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Simple Summary: The growing field of AllergoOncology has illustrated potential for the use of IgE
in cancer immunotherapy; however, there is still much to be explored within this field, particularly
surrounding the links between IgE, allergy, and cancer. Exploring such links may provide useful
insights to guide novel IgE-based strategies targeting cancer. Here, we summarise the existing data
on both IgE in cancer epidemiology and tumour immunosurveillance, leading to the proposal of
a new hypothesis, the combinatorial hypothesis, which attempts to encapsulate the complexity of
the relationship between IgE-associated immune responses with cancer; and we discuss how these
insights may shape the next generation of IgE-based therapeutics.

Abstract: IgE, the predominant antibody class of the allergic response, is known for its roles in
protecting against parasites; however, a growing body of evidence indicates a significant role for
IgE and its associated effector cells in tumour immunosurveillance, highlighted by the field of
AllergoOncology and the successes of the first-in-class IgE cancer therapeutic MOv18. Supporting
this concept, substantial epidemiological data ascribe potential roles for IgE, allergy, and atopy in
protecting against specific tumour types, with a corresponding increased cancer risk associated with
IgE immunodeficiency. Here, we consider how epidemiological data in combination with functional
data reveals a complex interplay of IgE and allergy with cancer, which cannot be explained solely
by one of the existing conventional hypotheses. We furthermore discuss how, in turn, such data
may be used to inform future therapeutic approaches, including the clinical management of different
patient groups. With epidemiological findings highlighting several high-risk cancer types protected
against by high IgE levels, it is possible that use of IgE-based therapeutics for a range of malignant
indications may offer efficacy to complement that of established IgG-class antibodies.

Keywords: IgE; antibodies; cancer; immunotherapy; AllergoOncology

1. Introduction

Since the advent of the first anti-cancer therapeutics, a major objective in the field of
oncology has been the development of therapies capable of specifically targeting and killing
cancer cells whilst preserving healthy cells. This ambition has in recent years driven a shift
away from classical non-specific therapies such as radiotherapy and chemotherapy towards
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novel targeted therapies, amongst which cancer-specific monoclonal antibodies (mAbs)
have risen to prominence [1,2]. Immunoglobulin G (IgG), the most prevalent human
immunoglobulin in circulation, represents the majority of currently approved therapeutic
mAbs, with the IgG1 isotype specifically forming up to 80% of current therapeutic IgGs [3,4].
A number of features—including favourable pharmacokinetics, long serum half-life, and
well-described immune effector functions [5,6]—render IgG efficacious as an anti-cancer
agent. However, limitations specifically affecting IgG-based antibodies such as low affinity
for Fcγ receptors (FcγR); FcγR polymorphisms that influence IgG affinity and effector
function potency; and engagement of the inhibitor receptor FcγRIIB, which dampens
pro-inflammatory signaling, can affect their potency against specific cancers [7–11]. On
this basis, there has been a push for novel means of overcoming these limitations, of
which one approach has been the development of Ig-based cancer therapeutics of different
antibody classes.

One such class is immunoglobulin E (IgE), which is commonly associated with the
allergic response and immune responses against parasites and animal venoms [12,13].
IgE has been gaining traction as an alternative therapeutic, particularly with the growing
field of AllergoOncology [14,15]; and work within this field has culminated most recently
in the Phase 1 clinical trial of the anti-Folate Receptor α IgE MOv18 for advanced solid
tumours (ClinicalTrials.gov Identifier: NCT02546921). A number of class-specific features
of IgE, including its very high affinity for cognate Fcε receptors [16] and increased tissue
residency through slow dissociations rates of receptor-bound IgE [12], are proposed to offer
advantages in a cancer therapy setting. In addition, IgE lacks several of the limitations of
IgG—no inhibitory receptors or polymorphisms influencing binding are described; and
IgE can persist in tissues for extended periods of time without antigen engagement, which
may be able to complement IgG surveillance in circulation [16,17]. Several studies of IgE
class antibodies targeting different cancer-associated antigens support the notion that IgE
immunotherapy may be able to complement IgG therapy treatments or even replace it in
specific cancer settings [18,19].

Supporting a role for a powerful immune surveillance provided by IgE, links between
IgE immune responses and protection against malignancies were first reported in the
1960s [20–23], and numerous studies point towards an involvement of IgE in natural anti-
tumour immunosurveillance [24–31]. Despite this, the exact nature of the relationship
between IgE, IgE-mediated conditions such as atopy and allergy, and cancer risk remain
unclear. In this review, we therefore summarise the existing literature on putative roles
of IgE class antibodies in natural immunosurveillance that may influence cancer risk; and
we consider how this may translate to increased efficacy for IgE as a novel anti-cancer
therapeutic modality.

2. Epidemiological Evidence Underlying IgE Immune Surveillance and Links with Cancer
2.1. The Four Hypotheses of IgE and Cancer

IgE represents a powerful immune activating antibody class, with known roles in
allergy and features theoretically able to translate to heightened efficacy in a cancer therapy
setting. Interestingly, links between IgE or IgE-mediated diseases and malignancy have
been reported as far back as the 1960s, with early studies finding decreased cancer risk
associated with the presence of allergy [20–22] and decreased prevalence of atopy in
cancer patients [23]. Since then, numerous studies have been conducted, each examining
epidemiological links with cancer—either looking at allergy and atopic disease more
broadly, or specifically examining links between levels of IgE in circulation and cancer risk.
Despite this, the exact nature of these relationships and their effects on cancer development
remain debated, and contradicting evidence has rendered it difficult to draw conclusions.

A number of hypotheses, summarised in Table 1, have been proposed to explain the
complex relationships between IgE, allergy, and cancer, the classical trinity of which is:
(a) the chronic inflammation hypothesis, being that atopic inflammation drives oxidative
damage and subsequent gene mutation, leading to heightened cancer risk; (b) the immune



Cancers 2021, 13, 4460 3 of 17

surveillance hypothesis, stating that atopy is a reflection of general enhanced immune re-
sponsiveness, which subsequently provides increased capability for removing dysregulated
pre-cancerous cells; and, finally, (c) the prophylaxis hypothesis proposing that symptoms
of the allergic response, such as coughing and sneezing, can decrease cancer risk by ex-
pelling potential carcinogens, promoting tissue repair, and driving behavioural avoidance
of potential carcinogens [32,33]. A fourth hypothesis has subsequently been proposed—the
Th2 skewing hypothesis, which claims atopy drives an inappropriate skewing towards
T-helper 2 (Th2) responses over potentially tumour-eradicating T-helper 1 (Th1) immune
responses, thereby enabling an immunosuppressive environment permissive of cancer
development at sites of atopic inflammation [34].

Table 1. Proposed hypotheses explaining relationships between allergy, IgE, and cancer.

Hypothesis Description Cancer Risk

Chronic Inflammation [34]

Allergy-induced events including inflammatory cell
infiltration, tissue remodelling, and enzyme activation
drive mutation of tumour suppressor genes, apoptotic
proteins and other factors involved in regulation of cell
growth, promoting growth of cancerous cells.Cancer
risk will be increased at sites of chronic inflammation.

Increased

Immunosurveillance [34]

Allergy reflects general immune hyperresponsiveness;
natural immunosurveillance is enhanced.
Enhanced immunosurveillance is reflected by high
serum IgE, potentially triggered against undiagnosed
tumours instead of allergens.
IgE/atopy drives activation of powerful effector cells
capable of detecting and mounting responses against
tumour cells

Decreased

Prophylaxis [35]

Physical effects of allergy such as coughing or sneezing
act to expel potentially mutagenic or carcinogenic toxins
before they can trigger malignancy.
Allergy symptoms themselves are beneficial and not
necessarily IgE.

Decreased

Th2 Immune Skewing [34]

Atopy drives an inappropriate skewing towards
T-helper 2 (Th2)-based immune responses, diverting
away from potentially tumour-eradicating inflammatory
T-helper 1 (Th1) responses.
High serum IgE concentrations as a result of Th2
skewing occupy receptors and prevent binding of
anti-tumour IgE to Fcε receptor I (FcεRI)-expressing
effector cells.
Tissues affected by atopy are more sensitive to cancer
development due to Th2 skewing.

Increased

However, despite a large body of evidence at hand to investigate relationships between
IgE, allergy/atopy, and cancer risk, no conclusive stance has yet been reached on the
exact nature of these relationships. One challenge, naturally, is comparison between
studies—differing methodology, limited data on how atopy is defined and/or confirmed,
and a lack of consideration of other factors potentially affecting cancer development,
including smoking and family history. Collectively, these render it difficult to collate
and compare results; and for a large number of cancers, results are too heterogenous
with insufficient number of patients per study available to draw accurate conclusions.
Another issue is the black-or-white stance often taken to explain the relationship of IgE
and atopy with cancer, with the assumption often made that these relationships fall under
clearly defined boundaries translating to increased or decreased risk overall. In reality,
this relationship may be far more complex and likely reflects a combination of all four
of the above proposed hypotheses (Figure 1). Inflammation driven by allergic responses,
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particularly in chronic conditions such as asthma and atopic dermatitis (AD), alongside Th2
skewing serves to increase cancer risk at sites of allergic response, but in turn, the increased
immunosurveillance and prophylaxis afforded by allergy and its symptoms serve to protect
against cancer at sites distant to that of the allergic disease’s primary manifestation. Such a
combinatorial explanation may aid in understanding the complex interplay of IgE and its
manifestations with cancer.
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Figure 1. IgE and IgE therapy-mediated cellular immune surveillance against cancer. Direct and
cell-mediated effects of IgE against tumour cells (shown in brown). IgE is able to engage with a
unique repertoire of effector cells via the IgE receptors Fcε receptor I (FcεRI) and CD23/FcεRII. These
interactions can drive potentially anti-tumour functions, including antibody-dependent cell-mediated
cytotoxicity (ADCC) or phagocytosis (ADCP) and release of cytotoxic mediators. IgE engagement
with monocytes and alternatively activated M2 macrophages can drive repolarisation to a M1-like
classically activated phenotype, as well as increased macrophage recruitment to tumour sites. IgE
can also contribute to antigen presentation via dendritic cells and B cells and activate both CD4 and
CD8 T cells, further promoting a pro-inflammatory environment and tumour cytotoxicity.

2.2. Chronic Inflammation and Cancer Risks Presented by Chronic Allergic Diseases

The chronic inflammation hypothesis presumes that symptoms of allergy drive in-
flammation at sites of the primary allergic manifestation and, therefore, cancer risk is
subsequently increased at those sites, although not necessarily overall. Recent work by
Hayes et al. [36] provided evidence in support of this hypothesis, with the demonstration
that skin inflammation in mice enhanced polyclonal IgE levels, leading to basophil re-
cruitment to these cutaneous sites, and increased epithelial cell growth and differentiation
driven via FcεRI signalling in basophils. These led to the outgrowth of pre-cancerous
epithelial cells harbouring oncogenic mutations and subsequent tumour growth [36]. In
turn, mice that were IgE-deficient showed a substantially altered microenvironment at
the skin, with decreased inflammation-driven hyperplasia; and mice deficient in FcεRI
or FcεRI effector cells, such as basophils, were protected against tumour development,



Cancers 2021, 13, 4460 5 of 17

indicating putative roles for both IgE and FcεRI signalling in this process. Although not a
direct model of atopic disease, this study points to a link between chronic local IgE-based
inflammation and cancer risk, mandating the need for future studies to confirm this link in
allergic diseases.

When looking specifically at epidemiological evidence, two strong relationships be-
come clearly apparent within the data—a link between asthma and a substantially in-
creased risk of lung cancer [37], and links between atopic dermatitis and increased risk
of non-melanoma skin cancers (NMSC) [38], observations that appear to validate the
chronic inflammation hypothesis as well as the Th2-skewing hypothesis. For lung cancer,
a number of studies noted an increased risk associated with asthma history, even when
accounting for factors such as smoking [37,39–44]. In contrast, when looking at other
conditions—including hay fever [45], allergic rhinitis [46], eczema [38,47,48], or overall
allergy history [37,39]—the inverse becomes true: lung cancer risk is decreased. Several
meta-analyses conducted on the subject have ascertained this pattern, with some minor
disagreement on the impact of smoking [37,49,50]. Of particular interest, Rosenberger
et al. noted that when specifically stratifying results by age of asthma onset, lung cancer
risk was significantly increased for those diagnosed with asthma at age 20 or later; poten-
tially suggesting that unmanaged asthma symptoms greatly increase risk, likely through
chronic inflammation [49]. However, observations that asthma is protective against several
other cancer types separate from the lung [41,51–54] indicate a more complex relationship.
Furthermore, the heterogeneous nature of asthma may contribute to the contradicting re-
ports. For example, many studies do not distinguish between IgE-dependent and non-IgE-
dependent asthma. Future research, which will consider the different asthma phenotypes
and endotypes, might therefore be useful to unravel this complex relationship.

A similar pattern emerges when looking at skin cancer: The risk of basal cell carci-
noma (BCC) and squamous cell carcinoma (SCC) is typically increased with a history of
AD [38,55–58], but decreased when looking at other atopic conditions, including allergic
rhinitis [46,51,59,60]. Interestingly, however, melanoma risk seems to be consistently de-
creased in conjunction with a history of allergy, in comparison to NMSC [33,37,43,56,58].
As with asthma, atopic dermatitis appears protective at sites distal to the site of inflamma-
tion, including lung cancer [38], colorectal cancer [51], and glioma [51,61,62], once more
suggesting that risk only arises at sites directly exposed to inflammatory mediators.

Taken together, both the findings for lung and skin cancers suggest that chronic
inflammation at sites of atopic disease may indeed play a role in driving site-specific
cancer risk. However, in turn, the heightened immune responsiveness, as dictated in the
immunosurveillance hypothesis, may act to prevent cancer occurrence at sites distant to
the primary allergy, as indicated by the otherwise protective effects of asthma and AD
observed on other cancer sites. As such, allergy and atopy may act as a double-edged
sword, with both detrimental and protective effects in the context of cancer.

2.3. The Involvement of Prophylaxis and Th2 Skewing

A major component of the prophylaxis hypothesis is the presumption that the allergic
symptoms themselves—such as the act of coughing and sneezing in response to aller-
gen exposure—are themselves protective, by acting to expel potential carcinogens before
they can exert damage [34]. In support of this, a decreased risk of upper gastrointestinal
cancers—including oesophageal, stomach, and larynx cancers—was noted in conjunction
with respiratory allergies. A number of studies have found a protective effect of any allergy
or respiratory atopic diseases such as allergic rhinitis and hay fever against oesophageal
cancer [45,51,63,64]; asthma against stomach cancer [41,47]; and inverse associations be-
tween asthma and larynx cancer, as well as allergic rhinitis and both hypopharyngeal
and tongue cancers [41,51,63]. Under the prophylaxis hypothesis, it may be expected that
asthma should therefore protect against lung cancers: The fact that the opposite is true
lends further credence to a proposal for the intersection of multiple hypotheses.
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Another underlying assumption of the prophylaxis hypothesis is that suppression of
symptoms would mitigate this protection, and, indeed, several studies report evidence in
support of this assumption. Such a relationship becomes apparent when looking at, for
instance, glioma—a site-specific cancer that consistently shows decreased risk associated
with allergy and atopy [53,65]. When antihistamines are used by those with a history of
allergy/atopy, this protective effect is lost and, in some cases, risk may be increased [66,67].
Of interest, however, a number of studies have showed a contradictory decreased risk for
glioma associated with use of antihistamines [68,69], which may potentially further validate
the Th2-skewing hypothesis, as there has been some suggestion that Th1 responses may
be protective against glioma [53]. However, a direct effect of antihistamines on the CNS
cannot be excluded. Different types of antihistamines may differ in their penetration into
the CNS, which could also explain the discordance reported by individual studies on the
association of glioma with antihistamines [70]. The same study, however, also speculated
that Th2 cytokines—such as interleukin (IL)-4 and IL-13—may hold protective roles against
glioma via humoral immunity, including antibody production by stimulated B- cells. These
speculations are supported by the understanding that peritumour inflammation is capable
of altering the blood–brain barrier to permit immune cell infiltration [53].

There is indeed considerable evidence to support a role for Th2 cytokines in protecting
against gliomas, including from animal model studies demonstrating roles for IL-4 and
activated eosinophils in glioma suppression [71,72] and overexpression of IL-4 driving
rejection, or regression, of glioma in rats [73,74]; as well as multiple associations made
between glioma risk, progression, and polymorphisms in IL-4R and IL-13 genes [75–77]. It
has been suggested that immune regulation in the central nervous system could potentially
be mediated through IgE responses to allergens acting to minimise risk of central nervous
system (CNS) tissue damage from inflammatory cell-mediated immune responses; and, in
turn, the Th2 skewing in atopic individuals may in fact be more adept at protecting against
brain tumours [78].

3. Roles of IgE in Tumour Immunosurveillance
3.1. IgE and Immunosurveillance: Illustrating the Potential for IgE-Based Therapeutics

Although IgE is arguably much maligned for its roles in allergy, roles in protecting
against both parasites and animal venoms have been ascribed [12,13], but the question of
whether this is enough to warrant its conservation across mammals is debated [30]. Whilst
the exact role and function of endogenous tissue IgE in healthy individuals is unclear, it is
thought to be involved in innate tissue defence, particularly against substances threatening
tissue integrity [33,79], with suggestions that spontaneous IgE production may form an
element of innate tissue defence [80,81]. IgE responses typically occur within epithelial
tissues, barrier surfaces continuously exposed to environmental threats, some of which
may be carcinogenic [79]; and IgE itself is able to engage and activate a unique repertoire
of effector cells, corresponding to a powerful immune response (Figure 1).

Along this line of thought, another emerging role for IgE is proposed to be natural
immune anti-tumour surveillance, supported by both epidemiological evidence as well
as multiple functional and animal model studies. This feeds into the third major theory
explaining relationships between IgE, atopy and cancer: immunosurveillance, providing a
corresponding decreased malignancy risk.

Studies utilising animal models support the existence of tumour-protective functions
for IgE [27,82–84]. Amongst these, several have demonstrated the validity of using mon-
oclonal IgE antibodies engineered to recognise cancer antigens. Murine IgE antibodies
recognising a mammary tumour virus antigen and a colorectal cancer antigen were each
able to restrict the growth of subcutaneous tumours at lower doses than required for the
equivalent IgG [24,25]; and, similarly, a human anti-HER2 IgE both restricted intraperi-
toneal tumour growth and prolonged the survival of mice transgenic for human FcεRIα.
Introduction of this antibody was subsequently well-tolerated in cynomolgus monkeys [82].
IgE has also been shown to cross-react with non-human primate FcεRI albeit with faster



Cancers 2021, 13, 4460 7 of 17

dissociation from cynomolgus monkey versus from human FcεRI effector cells [83]. These
differences were reflected in different effector mechanisms and immune activating pro-
files compared to IgG. Therefore, careful consideration of pre-clinical models may be
required for toxicological evaluations of IgE immunotherapeutic candidates [85]. Using
the same FcεRIα transgenic mouse model, a chimeric human/mouse IgE antibody specific
for the prostate-specific antigen prolonged survival when these mice were challenged with
prostate cancer cells, with investigation of the mechanisms of action revealing enhanced
dendritic cell (DC) cross-presentation triggering T cell responses [29]. Further studies
demonstrated additional involvement of T-cells, with depletion of CD8+ T-cells sufficient
to impair IgE-dependent tumour protection, highlighting the involvement of these cells
downstream of IgE-FcεRI signalling [30].

Separately, IgE has been shown to be capable of re-educating alternatively acti-
vated pro-tumour M2 macrophages towards a pro-inflammatory state and of priming
all macrophage subsets towards an anti-tumour function, suggesting potential roles for the
use of IgE in targeting tumour-associated macrophages (TAMs) [31]. TAMs are generally
associated with poor prognosis in solid tumours, with characteristics demonstrated to
enable tumour growth, and are an emerging target for cancer immunotherapy [31]. Re-
search has suggested that IgE may be capable of inducing more mature pro-inflammatory
phenotypes in macrophages, resembling the M1 phenotype, capable of driving anti-tumour
functions [19,31,86]. Similar observations have been made in human monocytes, with
IgE capable of activating monocytes from patients with ovarian cancer and from healthy
subjects into pro-inflammatory phenotypes capable of mediating cytotoxicity of tumour
cells [86].

Several lines of evidence indicate not only roles for IgE but also for its Fc receptors in
tumour immunosurveillance. CD23, the low-affinity IgE Fc receptor, has been implicated
in cancer patient outcomes. Olteanu et al. [87] and Linderoth et al. [88] noted a significantly
higher survival rate in patients with lymphoma whose cancer cells expressed CD23, com-
pared to those that were CD23-negative: not only suggesting that IgE binding to tumour
cells may drive tumour inhibition or killing, but also further suggesting a role for IgE in
circulatory immunosurveillance. Karagiannis et al. [28] indicated a putative role for CD23
expressed on IL-4 stimulated monocytes in driving anti-tumour IgE antibody-dependent
cell phagocytosis of ovarian tumour cells; whilst Ye et al. [89] demonstrated through cell
culture models that IgE interactions with CD23 expressed on colon cancer cells could
trigger cancer cell apoptosis. Taken together, these data suggest that IgE antibodies may
provide local and long-lasting anti-tumour defence, with putative roles for CD23 in some
of these processes; as well as putting forward the possibility that even the low levels of IgE
in circulation in healthy individuals may aid in this immunosurveillance function.

Such observations all feed into the growing field of AllergoOncology [14], which
focuses on studying the links between IgE and Th2 immunity with allergy and cancer.
Research in this field looks towards exploiting natural anti-tumour functions of IgE for
therapeutic benefit, acting to supplement the principally IgG-dominated area of cancer
therapeutics. Indeed, there are suggestions that IgE may not only be able to complement
IgG therapy, but in some cases, may offer superior benefit—for example, in some model
systems, IgE antibodies were capable of mediating antibody-dependent cell-mediated
cytotoxicity (ADCC) against corresponding cancer cells at greater superiority compared
to a corresponding IgG1 (70% vs. 30% in ADCC/ADCP assays) [18,90]. Furthermore, an
IgE-trastuzumab was able to directly affect tumour cell viability in the absence of effector
cells, putting it on par with IgG-trastuzumab, and lending support to the notion that
anti-tumour IgE antibodies are as capable as, if not more than, IgG-based therapeutics
in delivering direct blockade of cancer growth and survival signals [18]. Finally, the
chimeric mouse/human monoclonal IgE, MOv18 is presently undergoing a Phase 1 trial
for advanced solid tumours (ClinicalTrials.gov Identifier: NCT02546921). MOv18-IgE
is directed against the tumour-associated antigen folate receptor alpha (FRα), which is
expressed in upwards of 70% of ovarian carcinomas, as well as other tumour types [91].
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MOv18-IgE has been confirmed to have both ADCC and ADCP capabilities mediated
by FcεRI and CD23, respectively [26,28], and has been shown in vitro to drive ovarian
cancer cell death by activating immune effector cells such as monocytes, macrophages,
and mast cells [92]. MOv18-IgE’s primary mechanisms have been established as tumour
cell killing via ADCC and ADCP through activation of IgE effector cells, and, across
three models of cancer, MOv18-IgE proved more effective than its IgG counterpart [16].
Importantly, anti-tumour IgE antibodies directed against cancer-associated antigens have
been shown to re-activate tumour-associated and alternatively activated macrophages
towards pro-inflammatory states [19,31,86]. This harbours the potential to reverse immune
suppressive forces and stimulate the tumour microenvironment against cancer cells [93,94].
Combined, these mechanisms may distinguish this class from the commonly used IgG
isotypes currently used in the clinic, at least in the context of certain solid tumours where
IgG treatments have historically been ineffective.

Although the MOv18-IgE clinical trial is currently ongoing, preliminary results suggest
treatment is well tolerated, with high-risk side effects such as anaphylaxis predictable via
ex vivo assays such as the basophil activation test (BAT), and a maximum tolerable dose has
not yet been reached. Anti-tumour activity has been observed at doses of 0.7 mg, with some
evidence of reduction of peritoneal metastases and with a decrease in CA125 serum marker
levels meeting the Gynecologic Cancer InterGroup response criteria [95]. Combined with
increasing evidence of anti-tumour functions for IgEs in the pre-clinical models, these
results so far support both the safety and the efficacy of IgE-based cancer therapeutics, even
with antibody administration at a fraction of doses required for conventional antibody
therapeutics to achieve anti-tumour effects [95].

3.2. Impact of IgE Levels on Malignancy Risk

Whilst the majority of epidemiological studies have looked more broadly at allergy
and atopic diseases as a whole in the context of cancer, several have more specifically
investigated the impact of IgE levels (either serum total or allergen-specific) themselves
on cancer risk and mortality. As with allergy and atopy, a general observation consistent
across the majority of studies is that higher total serum IgE levels correlate to a decreased
cancer risk, either overall [32,33,46] or by site-specific cancer [78,96–98]. In cancer patients
themselves, there is evidence to suggest that higher IgE levels may correlate to a prolonged
survival compared to those with low or even average levels [99,100], and functional data
lends further credence. In separate studies, Nigro et al. [30] and Singer et al. [101] each
employed mouse models to represent the high-IgE levels typically observed in atopic
patients, as well as low- or IgE-deficient mouse models; with both observing an enhanced
survival in the IgE-high mice compared to wild-type (WT). Complete lack of IgE response
was sufficient to enhance tumour growth and decrease survival compared to WT mice,
even with prior immunisation against tumour cells [30]. Furthermore, Singer et al. noted
that low-IgE mice could benefit significantly from provision of immunotherapy, allowing
them to reach survival rates on par with the high-IgE mice, whilst immunotherapy did not
appear to further benefit the high-IgE group [101]. Taken together, this suggests an innate
protective effect of high IgE levels from which atopic patients may benefit.

Although epidemiological studies focusing specifically on IgE levels in humans do
suggest an overall protective effect of high serum IgE against general cancer [32,33,46],
as well as towards specific cancers [33,78,98,102], there remains ongoing debate over the
exact level of total IgE concentrations beyond which there is protection against cancer.
Interestingly, and in line with increased cancer growth reported by Singer et al. in low-IgE
mouse models [101], it has been shown that IgE immunodeficiency—typically IgE serum
levels of <2.5 kU/L—appears to consistently present an increased risk of malignancy in
adults and children. Across a series of studies, Ferastraoaru et al. reported that both risk
and rate of prior cancer diagnosis was higher in IgE-deficient patients compared to their
non-IgE-deficient counterparts [103–105]. A recent study demonstrated that, similar to
IgE-deficient adults, IgE-deficient children were at increased risk for malignancy compared
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to those without IgE-deficiency, and that very low or absent IgE titres are a potential
risk factor for the development of malignancy [105]. Similarly, their studies conducted
in 2017 and 2018 showed that adults with IgE levels below 2.5 kU/L had higher rates
of a prior diagnosis of any type of malignancy compared to those who had levels above
2.5 kU/L [103,104]. There was, however, some controversy over which tumour types were
more prevalent in the IgE-deficient group, with Ferastraoaru and colleagues (2017) noting
an increased prevalence of lymphoma and multiple myeloma in the IgE-deficient cohort,
supporting previous findings from other groups [106–108]. In a subsequent study (2018),
however, it was suggested that solid tumours were the most frequent in IgE-deficient
patient groups [103]. As it stands, it may simply be that IgE deficiency is associated with
increased risk of both solid and blood cancers arising from a loss of tumour immunosurveil-
lance function. When looking at data patterns surrounding which cancer types are afforded
protection by allergy or atopy, a significant proportion appear to be solid tumours—in line
with the understanding that IgE may likely aid in tissue immunosurveillance. When it
comes to haematological and lymphatic cancers in relation to allergy and atopy, findings
are variable but there appears to be a consistent observation that IgE deficiency correlates
to an increased risk of blood cancers, particularly lymphomas [96,104–107,109]. Although
IgE is generally assumed to be predominantly sequestered in tissues, these findings may
potentially also highlight a role for IgE in circulatory immunosurveillance.

Parallel to both these observations and other reports of the impact of allergy medica-
tion, such as antihistamines, on cancer risk, there has been investigation into whether use
of the anti-IgE therapeutic omalizumab may present increased cancer risk, with accompa-
nying FDA drug information indicating such concerns [110]. Omalizumab is a recombinant
humanised mAb specifically targeting circulating IgE, which has been shown to rapidly
reduce both serum-free IgE and expression of high-affinity IgE Fc receptors [111]. As such,
it has been proposed that omalizumab may increase malignancy risk by impairing natural
anti-tumour IgE-mediated surveillance. Recent meta-analyses were ultimately unable to
conclude any definitive link between omalizumab treatment and cancer [112,113]; however,
nor were they able to rule it out. A number of limitations in studies conducted so far
include length of follow-up, selection bias, and lack of pre-enrolment data. As with many
aspects of the complex relationship of IgE with cancer, there remains a pressing need for
long-term comparative studies specifically focused on malignancy risk, recurrence, and
disease progression.

4. The Combinatorial Hypothesis: Addressing the Gaps

When looking at the data surrounding the relationship between IgE, allergic diseases
and cancer risk, it can often be difficult to see the bigger picture. Existing evidence high-
lights that these relationships are far more complex than a simple increased or decreased
cancer risk and that current hypotheses may fall short of truly capturing the complexity
of these relationships. In turn, improving our understanding of this relationship may
be key to in turn connect epidemiological data to functional activities of IgE. So, it may
be proposed instead that a fifth alternate hypothesis exists, the combinatorial hypothesis
(Figure 2), combining the four existing hypotheses of immunosurveillance, prophylaxis,
chronic inflammation, and Th2 skewing into one, reflecting the complex nature of these
relationships and the involvement of IgE. When examining both epidemiological and
functional findings, it becomes apparent that data are not biased towards any particular
hypothesis over another, and instead, suggests that all three of the classical hypotheses at
least may be simultaneously true. The overwhelming evidence in support of anti-tumour
and immunosurveillance functions of IgE suggests these functions represent a key role in
addition to its anti-parasitic roles that may explain the evolutionary conservation of IgE
across mammalian species. Such roles may also explain the prevalence of allergy and atopic
disease in developed nations. With Th2 responses being considered to have originally
evolved to combat extracellular parasites, it has been hypothesised that, due to lower rates
of parasitic infections particularly in westernised society, these previously specialised Th2
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responses now instead react to otherwise harmless environmental allergens [114]. Another
approach may therefore be that these specialised IgE responses have gradually adapted
to combat potential carcinogens, or that this function has existed concurrently with its
anti-parasitic roles. As such, prevalence of allergy and atopic disease may not simply be
activation of an otherwise defunct immune response, but rather, misdirection of a potent
immune response intended to protect against potential carcinogens and other harmful
environmental substances.
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Figure 2. The combinatorial hypothesis accounts for the complex relationship between allergic
diseases and an individual’s risk of developing a specific cancer. The combinatorial hypothesis takes
into account different immunological conditions created within the context of specific local and
systemic allergic diseases, which influence the risk for the development of different cancer types. This
risk may be derived from four hypotheses thus far proposed to explain the nature of the relationship
between IgE, allergy/atopy, and cancer. These hypotheses can in turn be divided into those that
propose an anti-tumour outcome and those proposing a pro-tumour outcome. For anti-tumour
outcomes, the prophylaxis hypothesis assumes that symptoms of allergy, such as coughing and
sneezing, act to expel potential carcinogens before they can trigger tissue damage and inflammation.
Reported decreased risk of cancers of the upper gastrointestinal tract associated with respiratory
allergy is an example in support of this hypothesis. The second anti-tumour hypothesis is the
immunosurveillance hypothesis, which states that allergy is reflective of a hyperactive immune
system, which in turn is better equipped to defend against tumours. Supporting this, several cancers
distant to the site of allergic inflammation are protected against by presence of allergy or high serum
IgE. The pro-tumour hypotheses are the chronic inflammation hypothesis and the Th2 skewing
hypothesis. The chronic inflammation hypothesis presumes that inflammation, driven by allergy,
drives mutation of regulatory growth and tumour-suppressor genes, can increase cancer risk at
sites of allergic challenge. This hypothesis is supported by increased lung cancer risk associated
with asthma and increased non-melanoma skin cancer risk associated with atopic dermatitis. The
Th2 skewing hypothesis, presumes atopy and chronic exposure to allergen challenge may drive
inappropriate skewing towards alternatively activated Th2-based immune response over potentially
anti-tumour Th1 or away from the typical Th2 (IgE-driven) responses, leading to an increased cancer
risk at sites affected by atopy.

Separately to insights on how epidemiological and functional data may reflect novel
IgE functions, evaluating IgE and the risk of malignancy may also offer guidance to-
wards characterising therapies beneficial for specific patient groups. If one looks at the
cancers protected against by the presence of allergy/atopy or high serum IgE levels, a
number of site-specific cancers stand out, these including lung cancer (in the absence of
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asthma) [37–39,45,46]; colorectal cancer, particularly rectal cancer [37,46,51,64,115]; and
pancreatic cancer [37,38,50,52,64,116,117], all of which seemed to be protected against
by either the presence of allergy/atopic disease or high serum IgE levels. Another
cancer overwhelmingly benefiting from the presence of allergy or high serum IgE is
glioma [51,53,65,78,97,100,118–120], with additional evidence to suggest that high serum
IgE may even prolong survival in glioma patients [78,100]. Therefore, it is possible that
IgE could represent a potential novel therapeutic agent for the treatment of such cancers.
Furthermore, such observations could help direct treatment guidelines when looking at
those cancers that seem to be protected against by allergy/high IgE titres and those nega-
tively influenced by low IgE titres, such as by recommending the avoidance of treatments
affecting allergy symptoms or IgE levels, including omalizumab and antihistamines. In
cancers such as glioma, however, it remains unclear how exactly allergy and IgE may be
protective and, as such, further research is urgently needed to understand the specific
glioma microenvironment and its interactions with immune responses [53], before specific
IgE immunotherapies could be developed. Other tumour types protected against by IgE,
however, may stand to greatly benefit from novel therapies: pancreatic cancer, for example,
is characterised by 5-year survival rates as low as 10%, with little progress made in advanc-
ing patient survival [121]. These immune-privileged tumours, whilst often devoid of T cell
infiltration, are characterised by the presence of IgE effector cells such as macrophages. Pan-
creatic cancer may thus present an opportunity for IgE immunotherapy, taking advantage
of the long tissue retention and potential for prolonged immune surveillance of this class,
and the ability of IgE to direct macrophage-mediated tumour cell killing, and potentially
antigen presentation and repolarisation of tumour supportive M2-like macrophage subsets.

However, there remains a pressing need for long-term studies specifically designed
to investigate the links of IgE and different allergic conditions with specific cancers in
order to properly define these relationships. Despite promising evidence, several major
limitations across a large majority of epidemiological studies render comparisons difficult
and often result in great heterogeneity between conclusions. A large factor often lies in the
classification and confirmation of allergy itself, with some studies relying on self-reporting
of allergic diseases, whilst others only include patients whose allergic disease has been
confirmed via physician. Even with the latter, differences in criteria are evident, including
the use of IgE measurements and skin-prick test positivity for diagnosis. Furthermore,
long-term studies in large populations lack longitudinal IgE measurements prior to cancer
diagnosis. For those patients with a cancer diagnosis, concerns may be that either ma-
lignancy or different treatments for malignancy may affect IgE serum levels [32,33,122].
Additional considerations include known confounding variables, such as lifestyle, smoking,
genetic and environmental factors, and family history, all of which would further affect
current data. Additionally, differences in health care between countries can make accurate
assessment difficult—for example, access to antihistamines without prescription in the UK,
where their use may be missed both in studies relying on self-reporting and medical files.
The provision of long-term studies taking such factors into consideration would therefore
be of great benefit to the field and further aid in our understanding.

5. Conclusions

Evidence from collective epidemiological data will be key to gain real insights into
health risks and to inform the clinical management of different patient groups, such as
those with allergies, asthma, and several immunodeficiencies, as well as of different cancer
patient cohorts. Not only may this knowledge help stratify patients—for example, it has
been suggested that ultra-low IgE levels may act as a biomarker for cancer risk [114],
which may mean that individuals with low IgE titres may benefit from increased can-
cer screenings—but in turn, it may also help shape the future of both IgE therapeutics
and cancer therapeutics as a whole. Analysis of epidemiological data may stand to high-
light tumour types such as pancreatic cancer, which potentially stand to benefit from
IgE-based therapy.
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As our understanding of both cancer and the roles of IgE within anti-tumour immuno-
surveillance grows, a growing area for novel, previously underappreciated approaches to
treating certain malignancies is emerging. Informed and supported by mechanistic and
epidemiological studies in large but also in specific patient cohorts, therapeutic targeted
IgE, with its long tissue residency, direct tumour cell killing, and ability to repolarise
tumour-supportive M2-like macrophages, likely represent a promising new means of
tackling cancer and may improve survival in cancers with poor outcomes.
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