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Abstract: Advances in machine learning inspire novel solutions for the validation of complex vehicle models, and spur 

an easy manner to promote energy management performance of complexly configured vehicles, such as plug-in hybrid 

electric vehicles (PHEVs). A constructed PHEV model, based on the four-wheel drive passenger vehicle configuration, 

is validated through an efficient virtual test controller (VTC) developed in this paper. The VTC is designed via a novel 

approach based on the least square support vector machine and random forest with the inner-interim data filtered by the 

ReliefF algorithm to validate the vehicle model as necessary. The paper discusses the process and highlights the accuracy 

improvements of the PHEV model that is achieved by implementing the VTC. The validity of the VTC is addressed by 

examining the PHEV model to mimic the characteristics of internal combustion engine, motor and generator behaviors 

observed through the benchmark test. Sufficient simulations and hardware-in-loop test are employed to demonstrate the 

capability of the novel VTC based model validation method in practical applications. The major novelty of this paper 

lies in the development of a VTC, by which the vehicle model can be efficiently developed, providing solid framework 

and enormous convenience for control strategy design.  

Key Words: Machine learning, plug-in hybrid electric vehicles (PHEVs), model construction, virtual test controller 

(VTC), hardware-in-loop (HIL) test. 

I. INTRODUCTION 

Hybrid electric vehicles (HEVs) have emerged as an efficient solution to a number of key social issues, such as oil 

consumption reduction and environmental pollution mitigation [1]. Furthermore, plug-in HEVs (PHEVs), equipped with 

larger battery packs, have gained wide popularity due to the inherent all-electric driving range (AER) and efficient fuel 

economy [2]. However, to fully explore energy saving potential of PHEVs, proper control strategies need to be carefully 



implemented. To now, there has been significant research progress in design of optimal control strategies [3-5], and a 

slew of efficient solutions emerge and deliver satisfactory energy consumption economy and emissions without 

sacrificing drivability and ride comfort. However, most of the methods proposed to date cannot adapt to the time-varying 

driving conditions and supply optimal performance continuously. While, the extensive development of 5th generation 

(5G) communication technologies [6] gives rise to the opportunities to further promote in energy control of PHEVs by 

incorporating more environmental information through vehicle-to-vehicle (V2V) [7] and vehicle-to-infrastructure (V2I) 

communication [8], as well as enabling vehicle-environment cooperative control. For instance, adaptable vehicle control 

will be anticipated to achieve minimum energy consumption under different driving conditions and environments. To 

this end, precise models need to be available, and can replicate the complex vehicle powertrain and system 

communications, thereby simplifying the development procedure of advanced control algorithms. Typically, these are 

difficult to achieve and many of the precise details of internal combustion engine (ICE), motor and generator performance 

may be missed. To tackle it, the model construction and validation of a PHEV configuration based on machine learning 

approaches is introduced to improve the performance of the underlying vehicle model, providing a solid framework for 

the development of future connected control strategies. 

Vehicle models, including backward and forward manners, play an essential role in control strategy development. 

The backward models are typically the most convenient for energy estimation. In this approach, the calculation is initiated 

from wheels, and then the required driving torques are decomposed into different energy paths through the transmission 

system. For example, Zhou et al. construct a backward model and apply dynamic programming (DP) in the energy 

management of PHEV to achieve optimal energy distribution between ICE and battery pack [9]. Sun et al. similarly 

exploit a backward model in model predictive control (MPC) algorithm to generate the reference curve for battery state 

of charge (SOC) in prediction  horizon, and employ the designed MPC to determine the energy distribution in real time 

[10]. Despite widespread applications of these models, they cannot replicate real control processes. In addition, the 

backward calculation approach may lead to singular points, resulting in difficulties in application of the model. By 

contrast, the forward modelling approach starts simulation from the driver module. The control units process driving 

intention, and the corresponding control commands are generated and transmitted to the power units. The intuitive 

forward calculation manner has made this type of models widely accepted in the development of modern vehicle control 

systems. Rizzoni et al. propose a framework for forward modeling, and demonstrate its feasibility in development of 

HEV control algorithms. The framework is verified efficient in vehicle analysis and control algorithm design [11]. On 



the basis of this work, a number of forward simulation tools emerge for HEV design. Lin et al. develop an integrated 

forward hybrid electric simulation tool (HE-VESIM) to mimic the dynamic performance of parallel HEV [12]. The 

results reveal that the forward models can simplify the vehicle design tremendously. However, they rely on large volumes 

of component data and detailed understanding of the control system intent, leading to certain difficulties in achieving 

high precision modelling.  

Recent developments in artificial intelligence, particularly machine learning, have provided different insights in 

problems across many disciplines. A number of examples have appeared in terms of machine learning algorithms applied 

to the design of PHEVs [13, 14], which have accelerated the development of intelligent control algorithms. Guo et al. 

employ a deep neural network (DNN) to predict future short-term velocity profiles with preferable accuracy, supplying 

valuable references for energy management of PHEV through MPC [15]. Sun et al. [16] apply several velocity prediction 

methods, including neural networks (NN), and highlight the overwhelming performance of NN. With respect to the 

strategy design, Hu et al. leverage the offline optimization results obtained by Pontryagin's minimum principle (PMP) to 

train NN, which is then implemented in real-time control to resolve the energy distribution [17]. Li et al. exploit the deep 

reinforcement learning (DRL) to attain the advanced energy management for serial HEV without the knowledge of future 

driving conditions [18]. The simulation results showcase the superior performance of DRL method. Despite these 

promising applications, the application of machine learning in vehicle modelling, to the authors’ knowledge, has not 

been investigated in-depth.  

The development of a precise forward model is a vital step in control strategy design, particularly for PHEV. In this 

study, a forward model for 4-wheel drive (4WD) PHEV is constructed based on the data collected through a series of 

benchmark tests on a passenger car configuration. The least square support vector machine (LSSVM), random forest 

(RF) and ReliefF algorithm are integrated to develop a virtual test controller (VTC), which is then employed to validate 

the model with demonstrable improvements in accuracy. The simulation and hardware-in-loop (HIL) test are performed 

to validate the feasibility and optimality of the raised VTC in both simulation and practical applications. Different PHEVs 

are also employed to manifest the anticipated performance of the designed VTC. The major novelty of this study lies in 

the development of a VTC based on machine learning techniques. The detailed contributions of this work include:  

1) A novel model validation method is developed by fully exploring advanced machine learning algorithms, 

demonstrating the great potential of machine learning methods in engineering practice and inspiring new pathway to 



state-of-the-art EV development. The validated model, with the enhanced accuracy in limning behaviors of real PHEV, 

can underpin further resilient EV development. 

2) A novel VTC is constructed by a hybrid machine learning scheme after carefully investigating the characteristics 

of different methods. Compared with single scheme, the designed LSSVM-RF scheme can fully reap the merits of 

LSSVM in small sampling learning and RF in ensemble learning, and is therefore more suitable for VTC in model 

validation with small-scale inputs and complex system dynamics. 

3) Comprehensive compare studies between representative advanced and traditional methods in simulation 

scenarios and practical situations are performed to demonstrate the promising performance of the designed model 

validation method. Compared with single-scheme based VTC, the developed LSSVM-RF hybrid scheme based VTC 

manifests significant potential in precisely delineating real PHEV behaviors and robust model validation.   

The remainder of this study is organized as follows. The 4WD PHEV and benchmark test are introduced in Section 

II. Section III elaborates the newly constructed forward model and the model validation method adopted in this study. 

Section IV evaluates the novel VTC and discussed model validation results, followed by the main conclusions drawn in 

Section V. 

II. 4WD PHEV AND BENCHMARK TEST  

The studied 4WD PHEV, as illustrated in Fig. 1, includes one ICE, one generator and two traction motors 

(designated as motor 1 and motor 2). The vehicle can operate in different modes through the cooperation among ICE, 

motors and generator, to provide better drivability and potentially greater energy savings, compared with the ordinary 

two-wheel drive (2WD) PHEVs. The designed operation modes include: pure electric mode (also called EV mode), serial 

mode and hybrid mode. In the serial mode, ICE and generator are known collectively as an auxiliary power unit (APU). 

The studied 4WD PHEV, with the format of multiple operation modes and advanced powertrain mechanic-electric 

dynamics, offers a high-quality platform to investigate the state-of-the art model construction technologies. The 

comprehensive benchmark tests lay solid support for data-driven based model construction and validation.  
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Fig. 1. The schematic of the 4WD PHEV configuration. 

The benchmark test, as shown in Fig. 2, is one of the preferred methods for analysis and performance evaluation of 

vehicles [19]. In this study, the benchmark test is performed on a dynamometer, and involves constant acceleration test, 

constant speed test, and standard driving cycle test [20]. In addition, the ICE, motors, generator and battery pack are also 

calibrated. The raw test data are collected through data logger with the sensors for analog and digital quantities, power 

analyzer and controller area network (CAN) channel. Through benchmark test, different look-up tables can be 

constructed in terms of data elements related to the performance of powertrain components, mode switch rules and 

general energy management manners between different sources.  

 
Fig. 2. Benchmark test on the studied 4WD PHEV. 

III. 4WD PHEV MODEL CONSTRUCTION AND VALIDATION 

A. 4WD PHEV Model Construction   

A forward 4WD PHEV model is built in MATLAB/Simulink, and the general framework of the constructed model 

is shown in Fig. 3. As can be found, there exist four sub-modules: driver, plant, controller and CAN bus. The driver 

module interprets the driving behavior and outputs the specific driving requirement (power/torque demand) to the 

controller module. The controller module determines the most suitable operation mode based on the driver demand and 

current vehicle state, and distributes energy demand among ICE, generator and motors accordingly. The plant module 

dynamically responds to the given control orders from the controller module, and supplies the actual execution details. 

The CAN bus module transmits signals among driver, plant and controller modules, and visually displays them. 

Accordingly, the output signals from the driver module include the acceleration and braking pedal degrees, which are 



sent to the controller module for control policy decision. The signals departing from the controller module include the 

desired motor torque, ICE throttle, target generator load, requested regenerative braking torque, clutch engagement order, 

and ICE ignition command, which are sent to the plant module for response to the driving requirement. The signals sent 

out from the plant module involve the instant component and vehicle state, such as SOC, current and voltage of battery, 

torque, power and speed of ICE, power, current and speed of the motors/ generator, clutch speed, etc. In the CAN bus 

module, the specific blocks are constructed to collect, display and store signals from other modules. Table I lists the 

detailed parameters of electric powertrain in the studied PHEV. 

CAN Bus

Driver

Plant

Controller  
Fig. 3. The schematic of the forward model. 

TABLE I  

COMPONENT PARAMETERS IN THE STUDIED 4WD PHEV POWERTRAIN 

ICE 

Displacement 2.0 [L] 16V DOHC 

Maximum Power 89 [kW] @4500 [rpm] 

Maximum Torque 190 [Nm] @4500 [rpm] 

Motor 1 
Maximum Power 60 [kW] 

Maximum Torque 137 [Nm] 

Motor 2 
Maximum Power 60 [kW] 

Maximum Torque 195 [Nm] 

Battery 

Type Lithium-ion 

Capacity 12 [kWh] 

Nominal Voltage 300 [V] 

Maximum Battery Power 147 [kW] 

Permitted Battery SOC Variation Range 0.22-0.8 

Gear 

Ratio 

Between ICE and final drive ig1=3.425 

Between motor 1 and final drive ig2=9.663 

Between motor 2 and final drive ig3=7.065 

Between ICE and generator ig4=2.736 

The mathematical equations used to describe the simulation process in each component are described below. 

 a. Driver Model  

The driver model prescribes the desired driving behaviors (velocity and acceleration/deceleration intension) and 

generates the corresponding driving requirement (typically power/torque demand), which will be sent to the controller 

module. The model input is the target velocity based on the driving cycle data and current feedback velocity, and the 

model output includes the degree of acceleration pedal and brake pedal positions. In most cases, the driver is represented 



by a proportional-integral-differential (PID) controller (simplified to the proportional control herein), as:  

( ) ( ( 1) ( ))

( ) ( ( ) ( 1))

acc p target real

brake p real target

P t K v t v t

P t K v t v t

= + −


= − +

 (1) 

where accP  and brakeP  are the desired acceleration and braking pedal positions, targetv  and realv  denote the target velocity 

and current velocity, pK  is the scale factor, and t is the time step. pK  is tuned based on the average difference between 

the velocity of real vehicle and that of the constructed model. The tuning process is terminated after the average velocity 

difference is smaller than 1.5 km/h. When significant velocity error emerges, the constructed forward model cannot 

simulate the performance of real vehicle accurately, resulting in the deviation in powertrain dynamics and energy 

consumption.  

b. ICE Model 

A static model based on the efficiency map obtained through benchmark test, shown in Fig. 4, is employed to 

characterize the nonlinear fuel consumption performance of ICE. The instantaneous fuel consumption can be calculated, 

as:  

( ) ( ( ), ( ))f out engm t f T t n t=  (2) 

where fm  is the fuel consumption rate, outT  denotes the ICE torque, and engn  represents the ICE speed. The load engL  

can be calculated, as: 

_

_ _100%

[ ( 1) 9550] / ( )
( )

( ( ))

eng re eng

eng
table eng eng

P t n t
L t

T n t

+ 
=   (3) 

where _eng reP  is the required ICE power, and _ _100%table engT  is the maximum torque corresponding to the current ICE 

speed. 

 

Fig. 4. Fuel rate map of ICE. 



c. Motor and Generator Model  

The motors and generator in the studied PHEV are permanent magnet synchronous motors (PMSMs). For ease of 

modeling the vehicle efficiently, the dynamic characteristics of motors are neglected. Likewise, the static models based 

on efficiency maps acquired through benchmark test are exploited to describe the power performance of motors and 

generator. Fig. 5 illustrates the efficiency maps of motors and generator. The efficiency map of generator is the same 

with that of motor 1. The load of motors and generator can be calculated, as: 

100%

100%
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( )

[ ( 1) 9550] / ( )
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(

( ))

( ( ))
)
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where motL , _mot reP , motn  and _ _100%table motT  denote the load, required power, speed and maximum torque of motor; genL , 

_gen reP , genn  and _ _100%table genT  present the same quantities of the generator. The kinematic relationship between engine 

and motor/generator can be described, as: 

3

2 1

=g gen

g mg ot g

eng

en

n

i

i n

n n i
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

=

                                                                              (5) 

 
(a) 

 
(b) 

Fig. 5. The motor efficiency maps. (a) Efficiency map of motor 1 and generator. (b) Efficiency map of motor 2. 



d. Battery Model  

For modelling battery, the temperature and aging influence are neglected in this study, and a simple equivalent 

circuit model is constructed to characterize the battery electrical performance. The model consists of an open circuit 

voltage source, varying nonlinearly with SOC, and an internal resistor connected in series manner [21]. By analyzing the 

electric performance of the model, the variation rate of SOC, i.e., the battery current, can be formulated as: 

int

int

( ) ( ) ( ) ( )4
( )

2 ( )

oc oc batt

batt

V V R P
S

t t
OC t

R Q

t t

t

− −
= −  (6) 

where SOC  is the battery SOC, ocV  is the open circuit voltage, intR  is the internal resistance, battP  denotes the battery 

power, and battQ  is the battery capacity. Typically, 
ocV  is obtained via interpolating the look-up table which describes 

the relationship with respect to other indexes, such as battery SOC and temperature. For simplifying the calculation, 
ocV  

is assumed to be a constant in this paper. The battery SOC can be obtained by the Coulomb counting method, as:  

0( )

t

batt

ini

batt

i
SOC t SOC

Q
= −


                                                                          (7) 

where 
iniSOC  means the initial battery SOC, and t  denotes the time step.  

e. Control Strategy in Vehicle Model  

The logic of controlling mode transition in the studied PHEV is designed by a rule-based method based on the 

benchmark test. The mode switch is determined by the current vehicle speed v, the required tractive power Preq and the 

required tractive torque Treq. In general, the energy management principle is to regulate the ICE to operate in the brake-

specific fuel consumption (BSFC) line based on the load following method. The energy management strategy in both 

serial and parallel modes and in charge depleting (CD) and charge sustaining (CS) stage can be expressed in Table II. 

TABLE II 

ENERGY MANAGEMENT STRATEGY IN CD AND CS STAGE  

Mode Condition apuP  battP  

Serial 

_  req apu optP P  0 reqP  

_ 1apu opt reqP P P    _apu optP  _req apu optP P−  

1  reqP P  _apu maxP  _req apu optP P−  

Parallel 

_  req eng optP P  0 reqP  

_ 2eng opt reqP P P    _eng optP  _req eng optP P−  

2  reqP P  _eng maxP  _req eng optP P−  

In Table II, Papu_opt and Peng_opt are the power corresponding to the optimal operation points of APU and ICE; Papu_max 

and Peng_max express the maximum power under their specific speeds; Pbatt_max_CD/CS_s and Pbatt_max_CD/CS_P represent the 



maximum power limit of battery in CD and CS stage when the vehicle is in serial mode and in parallel mode; P1 equals 

the sum of Papu_opt and Pbatt_max_CD/CS_s, and P2 equals the sum of Papu_opt and Pbatt_max_CD/CS_s. The APU, integrating ICE and 

generator, enables them to operate together to supply tractive power in serial mode. Papu_opt is calculated based on the 

combined efficiency table data of ICE and generator, and Peng_opt is calculated by means of looking up the efficiency table 

of ICE. Note that both efficiency tables are obtained via benchmark test. Additionally, Papu_opt and Peng_opt in Table II are 

51 kW and 55 kW, respectively.  

B. Model Validation 

In view of forward vehicle models developed for academic research or third-party applications, it may be difficult to 

replicate the control logic existing in physical vehicles. In addition, the vehicle’s plant performance may differ between the 

model and real vehicle due to idealization or neglection of transient and nonlinear behaviors which are difficult to model 

mathematically. Although the well-designed benchmark testing can provide the elaborate depiction for real vehicle operation 

performance and supply all-rounded information for modeling, the overall accuracy of the built model still needs to be validated 

and examined. A majority of traditional methods to validate vehicle forward-facing models are based on expert knowledge, 

wherein the time-consuming manual recalibration depends on subjective understanding on difference between model outputs 

and real test results. The deviation in understanding on real test results may lead to deficient recalibration, whereas machine 

learning based models exhibit obvious advantages in regression analysis, providing alternative pathways in multi-aspect 

engineering applications. In this study, a novel model validation method, incorporating model verification and recalibration, 

is proposed based on machine learning algorithms. The flowchart of the proposed validation method is shown in Fig. 6. 

To validate the model’s performance, the same driving cycles are imported into the trained VTC and the constructed 

forward model, and the component performance in the model is minutely compared with that yielded by VTC. The model 

verification and recalibration are performed according to the difference between the results from the forward model and 

VTC. In the model validation, the vehicle plant module and controller module are mainly examined, as their key 

parameters in both modules are derived through benchmark test. The parameters in the driver module are determined to 

guarantee the tracking ability under various conditions. Since the driver module is not affected by benchmark results, it 

is ignored in model validation. The examples of the forward model validation will be described in Section IV. During 

validation, the VTC construction is an essential step, which should comply with the following rules: 

1) VTC should exhaustively reproduce the control strategy of the original vehicle to validate the implementation of 

the control strategy in the mathematical forward model; 



2) VTC can evaluate the consistency between the output of the vehicle plant module and the actual performance of 

the original vehicle; 

3) VTC is enabled to recalculate the parameters in the control module to improve the control accuracy, if required.  

Following the prescribed rules, a novel VTC is built by cooperatively employing the LSSVM, RF and ReliefF 

algorithms. The LSSVM accounts for generating the meritorious interim variables that will become the inputs of the RF 

based regression analysis after capturing the given inputs of the novel VTC. The outputs of VTC, such as ICE torque, 

generator torque, and motor 1 torque, are generated by the RF algorithm according to the imported interim variables. To 

prompt the efficiency of RF based regression, the ReliefF algorithm is exploited to extract the worthy interim valuables 

that are strongly related to the performance of the control strategy in the studied 4WD PHEV [22]. During applications, 

the inputs of the novel VTC include the instant vehicle velocity, acceleration, and deceleration. The novel VTC, which 

is the core component in the designed model validation method, is carefully developed based on the LSSVM-RF based 

hybrid scheme. This is because the performance of LSSVM in practice will deteriorate with the increase of data labels 

when dealing with data mapping of complex process; and by contrast, RF, with the distinguished ensemble learning 

manner, excels at handling data with multiple labels. By this manner, the proposed method obtains qualified capabilities 

in regression analysis. The co-operation of LSSVM and RF to construct the VTC mitigates the pressure on data 

preparation before training, as only three types of data are required. Large scale of data goes against the performance 

promotion of machine learning algorithm application, due to the complex interactions and interferences. By virtue of the 

joint method, only a small amount of training data is entailed, and what is more, the preferable regression performance 

is still anticipated. Next, the adopted ReliefF algorithm, LSSVM and RF method will be elaborated. 

Benchmark Test and Data Collection Training Set 

ConstructionTest 

Data

Vehicle 

Model

Virtual Test Controller

Training

Model 

Accuracy 

Evaluation

New Driving Cycle

LSSVM
ReliefF

RF

Driver

Controller

CAN Bus
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Fig. 6. The flowchart of model validation. 



a. ReliefF Algorithm 

The ReliefF algorithm is proved efficient in processing multi-classification problems [23]. The main role of the 

ReliefF algorithm in this paper is to select the appropriate input parameters for the LSSVM and RF based VTC. During 

implementation [24], the algorithm seeks k variants from its nearest neighbors with the same class after being provided 

with the randomly selected instance Ri, and then calls the nearest hit Hj and k-nearest neighbors from other classes, 

referred to as the nearest misses Mj(C). The weight of all attributes A is then calculated according to Ri, Hj and Mj(C), as:  

( ) 11

( )
( , , )( , , )

1 ( ( ))

( ) )

( )

(

i

kk

i ji j C class R jj i

P C
diff A R Mdiff A R H

P class R
W A

m

C

W A
k mk

 == −
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 
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where P(class(Ri)) represents the probability of iR  [23]. diff(A,Ri,Hj) calculates the difference between the feature for Ri 

and Hj, and can be calculated, as: 

1 2 ( , ) ( , )
( , , )

max( ) min( )
i j

value A R value A H
diff A R H

A A

−
=

−
 (9) 

where value(A, R1) denotes the difference between A and R1, value(A, H2) is the difference between A and H2. For the 

variable j starting from 1, if the distance between Ri and Hj on a certain feature is less than that between Ri and Mj(C), it 

can be reasonably judged that the model shows a strong capability to distinguish the class, resulting in the increase of the 

relative feature weighting. When the distance between Ri and Hj is greater than that between Ri and Mj(C), it means the 

feature behaves poorly in discriminating the similar kinds of nearest neighbors. As a result, the relative weighting is 

decreased. Fig. 7 shows the feature selection results by the ReliefF algorithm. According to the feature selection results, 

benchmark test results and inputs of LSSVM, the battery SOC, the speeds of motors, generator and ICE, battery current, 

and battery voltage tend to be highly correlated with the control performance, and are therefore chosen as the input of 

the RF based model. To validate the forward model, the torques of ICE, motor 1 and generator are chosen as the output 

of RF based model. The corresponding data are extracted to train the VTC. 

 
Fig. 7. The flowchart of model validation. 



b. LSSVM Model  

The LSSVM algorithm is exploited due to its ability of strong regression and classification analysis with few input 

data labels [25]. To apply LSSVM, a regression model with the initial weight space 𝝎 can be formulated, as: 

( ) ( )TY X X b= +ω   (10) 

where nx R , y R , and : n nhR R →  denotes the mapping relationship to the high dimension feature space. For the 

training set, the sample X  can be defined as  
1

,
l

i i i
x y

=
. Thus, a regression model can be built based on the structural 

minimization principle, as: 
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where   is the margin parameter and ie  is the slack variable for ix . The optimization problem in (11) can be solved by 

transforming the constraint problem into an unconstrained problem after introducing the Lagrange multiplier i , as:  
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According to the Karush-Kuhn-Tucker (KKT) condition, the optimal condition can be obtained by taking partial 

derivation of (13) with respect to , ,b eω  and  , as:   
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Then, the linear correlation can be attained as: 
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By defining the kernel function ( , ) ( ) ( , )T
i iK x x x x x = , the LSSVM regression can be rewritten into: 
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= +  (16) 



c. RF Method  

The RF is an ensemble learning method which has been successfully applied in various fields [26]. The popularity 

of RF is attributed to its easy adaption to a wide variety of regression or classification problems. In the regression problem 

[27], by assuming that a set of input random vector pc X X  can be observed, RF is applied to predict the square 

integral random response Y R  by reckoning the regression function ( ) ( | x)m x Y= =XE9 . In addition, the training 

sample ( )1 1( , ), ,( , )n n nX Y X Y= D  needs to be determined from the independent random variables that are distributed with 

( , )X Y . Based on the training sample, the estimation nm →： RX  can be constructed. The RF consists of a collection of 

M randomized regression trees. In this paper, the classification and regression tree (CART) is used in the RF algorithm 

[28]. For the jth tree in the forest, the predicted value at point x is described by ),( ,n j nm x D , where 1 ,,  M    are 

random variables with the same distribution with nD . The output of the jth tree can be expressed, as: 
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where *( )n jD  is the set of training data, ),( ,n j nA x D  denotes the cell containing x , and ),( ,n j nN x D  represents the 

number of points falling into ),( ,n j nA x D . Finally, the finite estimation is made by combining the output of each tree: 
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The pseudo code of RF algorithm is provided in Table III, where    1, , nnodesize a   denotes the number of 

examples in each cell, and    1, ,mtry p   is the number of possible directions for splitting at each leaf node. The CART-

split criterion can be written as follows [27]. For any ( , z) Aj C , 
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where AC  is the set of all possible cut, ( ){ : }j
LA x A x z=   , ( ){ : }j

RA x A x z=   , and  (resp., ),A AL ARY Y Y  means the 

average of iY . For each cell A, the best cut * * ),( n nj z  is chosen according to the maximum , ),(reg nL j z  over tryM  and AC , 

as: 

* *
, )( (, ) arg ma ,xn n reg nj z jL z=  (20) 

 



TABLE III PSEUDO CODE OF RF 

1 for 1, ,j M=   do  

2    Pick up na  points in nD  

3    Set ( )=P X  

4    Set final =  P  

5    while P  do 

6        Let A be the first element of P  

7        if A contains less than nodesize points or if i AX  are equal then 

8             Remove the cell A from P  

9              ( ),final finalConcatenate A P P  

10        else 

11             Pick up a subset try {1, , }p M if cardinality mtry 

12             Choose the most suitable spilt in A by the CART-split criterion 

13             Cut the cell A according to the split. Name AL and AR for the two split cells.  

14             Remove the cell A from the list P  

15             ( , , )L RConcatenate A AP P    

16        end  

17   end  

18   Compute the estimation value ),( ,n j nm x D  at x  

19 end 

IV. EVALUATION ON NOVEL VTC AND MODEL VALIDATION  

The evaluation process on the raised novel VTC and model validation method is divided into multiple steps. Firstly, 

the effectiveness of the LSSVM and RF based VTC is comparatively studied with several benchmark methods in the 

simulation environment. After verifying the capacities of the designed VTC in reproducing behaviors of benchmark 

vehicle, the VTC based model validation is launched successively in simulation. Then, the validated vehicle plant module 

and controller module in the 4WD PHEV forward vehicle are examined in the HIL test platform to demonstrate the 

feasibility of the raised method in practical environment. Finally, some discussions in terms of the simulation and HIL 

validations as well as the applications in different PHEVs are conducted. Note that the torque distribution ratio between 

motors 1 and 2 is fixed to 0.5 in the derived control strategy. Therefore, only the performance of motor 1 is presented 

during performance evaluation and comparison.  

A. Evaluation on LSSVM and RF Based VTC in Simulation  

To better assess the LSSVM and RF based VTC, a number of ordinary methods are also employed. In this study, 

the long-short term memory (LSTM) network [29], LSSVM, back propagation neural network (BPNN) [30] and 

bidirectional LSTM (Bi-LSTM) [31] are all trained with the same derived through the benchmark test to develop VTCs. 

The training process will be terminated once the root mean square error (RSME) is less than a certain threshold. The 

LSSVM in this evaluation is also used to generate the results directly. Besides, a traditional system identification method 

supplied by system identification toolbox (SIT) in Matlab [32] is also enrolled in the compare study. The adopted machine 



learning models are trained by the collected data from a group of benchmark tests. Each group of benchmark test is 

performed on one standard driving cycle, and the different initial conditions lead to 1500 test groups in total. 70% of the 

collected data from 1500 groups of benchmark tests is utilized to train the machine learning model, and the remaining 

30% data is employed to validate the training effectiveness. Note that the test marked as LSSVM and RF denotes the 

novel method developed in this work. Figs. 8 to 10 illustrate the estimation errors in engine, generator and motor 1 torque 

between real test data and different VTCs under the fixed driving cycle. As can be found, the LSSVM and RF based 

VTC estimates torque output most accurately, compared with other methods, and the torque estimation errors are quite 

close to those of real benchmark test. The SIT, BP-NN and single LSSVM all raise noticeable deviations from real torque 

values. The remaining methods, including the raised LSSVM and RF method, LSTM and Bi-LSTM, show strong 

capabilities in mimicking the real vehicle dynamics. For the traditional SIT, it is quite labored to capture the complex 

nonlinear dynamics of electric powertrain under various scenarios. Figs. 11 to 13 present the distributions of estimation 

errors in engine, generator and motor 1 torque. As can be found, LSSVM and RF based VTC contributes to less errors 

(<5 Nm) in the torque estimation of engine, generator and motor 1. Bi-LSTM achieves the closest performance to the 

raised LSSVM and RF based VTC method. With the descending capability in regressing behaviors of electric powertrain, 

larger errors (>10 Nm) are incurred by the methods including SIT, BP-NN and single LSTM. 

 
Fig. 8. The scatter plot of engine torque estimation results by different VTCs. 

 
Fig. 9. The scatter plot of generator torque estimation results by different VTCs. 



 
Fig. 10. The scatter plot of motor torque estimation results by different VTCs. 

 
Fig. 11. The histogram of engine torque error distribution by different VTCs. 

 
Fig. 12. The histogram of generator torque error distribution by different VTCs. 

 
Fig. 13. The histogram of motor 1 torque error distribution by different VTCs. 

The improved performance by the LSSVM and RF based VTC can be attributed to the incorporated advantages of 

LSSVM and RF. LSSVM is known to perform well in processing regressions with few available data labels. During 

VTC construction, the input includes only the driving cycle data, resulting in that the input data is assigned with the same 



label. For RF, the strong performance can be anticipated when multiple input data labels exist. By integrating LSSVM 

and RF, the number of input data labels is increased, thus promoting full capabilities of RF algorithm and compensating 

the error induced due to the poor data distribution. Table IV lists the detailed comparison of results by different methods, 

including RMSE and mean absolute error (MAE) of the observed results, which can be formulated, as: 
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where h(xi) is the estimated value, and yi is the ground truth data. As can be found, the LSSVM and RF fused method 

yields better performance, i.e., lower RMSE and MAE, compared with the remaining methods tested. The comparison 

study highlights the optimal performance of LSSVM and RF based VTC, providing superiority in model validation by 

the trained VTC. 

TABLE IV 

TORQUE ESTIMATION DIFFERENCE BY DIFFERENT METHODS 

Items Method RMSE MAE 

ICE Torque 

LSSVM and RF 0.9037 0.2710 

Bi-LSTM 0.9102 0.2803 

LSTM 0.9671 0.3914 

LSSVM 1.1846 0.5674 

BP-NN 1.5391 0.8865 

SIT 2.1463 1.2597 

Generator 

Torque 

LSSVM and RF 3.1285 1.1002 

Bi-LSTM 3.1016 1.0743 

LSTM 3.2736 1.3911 

LSSVM 3.5273 1.6006 

BP-NN 4.2464 2.2800 

SIT 4.9152 3.0165 

Motor 1 

Torque 

LSSVM and RF 1.9748 0.4340 

Bi-LSTM 1.9616 0.4416 

LSTM 2.0543 0.6712 

LSSVM 2.2919 0.9110 

BP-NN 2.3925 1.1580 

SIT 2.9481 2.1671 

In Table IV, Bi-LSTM seems to behave quite closely to the proposed method. To better illustrate the behaviors of 

the adopted VTCs, Figs. 14 and 15 show the torque estimation distribution and estimation error of each step under the 

specific driving cycle by LSSVM and RF method and Bi-LSTM, of which the latter is obtained by subtracting the real 

value obtained through the benchmark test. Clearly, the novel LSSVM and RF based VTC can result in smaller estimation 

error and more concentrated scatter results than Bi-LSTM. The remarkable performance of Bi-LSTM owns to its 

advanced memory framework in processing regression analysis. In fact, the LSTM and Bi-LSTM, developed based on 



recurrent neural network (RNN) model, reach state-of-the-art performance in processing temporal data intrinsically. For 

the VTC application in model validation, however, it reproduces control orders of benchmark vehicle with the given 

inputs of each control step, which is not suitable to apply time-sequenced training samples. From this point of view, the 

LSSVM and RF method are more appropriate for the VTC application in model validation.  

 
Fig. 14. The scatter plot of estimation results and estimation errors by VTC with LSSVM and RF. (a) ICE torque. (b) Motor 

Torque. (c) Generator Torque. 

 
Fig. 15. The scatter plot of estimation results and estimation errors by VTC with Bi-LSTM. (a) ICE torque. (b) Motor Torque. (c) 

Generator Torque. 

B. Model Validation in Simulation  

After the advanced capability validation in regression, the proposed VTC is implemented to validate the built 

forward model. The verification and recalibration are mainly applied in the vehicle plant and control module in this study. 

Additionally, as the general responses of model to driving requirement, mode switch and energy management, the vehicle 

speed, component torque and speed, are the main indexes that can be applied to evaluate the effectiveness in model 

verification and recalibration. The vehicle’s main parameters, efficiency maps of components and battery configuration 

are all acquired through the known specifications and the benchmark test, ensuring integrality and general accuracy of 

the vehicle plant module. The control module, involving the mode transition strategy and energy management rules, is 

initially developed based on the analysis of benchmark test data. During verification and recalibration, the mode 

transition logics and energy management rules are evaluated and returned by the boundary condition maps generated via 



VTC, as shown in Figs. 16 to 18. The boundary condition maps for various mode switch are formulated with the discrete 

torques, required tractive powers, vehicle velocities and battery SOC based on the outputs of VTC when the NEDC, 

UDDS, US06, JC08, HWFET and WLTC driving cycles are tested. These test cycles cover most of the driving conditions, 

and can generate sufficient data for constructing the illustrated maps.  

 
Fig. 16. Boundary map when the operation switches from EV to serial mode. 

 
Fig. 17. Boundary map when the operation switches from serial to EV mode. 

 
Fig. 18. The boundary condition map that operation mode switches from EV and serial to parallel mode. 

During validation, the mode switch conditions of real vehicle can be explored according to the boundary condition 

maps. Table V lists the control thresholds of the initial vehicle model and those extracted according to the boundary 

maps. The thresholds in the initial vehicle model are recalibrated and updated to the new values of real vehicle if enough 

difference is detected. In the fixed operation mode, a series of ICE torques can be interpolated according to the required 

tractive power and battery SOC. As such, a group of torque combinations from ICE, generator, and motor 1 can be 

constituted, which are exploited to validate the controller module in the built forward model. Based on the detected 

difference between model and real vehicle, some critical parameters, e.g., battery power limits and optimal operation 

points of ICE and APU, can be recalibrated to improve the simulation accuracy of the built model. 

 



TABLE V 

SUMMARIZED CONTROL THRESHOLDS IN INITIAL MODEL AND FROM VTC 

Operation Model Control Threshold VTC Vehicle Model 

CD-CS Battery SOC 34% 32% 

EV-Parallel Velocity 120 km/h 120 km/h 

Parallel-EV Velocity 65 km/h 70 km/h 

EV-Serial Power 50 kW 55 kW 

Serial-EV Power 20 kW 17 kW 

After recalibration, the accuracy of the constructed forward model is rationally addressed. Figs. 19 to 21 illustrate 

the evaluation results on how the proposed method can improve the control modelling. The critical role of the proposed 

method in strengthening control modelling is evaluated according to the behaviors of electric powertrain and energy 

consumption of the vehicle. As can be clearly observed, the model’s general dynamic response and the outputted torque 

of ICE and generator can all closely match those generated through the benchmark test, validating the high accuracy of 

the built model. Fig. 19 shows the comparison result between the real velocity and simulation values outputted by the 

model. Based on the inputted driving cycle, the model can be executed to reproduce a reasonably accurate dynamic 

response. As can be seen from Figs. 20 and 21, the main observable difference between model and test data appears at 

the mode transition stage. As the forward model is a semi-static model aimed at describing the general performance of 

vehicle, it would be reasonable that the transient performance of vehicle plant, ICE, motors, generator and battery is 

difficult to capture.  

 
Fig. 19. Driving cycle for validation between simulation and benchmark test. 

 
Fig. 20. ICE torque comparison between simulation and benchmark test. 



 
Fig. 21. Generator torque comparison between simulation and benchmark test. 

Table VI demonstrates the comparison on fuel consumption obtained from real vehicle and model simulation. 

Generally, the validated control module in the built model can manage energy flow within the powertrain according to 

the manners that are quite close to the real vehicle. Note that the fuel consumption in Table VI denotes the total 

consumption after converting the electric energy consumption to the equivalent fuel amount [33]. The difference in fuel 

consumption between the real vehicle and validate model is only 1.1%. However, the accuracy of the non-validated 

model (6.8%) is much worse than that of the validated model. The operation mode percentage also reveals the difference 

in PHEV hybrid powertrain control systems. The constructed forward model presents close control results to the real 

vehicle with proper validations, and leads to cognate operation mode percentages. The panoramic analysis on electric 

powertrain behaviors and energy consumption in the real vehicle and the built model proves that the novel model 

validation method can prompt the accuracy of the control module in the constructed forward model, contributing to 

optimal design of vehicle control strategy.  

TABLE VI 

FUEL CONSUMPTION OBTAINED FROM REAL VEHICLE AND MODEL SIMULATION 

Types 
Fuel Consumption 

(L/100km) 

Operation Mode Percentage (%) 

EV Model Serial Mode Parallel Mode 

Real Vehicle 4.51 56.2 27.3 16.5 

Validated Model 4.56 55.7 26.2 18.1 

Non-validated Model 4.84 53.1 22.6 24.3 

C. Validation in Other PHEVs with Different Configurations 

The applicability to various PHEVs with different configurations is a critical index to examine the performance of 

the novel model validation method. The applications in various PHEVs request proper modifications of control 

parameters listed in Table V. Table VII lists the application results based on a few PHEVs with different powertrain 

structures. In Table VII, real vehicle 1, 2 and 3 represent different powertrain architectures, i.e., serial [33], parallel [34] 

and power-split [35] configurations. According to the investigation results, the developed novel method can 

comprehensively validate the forward model with different configurations coherently. After validation, the difference in 

fuel consumption between real vehicles and forward models in three groups is only 1.6%, 1.4% and 1.9%, respectively. 



In groups 1 and 3, the fuel consumption in forward models is lower than that in the real vehicle. This is because that the 

forward model neglects some transient dynamics that are difficult to capture in simulation. The operation percentage 

validates the performance of the novel model construction method from other perspectives. The similar operation mode 

percentages in EV, serial and parallel mode between the real vehicles and constructed forward models highlight that the 

constructed multi-configuration models achieve similar control effect as real vehicles, justifying the approaching control 

system behaviors.  

TABLE VII  

ASSESSMENT RESULTS OF NOVEL MODEL VALIDATION METHOD IN PHEVS WITH DIFFERENT CONFIGURATIONS   

Groups Types 
Fuel Consumption 

(L/100km) 

Operation Mode Percentage (%) 

EV Model Serial Mode Parallel Mode 

1 
Real Vehicle 1 18.13 61.3 38.7 - 

Validated Model 1 17.83 62.5 37.5 - 

2 
Real Vehicle 2 3.46 75.4 - 24.6 

Validated Model 2 3.51 74.2 - 25.8 

3 
Real Vehicle 3 3.23 54.3 25.5 20.2 

Validated Model 3 3.17 56.1 26.4 17.5 

D. HIL Test and Analysis  

To further evaluate the role of the LSSVM and RF based VTC in model validation and examine the feasibility of 

the novel VTC in practical applications, HIL test is performed to provide the real-time environment, permitting to 

investigate the behaviors of the validated vehicle model in practice. The HIL test platform, as illustrated in Fig. 22, 

supports the test by cooperatively incorporating host PCs 1 and 2 and real-time controller. Before the HIL test, the vehicle 

plant module and controller module in the developed forward model are validated and recalibrated by the novel VTC. 

The controller module, including mode transition and energy management strategy, is compiled in host PC 1 and 

downloaded to the real-time dSpace based controller. The test scenario is supplied by the host PC 1, and the vehicle plant 

module is executed in host PC 2. The communication between the controller and host PC 2 is attained via CAN 

communication.  

 
Fig. 22. Facilities for HIL test. 

Figs. 23 and 24 illustrate the performance of the built vehicle plant model and the corresponding control strategy in 

real-time by comparing HIL test results with those collected from the benchmark test on a dynamometer. As can be 



found, the HIL test results in terms of ICE and generator torques are generally consistent with those in benchmark test, 

and only some tiny differences appear. The reason of incurring difference is that the developed model validation and 

recalibration method cannot fully account for vehicle dynamics. In particular, the operation mode transition in the studied 

PHEV is realized through multiple intermediate sub-modes. For instance, the switch from serial mode to parallel mode 

goes across the clutch speed adjustment, clutch engagement and ICE ignition sub-modes, and the switch among these 

sub-modes is also governed by the specially designed rules. The model validation and recalibration based on the novel 

VTC, nevertheless, only focuses on macroscopic mode transition due to the limit of benchmark test, leading to the 

insufficient rule logic construction for sub-mode transition. As shown in Figs. 23 and 24, the difference mainly emerges 

in intensive acceleration and high driving speed area, where the mode frequently switches among EV, serial and parallel 

mode, presenting the ascertainable and limited difference. Table VIII lists the difference between HIL test and benchmark 

test in steady operation mode, and ignores mode transition comparison. Distinctly, the verified and recalibrated vehicle 

plant module and controller module can attain the promising effect in reproducing behaviors of real vehicle in steady 

state, indicating the feasibility of the proposed model validation method in practical situations. 

 
Fig. 23. ICE torque comparison between HIL test and benchmark test. 

 
Fig. 24. Generator torque comparison in between HIL test and benchmark test. 

TABLE VIII 

STATISTICS OF VARIATION BETWEEN HIL TEST AND BENCHMARK TEST 

Operation Mode Average Difference (Nm) Maximum Difference (Nm) Accuracy (%) 

EV  2.6 4.1 97.4 

serial  2.9 4.7 96.9 

parallel 2.7 3.6 96.5 

Overall 3.1 4.2 96.4 



E.  Discussion  

In this study, the built forward model for the studied 4WD PHEV is validated and recalibrated based the LSSVM 

and RF based VTC. To evaluate the promising performance of the raised method in mode construction and validation, a 

series of comparison studies are performed in both simulation and real-time environment. The investigations on VTC 

with different intelligent algorithms indicate that the LSSVM and RF based method can reproduce the behaviors of 

benchmark vehicle more accurate than other methods in instant applications. Even though the LSTM and Bi-LSTM 

raises the similar performance, the application scenarios manifest the LSSVM and RF algorithm is most appropriate to 

construct the VTC. By means of the novel VTC, the accuracy of the built forward model is refined via recalibration. The 

simulation study in Part B showcases the superior performance of the developed method in model validation, especially 

in validating the PHEV hybrid powertrain control system. The study on application capacities in different PHEVs 

justifies the robustness of the developed novel method in different scenarios. The HIL test further justifies the VTC 

application potential in model validation. The test results reveal that the accuracy of vehicle plant module and controller 

module in the furnished forward model is improved, contributing to the high-quality control algorithm design and 

development for practical application. 

Despite the superior performance, the limitations of the proposed method still exist and can be summarized into the 

following aspects. Firstly, the supplied benchmark test method, test matrix and test equipment limit the data acquisition 

that describes the process of sub-mode transition, suppressing the performance promotion of VTC. More flexible 

benchmark test methods, comprehensive test matrix and advanced test equipment implementation need to be developed. 

Secondly, the inputs of RF in VTC are selected by the ReliefF algorithm, which selects the most relevant data labels with 

respect to the control strategy of the studied PHEV. However, feature selection by conventional machine learning 

techniques is a brutal process without the knowledge of physical property, imposing shallow perception on the whole 

data. Nonetheless, deep learning methods can automatically study the inner connection among different features and 

highlight preponderance in regression analysis, thus deserving to be further investigated.  

V. CONCLUSION 

In this paper, a forward 4-wheel drive PHEV model is constructed based on the benchmark test data. A novel method 

based on the ReliefF, LSSVM and RF algorithm is proposed and demonstrated for the validation of the VTC model, and 

achieves significant improvements in overall accuracy when compared with other traditional methods. In the simulation 

based evaluation, the virtual test controller constructed by the proposed method achieves the minimum RMSEs and 



MAEs in estimating instant component performance, compared with other benchmark methods. Meanwhile, the verified 

and recalibrated vehicle model by the novel VTC also presents remarkable accuracy. In the HIL test, the applicable 

capacity in practical situation by the raised model validation method is carefully investigated. In addition, different 

PHEVs are examined to showcase the wide adaptivity of the proposed VTC modelling manner to different powertrain 

architectures. The validated vehicle control module and plant module integrally achieves up to 97.4% accuracy in the 

HIL test. The results indicate that the model validation method is efficient in improving model accuracy and is verified 

valuable for optimal control strategy design. 

For the future work related to model validation, more attention will be paid to seek methods to validate and 

recalibrate dynamic models, rather than merely static models. In addition, the deep learning method will be tailored for 

model validation to pursue better modeling performance.   
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