems have an important role in
the design of health care monitoring systems, health
smart homes, and ambient assisted living, which facil-
itate the acquisition of both ambient and medical data
from sensors. Such systems also may include reasoning
capabilities consisting of data processing and analysis
as well as knowledge extraction.168

Correlation networks
Functional complex networks created by considering
the correlation between the dynamics of pairs of nodes.

Cross-industry standard process for data mining
CRISP-DM stands for cross-industry standard process
for data mining, an industrial group that proposed a
methodology for organizing the data analysis process
in six standard steps.169,170 Since then, the term
CRISP-DM has been used to indicate both the group
itself and the methodology. The six steps are:

� Business (or Problem) understanding: initial un-
derstanding of the objectives and requirements
of the analysis to be performed; these are
expressed as a data mining problem, and should
include a preliminary roadmap or execution plan.

� Data understanding: In this second phase, data are
collected and a �rst analysis is executed, to famil-
iarize with them; identify quality problems; dis-
cover initial insights, and formulate initial
hypotheses; and identify relevant data subsets.

� Data preparation: Data received by the researchers
are seldom ready to be processed; on the contrary,
they usually require an initial preparation. This
covers all of the activities required to construct
the �nal data set, from selecting those data that
are really relevant, to data cleaning and pre-
processing. This is one of the most important
steps of the whole process, as the success of the
�nal analysis strongly depends on it; and is re-
sponsible for most of the time and resources con-

sumed in a data analysis project, as data
preparation is usually performed iteratively and
without a �xed recipe. See Refs.171�173 for a re-
view of techniques and the motivations for data
preparation.

� Modeling: phase in which data-mining algorithms
are applied and parameters are calibrated to opti-
mal values. Some algorithms covered in this re-
view are ANNs, decision trees (DTs), random
forests (RFs), and support vector machines
(SVMs). Although each one of these models has
speci�c requirements on the format of input
data, and are built on top of hypotheses on the
patterns to be detected, in practice multiple algo-
rithms are suitable in any given problem. In these
situations, multiple models are optimized and
compared; the models reaching a higher perfor-
mance are passed to the next phase for a �nal
evaluation.

� Evaluation: Model evaluation cannot be under-
stood only from a data-mining perspective, for ex-
ample, in terms of the achieved classi�cation
score; a business perspective should also be
taken into account. Only when all relevant ques-
tions have been addressed, can one then move
to the deployment of the extracted knowledge.

� Deployment: When all of the information about
the business problems has been gathered, the in-
formation and knowledge then has to be orga-
nized and presented.

Cross-validation
In data analysis, cross-validation (also known as rota-
tion estimation and out-of-sample testing) refers to
any technique used to validate a data-mining model,
that is, to quantify how it will generalize to an indepen-
dent data set, re-using a single data set. The initial data
set is divided into multiple subsets, which are used to
train or validate the model; this guarantees that the
same data are never used in both tasks.174

Data analysis software
With the widespread adoption of data-based solutions
in many real-world scenarios, it is not surprising to �nd
a large number of analytic solutions, spanning from
cloud pipelines to commercial and freeware software,
and both stemming from research activities and having
a commercial nature. The most important are listed
here, classi�ed according to their underlying structure
in cloud, noncloud, and hybrid tools.
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Noncloud (or local) solutions. Commercial and free-
ware software tools for data analysis are designed to
work on a local (or at least, noncloud) environment.
In this category, one can �nd:

� KNIME175 (www.knime.com);
� SPSS Modeller176 (www.ibm.com/products/spss-

modeler);
� RapidMiner177 (rapidminer.com);
� Alteryx (www.alteryx.com).

These software platforms usually have a broad focus,
allowing to process any (or most) kind of data; and they
allow to construct models by connecting modules in a
graphical interface.

Cloud-based solutions. Also known as Platform as a
Service, are solutions based on full cloud environments,
and on the creation of web-based pipelines in which
data are fed, processed, and returned to the user in a com-
pletely automatic way. The most notable solutions include:

� Google�s ML Engine (cloud.google.com/ml-engine);
� Amazon�s SageMaker (aws.amazon.com/sagemaker);
� Microsoft�s Azure (studio.azureml.net).

This approach presents two advantages: a complete
scalability, and a simpli�ed user experience. At the
same time, they usually provide a limited spectrum of
possible analysis�for instance, Google ML Engine
completely relies on Tensor Flow algorithms.178

Hybrid solutions. These solutions position themselves
inbetween the two familiespreviouslydescribed.Although
they are designed for cloud deployment, they can easily be
installed in a local infrastructure; and they shift the focus
toward an intuitive representation of the results and sim-
pli�ed user experience. Among others, these include:

� Sisense (www.sisense.com);
� Looker (looker.com);
� Zoho Analytics (www.zoho.com/analytics);
� Tableau (www.tableau.com).

They usually allow to summarize data on high-level
dashboards, with speci�c applications including busi-
ness analytics179 or website usage tracking. They, nev-
ertheless, do not provide the analytical �exibility
required by systems medicine applications.

Data fusion and data integration
Data fusion is the process of integrating multiple data
sources to produce more consistent, accurate, or useful

information than that provided by a single data source,
whereas data integration refers to heterogeneous data
obtained from different methods or sources, which
are merged to produce meaningful and valuable infor-
mation. In the �eld of system/personalized medicine,
progress has been made regarding data integration,
with large sets of comprehensive tools and methods
(e.g., Bayesian or network-based methods), especially
for multi-omics processing.180

Data mining
General terms are used for describing the process of dis-
covering patterns in data sets through the use of statistical
and mathematical algorithms. Their de�nition overlaps
with that of machine learning; and the term is also used
to denote the modeling step of the CRISP-DM process.

Decision tree
In data mining, DTs denote classi�cation algorithms
that rely on comprehensive tree structures, and that
classify records by sorting them based on attribute val-
ues. Each node in a DT represents an attribute in an in-
stance to be classi�ed, whereas each branch represents
a value that the attribute can take�see Figure 2 for a
simple graphical representation. The DTs can be gener-
alized to target continuous values, in which case they
are usually referred to as regression trees.

Let us denote by D the set of training instances that
reach a node. The general procedure to build the tree is:

� If all the instances of D belong to the same class,
then the node is a leaf node.

� Otherwise, use an attribute to split the set D into
smaller subsets. These subset will then feed subse-
quent nodes, by applying this procedure recur-
sively until a stop condition is met.

FIG. 2. Example of a simple decision tree model,
trained to choose between two treatments as a
function of the age and sex of the patient.
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The main differences between the many implemen-
tations of DTs available in the literature reside in the
criteria used to decide the splitting point. Among oth-
ers, Gini index is used in CART,181 SLIQ,182 and
SPRINT183; information gain is used in ID3184 and in
the well-known C.45.185

The main advantage of DTs is their simplicity, both
in the software implementation and in the interpreta-
tion of results; and their capacity of handling both nu-
merical and categorical variables, thus implying little
data preparation. This has fostered their use in medical
applications, as reviewed, for instance, in Refs.186,187

They, nevertheless, suffer from a less-than-perfect per-
formance. The concept of DT further underpins the RF
classi�cation algorithm.

Decision support systems
Decision support systems (DSSs) are information sys-
tems, that is, systems designed to collect, process and
make available information, focused on supporting dif-
ferent types of decisions.188 The DSSs typically deal

with business and management challenges; can be
completely customized by including multiple user in-
terfaces and �exible architectures; and implement
Optimization/Mathematical Programming tools for so-
lution strategy and report. The DSSs are able to provide
a complete view of the activities and �ow within large
and complex real production systems, integrating the
supply of raw materials, the production phases, the
products distribution, and the recovery within the sus-
tainable and closed-loop supply chains. The DSSs in
the form of standardized, enterprise-wide information
systems were widely implemented in multiple sectors,
including industry supply chains (e.g., pharmaceutical,
manufacturing, agri-food189) and health care services
(e.g., CDSSs126�130).

Deep learning
The ANNs, which form the basis of deep learning, were
developed in the 1940s as a model for the human
brain.190 Although this model has attracted the interest
of researchers in previous periods, it made a signi�cant

FIG. 3. Deep-learning system developed for human face recognition. Source: https://www.quora.com/What-
do-you-think-of-Deep-Learning-2
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leap in learning and classi�cation with the development
of deep learning systems based on the layered learning
structure of the human brain. One of the main reasons
for this is that computational infrastructure needed to
satisfactorily operate these complex structures that con-
tain hundreds of layers and thousands of neurons have
only appeared in the past decade.

Deep-learning systems are mainly de�ned by the fact
that each important feature of the phenomenon to be
learned is automatically recognized by the algorithm
and each group of features is learned by a separate arti�-
cial neural layer.191 For example, in an image recognition
system developed for human face recognition, different
facets of the face, such as lines, eyes, and mouths, and
the general lines of the face are learned by different layers.
Deep learning-based methods have greatly improved
performance in computer vision and natural language
processing, and they are integrated into many of the tech-
nologies currently used (Fig. 3).

Digital Health
The term ��Digital Health�� (or d-Health) is used for
denoting the massive and ubiquitous use of informa-
tion and communication technologies in health, health
care, and medicine �elds.192 Digital Health covers the
range of technologies used in health and medicine
from genome sequencing of the microbes in the
human organs, such as the gut and the skin, through
genome sequencing, to the use of smartphone for sup-
porting online telemonitoring (exposome level). The
main goals of digital health are to improve health
care customer follow-up and engagement, in parallel
of resources and cost optimization from the health or-
ganizations and providers. As a part of the fourth dig-
ital revolution, ��Digital Health�� is using internet of
things (IoT) and business intelligence (BI) for deliver-
ing personalized health care and medicine services.
However, Digital Health is taking health care from a
paternalistic medicine wherein physicians are de�ning
and deciding how to treat the patient to being patient-
centered. Patient-centered in the Digital Health context
means that the electronic tools, hardware and software,
are enhancing the health care customers� experience
and engagement by providing them with the decision
support tools for getting better health outcomes and
by considering their way of life and constraints.193,194

Nevertheless, Digital Health reduces direct human�
human interactions and thus may induce a dehuman-
ization of health care. Within Digital Health, a subsub-
ject has to be highlighted: the development of methods

allowing improving health care customers�, practition-
ers�, and other caregivers� (like patient�s family mem-
bers) experience, engagement, and interactions, by
considering the digital environment as another kind
of point-of-care similar to clinics, pharmacies, and hos-
pitals. One limitation of a dynamic and fast develop-
ment of Digital Health lies in local regulations that
have the objective of keeping health-related data and
information con�dential and safe, and allowing their
use in ways ensuring data availability and integrity
only for relevant individuals (patients and their related
one when relevant, professional, and speci�c organi-
zations). Digital Health is a full component of the Sys-
tems Medicine paradigm by allowing a dynamic view
of individuals from the nano-level (e.g., gene expres-
sion as a response to an environmental change) to the
mega-level (e.g., population interactions/reactions�
discussions� on social networks as a response to an
epidemic announcement).

Digital Twin
The concept of Digital Twin is a bridge between the
physical world, which can consist of a living system
(i.e., an animal or a vegetal, an individual or a popula-
tion) or a cyber-physical system (e.g., a biological pro-
cess, a drug production line, a health monitoring
service). A Digital Twin is a virtual or more accurately
a computational representation of a real-world ob-
ject.195 This kind of ��duplicate�� is allowing designing,
implementing, and testing models in a virtual environ-
ment before or instead of performing these operations
in a real-world context. From a Systems Medicine per-
spective, the digital twin is allowing building models
of living systems (from the cell components level to
the world population level for building and evaluating
from biological to epidemiological models) by using
socio-demographics, biological, clinical, and commu-
nicational data collected by health care customers
and caregivers (see Medical Informatics section)
and/or generated by IoT objects (see the Digital
Health section).196,197

Dissipative particle dynamics
Dissipative particle dynamics (DPD) is a stochastic
simulation technique used to study dynamical and rhe-
ological properties of �uids, both simple and complex.
It involves a set of particles, representing clustered mol-
ecules or �uid regions, moving in a continuous space
and at discrete time steps. This meso-scale approach
disregards all atomistic details that are not considered
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relevant to the processes addressed. Internal degrees of
freedom of particles are replaced by simpli�ed pairwise
dissipative and random forces, to conserve momentum
locally and ensure a correct hydrodynamic behavior.

This technique facilitates the simulation of the statics
and dynamics of complex �uids and soft matter systems.
The main drawback is high computing power, but this
has improved due to the high performance computing,
which is now combined with this technique.198

Among others, the DPD can be used for modeling
the transport of low-density lipoproteins (LDLs)
through arterial wall and analyzing plaque formation,
where the force of attraction of oxidase LDL molecules
to the wall is modeled in the DPD solution as spring
force with an experimentally determined coef�cient199;
for creating semicircular canal models with simpli�ed
geometry, showing the behavior of the �uid inside
the canal, cupula deformation, and movement of oto-
conia particles to analyze benign paroxysmal positional
vertigo200; or for modeling self-healing materials used
for corrosion analysis and protection (Fig. 4).201

Erd}os�Re·nyi model
The Erd}os�Re·nyi model is a model that is used to con-
struct random graphs in which all edges, or links, have

the same probability of existing, that is, they are inde-
pendent. The model is usually denoted as G n, pð Þ,
with n being the number of nodes and p the probabil-
ity for any link to be present. Therefore, the model
starts with n nodes, and each possible edge is in-
cluded with probability p independent from every
other edge.

The simplicity of this random network model makes
it an ideal candidate for acting as null model in the
normalization of network properties, although special
care is required when the underlying real network is
connected by construction, or has any other �xed
characteristic.202

This simplicity also made possible the calculation of
the expected characteristics of the graph, as a function
of n and p, in an analytical way. Note that all these re-
sults are of a statistical nature, and hence that the error
probability tends to zero; however, counterexamples
can always be found. Among others, the most well-
known ones include203:

� If np < 1, then the graph will almost surely have
no connected components of size larger than
O log nð Þ.

� If np = 1, then the graph will almost surely have a
largest component of size � n2=3.

� If p < 1 � eð Þ ln n
n , then the graph will be discon-

nected, that is, it will contain isolated nodes.
� Conversely, if p > 1 � eð Þ ln n

n , then the graph will
likely be connected.

Exposome
Exposome is the systems approach for disease study
that takes into account the interaction of internal bio-
logical mechanisms with the environment, in other
words, the interplay of genetic, epigenetic, and environ-
mental factors. The concept was �rst introduced by
Wild in 2005, and it encompasses for exogenous and
endogenous components.204 A series of technological
advances can be regarded as enabling technologies in
this highly ambitious paradigm, including sensor net-
works monitor the air quality and make available the
data, big data research, progress in microbiome analy-
sis and metabolomics.

The study of endocrine disruptors and their role in
pregnancy is one of the examples of this approach.205,206

Other work relates to cancer, and chronic diseases at
large, involving pollutants, metabolism, in�ammation,
and diet. There are large initiatives worldwide aiming
at creating synergies and building knowledge in this

FIG. 4. Schematic representation of a DPD
model. DPD, dissipative particle dynamics.
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new �eld of research, as, for instance: https://www
.projecthelix.eu/, https://humanexposomeproject.com/,
http://metasub.org/

Findability, Accessibility, Interoperability,
and Reusability principles
In an open-science approach, making scienti�c re-
search, data, and dissemination accessible, four princi-
ples for scienti�c data management and stewardship
were de�ned as Findability, Accessibility, Interoper-
ability, and Reusability (FAIR), by the Force11 working
group (https://www.force11.org/207). The principles do
apply not only to data but also to algorithms, tools, and
work�ows. These objectives are now becoming expec-
tations from funding agencies and publishers, regard-
ing the use of contemporary data resources, tools,
vocabularies, and infrastructures to assist research
discovery and reuse by third parties.

Feature selection
In data analysis, the process of feature selection con-
sists of applying algorithms designed to select a
subset of features, from the original data set, for sub-
sequent analysis. All other features are ideally ir-
relevant for the problem at hand, and they are thus
disregarded.

Feature selection yields two main bene�ts. On one
hand, even when the studied data set is not of a large
size, it can help in data understanding, reducing train-
ing times, and improving prediction performance. On
the other hand, feature selection is essential when the
features outnumber the instances. To illustrate, do-
mains such as gene and protein expression, chemistry
or text classi�cation are characterized by the limited
availability of instances to train models�for example,
a few patients and control subjects, a few complete tex-
tual records, etc. Refs.208,209 extensively review meth-
ods for feature selection.

Feature selection methods are usually classi�ed in
three different families:

� Filters select subsets of variables, according to
some rules, as a preprocessing step; in other
words, this selection is not made taking into ac-
count the subsequent classi�cation. One of the
most relevant examples is the recursive feature
elimination, based on iteratively constructing a
classi�cation model and removing features with
low weights (i.e., of low relevance)�note that

the classi�cation model used here is independent
from any subsequent classi�cation. When features
are added, instead of being eliminated, the result is
a forward strategy.

� Wrappers assess subsets of features according to
their usefulness to the subsequent classi�cation
problem. When the number of variables is re-
duced, this is done by evaluating all possible var-
iable combinations; on the other hand, when this
is not computationally feasible, a search heuristic
is implemented. Note that here the machine-
learning algorithm is taken as a black box, that
is, it is only used to evaluate the features� predic-
tive power. Wrappers can be computationally ex-
pensive and have a risk of over�tting in the
model,210 in which case coarse search strategies
may be applied.

� Embedded techniques are similar to wrappers, but
they integrate the search of the best subset of fea-
tures within the classi�cation model.211 The clas-
si�cation is then formalized as an optimization
of a two-part objective function, with a goodness-
of-�t term and a penalty for a large number of
variables. Embedded methods that incorporate
variable selection as part of the training process
may be more ef�cient in several aspects, as they
make better use of the available data and are
more computationally ef�cient. On the negative
side, they are speci�c to a single learning algo-
rithm, and are thus not generalizable.

Finite element method
Finite element method (FEM) is a numerical method
that is used for solving problems in different �elds of
engineering and mathematical physics. They can be
widely categorized into structural analysis, heat trans-
fer, �uid �ow, mass transport, and electromagnetic po-
tential. The FEM formulation of the problem requires
solving a system of algebraic equations. Analytical solu-
tions of these problems generally require the solution
to boundary value problems for partial differential
equations. The domain of interest is divided into a �-
nite number of simpler parts called elements, and the
method calculates values of the unknowns at discrete
number of points over the mentioned domain. The
simple equations at each point of the model are then
assembled into a larger system of equations that de-
scribe the entire problem. Analysis that is associated
with solving a problem using FEM is called �nite ele-
ment analysis.212,213
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Examples of the application of FEM in medicine in-
clude the analysis of bone�hip implant interactions, to
obtain the information about shear stress distribu-
tion214; the development of several inner and middle
ear models, especially cochlea models and their analy-
sis215; the computational model of arteries216�218; the
detection and localization of ischemic cardiac dis-
eases219; or the examination of electrospinning jet tra-
jectories (Fig. 5).220

Finite volume method
Finite volume method (FVM) is a method that uses an
approach to represent and solve partial differential equa-
tions in the form of algebraic equations. The term ���nite
volume�� marks a small volume that surrounds each
point (called node) in a mesh. By dividing the domain
of interest in the form of mesh (structured or unstruc-
tured mesh), this method leads to robust schemes. Dif-
ferent conservation laws are used�elliptic, parabolic,
hyperbolic, etc. The FVM is often chosen when �ux is
of interest, since local conservativity of the numerical
�uxes (conserved from one discretization cell to its
neighbour) is a characteristic of this method. This is es-
pecially present in the �eld of �uid mechanics, semi-
conductor device simulation, heat and mass transfer,
etc. By local conservativity it is meant that an integral
formulation of the �uxes over the boundary of the con-
trol volume is obtained. A local balance is written on
each discretization cell, which is called ��control volume.��
The �uxes on the boundary are discretized with respect
to the discrete unknowns.221 The FVM can, for instance,
be used in PK models (Fig. 6).222

Frequentist statistics
Frequentist statistics is an interpretation of statistics that
considers the probability of a random event as being the

long-run (in the sense of Neyman, Pearson and Wald
tradition) proportion of occasions on which it occurs,
conditional on some speci�ed hypothesis.68 For a differ-
ent interpretation, see the Bayesian Statistics section.

Functional networks
In all original studies focusing on complex networks,
one inherent hypothesis was the fact that the structure
of the network was easily observable: For instance, neu-
ral connections in the Caenorhabditis elegans can be
obtained by physically looking at the organism. How-
ever, many real-world systems do not comply with
this requirement: Their structure is not observable,
and we can only measure some aspects of the dynamics
of the constituting elements. If one makes the hypothesis
that the dynamics of each element is partly the result
(or ��the function��) of the dynamics of its peers, then
the structure of interactions can, in principle, be inferred
from the individual dynamics: The result is called a
functional network. The introduction of this latter repre-
sentation has resulted in an important step forward in
network science, allowing a broader focus including
both structural and dynamical (functional) relations,
and shifting the focus from the underlying physical
structures to the �ow of information developing on
top of them.223,224 Although a detailed description of
the functional network theory is beyond the scope of
this review, it is worth reporting a sketch of the standard
way of reconstructing them. Let us suppose that a set of
time series is available, each one describing the dynamics
of one element (node) of the system; to illustrate, in neu-
roscience these typically correspond to measurements of
electric (EEG) or magnetic (MEG) �elds generated by
the brain, or the consumption of oxygen by neurons
(functional MRI). The synchronicity between the dy-
namics of pairs of nodes is then estimated, using metrics

FIG. 5. Schematic representation of an FEM model. FEM, �nite element method.
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