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Highlights: 

We present empirical palaeoclimate data that demonstrate a northward shift of the southern westerly 

wind during the Antarctic Cold Reversal (ACR) that drove antiphase west-east environmental responses 

across the island of Tasmania. 

Stronger westerly wind flow over Tasmania during the ACR drove wetter conditions on the western 

(windward) slopes of the Tasmanian mountains that dampened regional fire activity and drove regional 

vegetation change toward more cold tolerant plant communities. 

Stronger westerly wind flow over Tasmania during the ACR drove increased evaporation on the eastern 

(leeward) side of the Tasmanian mountains. 

Our results support that millennial scale climate variability involves global reorganisation of ocean and 

atmospheric circulation and heat transport. 
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Figure. S6.  

Schematic illustrating (a) the approximate latitudinal positions of major components of Southern Hemisphere atmospheric system pre-

northward shift of the ITCZ, and (b) atmospheric processes involved in the northward shift of the ITCZ and southern westerlies 

(SWW). Schematic shows a northward intensification of the Southern Hemisphere winter Hadley circulation, which delivers increased 

heat and eddy-momentum flux into the Southern Hemisphere subtropics. The increased momentum flux strengthens the subtropical jet 

and pulls the eddy driven polar jet (of which the surface expression is the southern westerlies) northward.  
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Abstract: Inter-hemispheric asynchrony of climate change through the last deglaciation has been 21 

theoretically linked to latitudinal shifts in the southern westerlies via their influence over CO2 out-22 

Manuscript File Click here to view linked References

https://www.editorialmanager.com/jqsr/viewRCResults.aspx?pdf=1&docID=4272&rev=1&fileID=126707&msid=1a62f9d9-6027-42c4-b88d-6b34ba9312ca
https://www.editorialmanager.com/jqsr/viewRCResults.aspx?pdf=1&docID=4272&rev=1&fileID=126707&msid=1a62f9d9-6027-42c4-b88d-6b34ba9312ca


gassing from the Southern Ocean. Proxy-based reconstructions disagree on the behaviour of the 23 

westerlies through this interval. The last deglaciation was interrupted in the Southern Hemisphere by 24 

the Antarctic Cold Reversal (ACR; 14.7 to 13.0 ka BP (thousand years Before Present)), a millennial-25 

scale cooling event that coincided with the Bølling–Allerød warm phase in the North Atlantic (BA; 14.7 26 

to 12.7 ka BP). We present terrestrial proxy palaeoclimate data that demonstrate a migration of the 27 

westerlies during the last deglaciation. We support the hypothesis that wind-driven out-gassing of old 28 

CO2 from the Southern Ocean drove the deglacial rise in atmospheric CO2
 . 29 

  30 



 31 
1.0 Introduction 32 

The southern westerlies are part of a zonally-symmetric system that dominates the climate of the mid- 33 

to high-latitudes of the Southern Hemisphere (Garreaud, 2007). Changes in the strength and 34 

latitudinal position of the southern westerlies are believed to modulate global atmospheric CO2 35 

concentration via changes in wind stress over the Southern Ocean. Wind stress influences the 36 

upwelling of CO2 saturated deep waters and the capacity of the surface ocean to absorb, or release, 37 

CO2 (Siani et al., 2013). In the ocean, the latitudinal position of the southern westerlies is linked to the 38 

position of the Subpolar Oceanic Front and the Antarctic Circumpolar Current (Toggweiler et al., 2006), 39 

while on land changes in the southern westerlies govern mid- to high-latitude terrestrial climate, 40 

principally hydroclimate (Garreaud, 2007), which has a profound influence over a range of terrestrial 41 

processes (Fletcher and Moreno, 2012; Mariani and Fletcher, 2017). Parallel latitudinal shifts of the 42 

southern westerlies and Intertropical Convergence Zone (ITCZ) have also been proposed for the last 43 

deglaciation as part of the atmospheric response to changes in ocean heat transport by the Atlantic 44 

Meridional Overturning Circulation (AMOC) (Buizert et al., 2018; Denton et al., 2010; Markle et al., 45 

2017; Pedro et al., 2016; Sigman et al., 2020).  However, while paleoclimate proxy data confirm a 46 

cooling in the mid- to high latitudes of the Southern Hemisphere (poleward of ca. 40⁰S) during the 47 

ACR, the available data provide no clear constraint on the latitudinal behaviour of the southern 48 

westerlies through this interval. 49 

We reconstruct westerly wind behaviour in the mid-latitudes of the Australian sector of the Southern 50 

Hemisphere from multiproxy data from six radiocarbon-dated lake sediment sequences from 51 

Tasmania (40-44⁰S; Figure 1a). Tasmania is uniquely situated to investigate the behaviour of the 52 

southern westerlies during the ACR due to its location at the northern margins of the westerly wind 53 

belt and an exceptionally strong correlation between southern westerly wind speed and its rainfall 54 

anomalies (Figure 1b) (Gillett et al., 2006). This means that rainfall proxies can be applied to 55 

reconstruct past changes in wind regimes. Tasmania’s mountainous west coast and contrasting 56 



lowland east coast create an orographic effect that splits the island into clear zones of positive 57 

(western sites) and negative (eastern sites) correlation between southern westerly wind speed and 58 

rainfall (Figure 1b). This allows us to target sites where there is an unambiguous southern westerly 59 

influence over rainfall.  60 

We compile new lake sediment rainfall proxies including charcoal, pollen and geochemistry from six 61 

lakes located in zones of both significant positive and significant negative correlation between 62 

southern westerly wind speed and rainfall (Figure 1b). While the charcoal proxy is influenced by  63 

human-caused fire ignitions (Bowman and Brown, 1986), the occurrence and spread of fires is 64 

moisture-limited in the high-rainfall west of Tasmania (McWethy et al., 2013; Styger and Kirkpatrick, 65 

2015).  Sedimentary charcoal analyses have previously revealed a coherence between changes in 66 

regional charcoal (biomass burning) and changes in moisture delivery by the southern westerlies 67 

through the Holocene: increased southern westerly flow over Tasmania results in reduced 68 

sedimentary charcoal content (and vice-versa), reflecting the primacy of southern westerly-derived 69 

orographic rainfall over regional fire regimes (Mariani and Fletcher, 2017; Mariani and Fletcher, 2016).  70 

 71 

2.0 Material and methods 72 

2.1  Construction of age models 73 

14C analysis using accelerator mass spectrometry (AMS) was used to date each sediment record 74 

utilised in this analysis. Results for each sample submitted for analysis, along with their calibrated age 75 

ranges, are provided in Table 1. All radiocarbon ages were calibrated using SHCal20 (Hogg et al., 2020) 76 

and age-depth models for each core (Figure 3) were constructed using the rbacon v2.3.9.1 (Blaauw 77 

and Christen, 2011) package in R. Modelling was restricted to ~9 to 18 ka. Modelled age outputs were 78 

then used to compare regional proxy data records.  79 

2.2 Palaeofire compilation 80 



Palaeofire analysis was carried out using the paleofire package in R (Blarquez et al., 2014) and follows 81 

the methodology outlined in Mariani & Fletcher (2016). Three charcoal records from the precipitation-82 

dominant western Tasmania were considered for this analysis (Lake Selina, Basin Lake and Lake Vera). 83 

Firstly, a transformation of the data was performed using the function pfTransform with MinMax, Box-84 

Cox and Z-score methods. Transformation and standardization of different charcoal records is a highly 85 

recommended step in generating a synthesis (Blarquez et al., 2014). Here, we used the methodology 86 

proposed by Power et al. (2008) and involved a three-step data transformation including a min-max 87 

data-rescaling, variance homogenization using Box-Cox data transformation (Box and Cox, 1964), and 88 

final rescaling to Z-scores. The palaeofire composite was calculated using the function pfCompositeLF, 89 

consisting in a modified version of existing methods (Daniau et al., 2012; Marlon et al., 2008), involving 90 

a two-stage smoothing method (including LOWESS; Cleveland, 1979) of the selected bins interval. In 91 

this case, 100 years-bins were used, since it represents the best achievable resolution in order to 92 

include the majority of charcoal records for the entire reconstruction period.  Confidence intervals 93 

were obtained using the function circboot with 1000 repetitions, which applies a "moving" or 94 

"circular" block bootstrap method (Kunsch, 1989) to test significance of changes in stationary time 95 

series. 96 

2.3 Geochemical proxy analysis 97 

Micro-X-Ray fluorescence spectrometry (µXRF) elemental profiles were obtained for three western 98 

Tasmanian records (Lake Tiberias, Lake Selina and Hazards Lagoon from the Australian Nuclear Science 99 

and Technology Organisation (ANSTO)). Cores were scanned at 0.5 mm resolution using Cox Analytical 100 

Systems ITRAX μXRF core scanner with a Mo tube (55mA current; 20s count time; 30kV voltage). Raw 101 

data were normalised to kpcs (Croudace and Rothwell, 2015). Ca/Ti ratios for each record were 102 

extracted from the full dataset as a proxy for relative evaporation levels across western Tasmania 103 

(Croudace and Rothwell, 2015). 104 



The geochemistry of lake sediments is also influenced by changes to in-lake processes such as 105 

evaporative conditions and lake levels. The deposition of evaporative carbonate minerals into lake 106 

sediments is influenced by authigenic (within-lake) and allogenic (external catchment) processes, 107 

making it necessary to isolate the signal of authigenic deposition in order to infer changes to in-lake 108 

conditions (Cohen, 2003). For example, by normalising µXRF carbonate proxy elements (calcium and 109 

strontium) against stable detrital elements in the record, it is possible to isolate the authigenic 110 

carbonate signal (Croudace & Rothwell, 2015). This method has been widely used in paleolimnology, 111 

including in western Tasmania (Fletcher et al., 2014), and forms the basis for interpretations of in-lake 112 

conditions at Lake Rolleston.  Precipitation of evaporative carbonate minerals in fresh-water lakes 113 

varies with changes to evaporative conditions and lake levels (Cohen, 2003; Haberzettl et al., 2007; 114 

Kelts and Hsü, 1978). The type of evaporative minerals that are precipitated in the water column are 115 

dependent on initial water chemistry, which is related to the underlying catchment geology (Eugster 116 

and Hardie, 1978). 117 

2.4 Palynology 118 

Pollen samples were prepared and analysed for the four western Tasmanian sites (Basin Lake, Lake 119 

Vera, Paddy’s Lake and Lake Selina) according to standard protocols (Faegri and Iversen, 1989). 120 

Percentages of Phyllocladus aspleniifolius and Poaceae taxa were isolated from the full pollen 121 

datasets, focusing on the last 18 kyrs. Raw percentage data for these taxa were calculated from the 122 

terrestrial pollen sum and are presented in Figures S4 (P. aspleniifolius) and S5 (Poaceae). Data from 123 

all six sites were then collated into one time series to construct a regional time-series for each taxon. 124 

Prior to collation, data were standardised (transformed into z-scores) to account for differences in the 125 

mean abundances of the original datasets.   126 

 127 

3.0 Results 128 



All graphed results are in the Supplementary Information (Figs. S1-5) and this section only briefly 129 

describes the results here. All selected cores span the ACR interval with sufficient dating to resolve 130 

environmental changes through this interval (Figure S1). Synthesis of the charcoal records from the 131 

western Tasmanian sites (n=4) demonstrates a sharp increase in CHAR across the west commencing 132 

at ca. 17.8 ka BP and continuing until ca. 15 ka BP, before declining between ca. 13.5 ka BP. CHAR 133 

values rise again toward peak regional values at ca. 12.2 ka BP and decline thereafter (Figs 2, S3). 134 

Calculation of the Ca/Ti ratio for the evaporation-dominant sites in eastern Tasmania show a discrete 135 

peak in overall values during the ACR interval (ca. 14.7 to 13.0 ka BP) indicating a peak in calcite 136 

precipitation under evaporative conditions during this interval (Figure 2). The synthesised pollen 137 

records from the precipitation-dominant western Tasmanian sites show increased values in the 138 

hygrophilous conifer P. aspleniifolius between ca. 16-12 ka BP, with a discrete dip centred on the ACR 139 

interval (Figure S4). High Poaceae values, associated with cool temperatures in western Tasmania 140 

(Fletcher and Thomas, 2007), occur discretely during the ACR interval, embedded in a long-term 141 

decrease commencing at ca. 18 ka BP (Figure S5). 142 

 143 

4.0 Discussion 144 

Charcoal influx to the western Tasmanian lakes decreases during the ACR (Figs. 2d, S2-3), consistent 145 

with enhanced westerly winds and rainfall, reducing biomass burning. This change is synchronous with 146 

a marked increase in carbonate precipitation and subsequent deposition (sedimentary Ca/Ti ratio) 147 

(Kylander et al., 2011) at two sites in eastern Tasmania (Figs. 2a,b) and a concomitant decrease in 148 

carbonate deposition in the west (Figure 2c). Carbonate precipitation occurs under increased 149 

evaporative conditions in freshwater lakes (Kelts and Hsü, 1978) and the east-west anti-phasing of 150 

carbonate deposition displayed in our data during the ACR mirrors the modern rainfall-southern 151 

westerly relationship (Figure 1), suggesting an increase in wind speed over Tasmania at this time. The 152 

increasing sedimentary charcoal in the west of Tasmania immediately prior to (ca. 17-15 ka BP) and 153 



following (>13 ka BP) the ACR (Figure 2d) is consistent with a drier climate under a weaker southern 154 

westerly flow. These trends in proxy-inferred hydroclimate across Tasmania indicate either a 155 

strengthening of the westerly flow at their northern edge or a northward displacement of the 156 

westerlies during the ACR.  The modern zone of maximum westerly winds speed lies between 50-60°S 157 

(Garreaud et al., 2009). A reduction in westerly wind-driven upwelling at marine core site TN057-13PC 158 

(located at 53.2°S, 5.1°E; Figure1a) on the southern edge of the southern westerlies during the ACR 159 

(Anderson et al., 2009) (Figure 3g) is synchronous with our inference of an increase in westerly flow 160 

at their northern edge in Tasmania (see Supplementary Information Table S1). This synchronicity of 161 

the ACR signal across the Southern Hemisphere suggests that a northward shift in the Australian sector 162 

is more likely than a stationary strengthening. 163 

 164 

Our composite pollen data (see Figs. S4-5) from across western Tasmania indicate a regional expansion 165 

of Poaceae pollen (indicative of grassland; Figure 2f) during the ACR at the expense of Phyllocladus 166 

aspleniifolius (Figure 2e), a lowland temperate rainforest tree. Forests replaced grasslands during the 167 

last deglaciation in Tasmania in response to increasing temperature (Colhoun, 2000; Fletcher and 168 

Thomas, 2010), and our pollen data reflect a short-lived reversal of this trend in response to a 169 

temperature decrease during the ACR.  Cooling over Tasmania is supported by proxy and model-based 170 

reconstructions of the ACR across the mid- to high-latitudes of the Southern Hemisphere (Koffman et 171 

al., 2017; Pedro et al., 2016; Putnam et al., 2010; Vandergoes et al., 2008). Collectively, our data 172 

indicate reduced temperature and increased southern westerly flow over Tasmania during the ACR 173 

that resulted in a cool and wet climate on the mountainous west coast sites, and a cool and dry climate 174 

on the lowland east coast sites.  175 

 176 

We observe a synchronous and in-phase relationship between southern westerly changes over 177 

Tasmania and changes in the strength of the Leeuwin Current (De Deckker et al., 2012) (inferred from 178 



core MD03-2611 in the Great Australian Bight; Figure1a), a surface ocean current that delivers warm 179 

tropical water from the Indo-Pacific Warm Pool to southern Australia (carrying tropical foraminifera 180 

such as Globigerinoides ruber) (Figure 3d) (Weaver and Middleton, 1989).  The Leeuwin current is 181 

strongest in the Austral winter, when the northerly displaced southern westerlies accelerate the 182 

current along Australia’s southern coast (Cirano and Middleton, 2004). We suggest the increased 183 

proportion of tropical foraminifera observed in MD03-2611 during the ACR can be explained by a 184 

northward-shifted southern westerly wind flow over the Australian sector. This shift would strengthen 185 

the Leeuwin Current along the south coast of Australia, in a similar way as seasonal migrations of the 186 

southern westerlies do today (Figure 3d).  187 

 188 

Northward migration of the southern westerlies during the ACR is consistent, from an atmospheric 189 

dynamics perspective, with the documented northward shift of the ITCZ over northern Australia 190 

(Ayliffe et al., 2013; Ceppi et al., 2013; Denniston et al., 2013). The tendency for the ITCZ and southern 191 

westerlies to shift in the same direction is explained in detail elsewhere (Ceppi et al., 2013; Lee et al., 192 

2011) and is documented by empirical data in the Australian sector during the Holocene (Mariani et 193 

al., 2018). In brief, a northward shift of the ITCZ is associated with strengthening of the Southern 194 

Hemisphere Hadley circulation delivering increased heat and eddy-momentum flux into the Southern 195 

Hemisphere subtropics. The increased momentum flux strengthens the subtropical jet and pulls the 196 

eddy driven jet (of which the surface expression is the southern westerlies) northward (Ayliffe et al., 197 

2013; Denniston et al., 2013; Ceppi et al., 2013; Chiang et al., 2014) (Figure 6).  198 

 199 

Importantly, our interpretation reconciles southern westerly proxy data spanning the ACR in the 200 

Australian region (De Deckker et al., 2012) with southern westerly behaviour elsewhere in the 201 

Southern Hemisphere. Rainforest declines in northeastern Brazil and the expansion of Magellanic 202 

moorland in western Patagonia indicate a northward shift in both the ITCZ and southern westerlies 203 



between 15-13 ka BP (Montade et al., 2015). Recent Antarctic ice core based evidence show zonal 204 

shifts in moisture sources that similarly indicate northward movement of the westerlies during the 205 

ACR as well as earlier abrupt glacial climate changes (Buizert et al., 2018; Markle et al., 2017). 206 

Our results provide further empirical evidence for the dynamics-based view that millennial scale 207 

climate variability involves major global reorganisation of ocean and atmospheric circulation and heat 208 

transport (Buizert et al., 2018; Markle et al., 2017; Pedro et al., 2016). The much-cited thermal ocean 209 

seesaw mechanism (Stocker and Johnson, 2003) is only one component of this larger coupled ocean-210 

atmosphere reorganisation. Enhanced northward ocean heat transport is the primary energy source 211 

sustaining the Northern Hemisphere warming of the Bølling-Allerød and the South Atlantic and 212 

Southern Ocean cooling of the ACR (Pedro et al., 2018). The northern warming is abrupt (decadal 213 

scale) because it is associated with breakdown of stratification, release of accumulated sub-surface 214 

heat and rapid sea ice retreat in the North Atlantic and Nordic seas (Dokken et al., 2016; Sadatzki et 215 

al., 2018, Capron et al., 2021). The large-scale atmospheric counterpart to these changes stems from 216 

the effective northward shift of the thermal equator, which sets the position of the Hadley circulation 217 

and ITCZ. In shifting north, the cross equatorial Hadley cell gathers more energy from the warmer 218 

(northern) hemisphere for redistribution to the cooler (southern) hemisphere (Hartman et al., 2016), 219 

i.e. the dynamic atmospheric response acts to reduce the thermal imbalance between the 220 

hemispheres (see e.g. Fig 4 of Pedro et al. 2018). As detailed by Ceppi et al., (2013), and noted earlier, 221 

the northward shift of the westerlies occurs because a stronger cross-equatorial Hadley circulation 222 

also fluxes more momentum into the southern hemisphere subtropics, causing northward 223 

intensification of the eddy-driven jet and its surface expression in the southern westerlies.  224 

An alternative hypothesis to the above ‘extended thermal seesaw’ was recently proposed by Denton 225 

et al, (2021). In their ‘Zealandia Switch’, orbitally-forced changes in southern hemisphere insolation 226 

drive millennial-scale variability in the position of the southern westerlies. When combined with the 227 

physical constraints of the Australian/Zealandia bathymetric footprint, these wind changes are 228 



proposed to affect the global heat budget through the regulation of heat transport from the Tropical 229 

Pacific into the northern and southern hemisphere. We cannot exclude that this mechanism 230 

contributes to SH cooling during the ACR. However, the extended thermal seesaw framework has the 231 

advantages of satisfying the north-south timing, amplitude and spatial pattern of observed for 232 

millennial scale climate variations in multiple data compilations and data—model comparisons [e.g. 233 

Menviel et al., 2011; Pedro et al., 2016; Buizert et al., 2018, Corrick et al., 2020; Anderson et al., 2021, 234 

Capron et al., 2021]. Whether the ‘Zealandia Switch’ hypothesis satisfies such tests remains to be 235 

elucidated.    236 

The northward shift of the southern westerlies during the ACR is synchronous with a reduction in 237 

Southern Ocean upwelling inferred from opal burial rates at TN057-13-4PC situated at 53°S, 5°E and 238 

with a CO2 plateau in Antarctic ice cores (Figure 3i). Similarly, our evidence for southward shifted 239 

westerlies during the periods of deglacial warming that bracket the ACR aligns with increases in 240 

inferred Southern Ocean upwelling and intervals of CO2 rise (Figure 3g,h). These results are consistent 241 

with the hypothesis that the position of the southern westerlies contributed to the observed deglacial 242 

CO2 trends (Anderson et al., 2009; Toggweiler et al., 2006, Rae et al., 2018, Allen et al., 2019): i.e. 243 

enhanced Southern Ocean upwelling contributing to CO2 outgassing when the winds were shifted 244 

southward toward Drake Passage and reduced outgassing when the winds shifted back northward, 245 

intensifying over Tasmania, during the ACR.    246 

 247 
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 410 

Figure 1 (a) A map of zonal (southern westerly) wind speed showing the location of proxy sites 411 

mentioned in the text and (b) a correlation map of southern westerly wind speed and rainfall in 412 

Tasmania with sites analysed in this study: LV – Lake Vera; BL – Basin Lake; LS – Lake Selina; PL – 413 

Paddy’s Lake; LT – Lake Tiberias and HL – Hazards Lagoon. 414 

 415 

 416 

 417 
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 420 

Figure 2 Proxy data spanning the period between 18-11 ka BP showing (a) Lake Tiberias and (b) 421 

Hazards Lagoon and (c) Lake Selina Ca/Ti ratio, indicating changes in evaporite deposition. Black 422 

curves indicate the weighted average (5-year window) for (a), (b) and weighted average (43-year 423 

window) for (c); (d) western Tasmania charcoal influx composite (n=3) showing upper and lower 424 

confidence intervals (dashed grey lines) indicating moisture-driven changes in fire activity; (e) 425 



composite pollen (n=6) of the hygrophilous rainforest tree Phyllocladus aspleniifolius; and (f) 426 

composite Poaceae pollen curve (n=6) indicating changes in the grassland component of western 427 

Tasmanian pollen records. Black curves for both (e) and (f) indicate the weighted average (7-year 428 

window). Chronologies and associated uncertainties for all records used to create composite curves 429 

are presented in Supplementary Table 1 and Supplementary Figure 3.  430 

 431 



 432 



Figure 3 Global proxy data spanning the period between 18-11 ka showing (a) Proxy NGRIP surface-433 

air temperature (15N and diffusion-based reconstruction) (Buizert et al., 2018); (b) Proxy AMOC 434 

strength (231Pa/230Th) from the Bermuda Rise (McManus et al., 2004); (c) Normalized index 435 

summarizing common latitudinal shifts of both the ITCZ and the southern westerlies (Montade et 436 

al., 2015); (d) Globigerinoides ruber % from ocean core MD03-2611 at 37⁰S (De Deckker et al., 2012) 437 

a tropical foraminifera indicating changes in the strength of the Leeuwin Current; (e) Lake Tiberias 438 

Ca/Ti ratio showing changes in evaporation (this study); (f) western Tasmania charcoal influx 439 

composite (n=3) indicating moisture-driven changes in fire activity (this study); (g) radiocarbon 440 

surface reservoir age determined off the coast of Chile at 46⁰S (Siani et al., 2013) showing changes 441 

in wind-driven upwelling (De Deckker et al., 2012); (h) Southern Ocean Opal flux, a proxy for 442 

upwelling south of the Antarctic polar front from core TN057-13-4PC at 53⁰S showing changes in 443 

wind-driven upwelling (Anderson et al., 2009); and West Antarctic Ice Sheet Divide ice core (WDC) 444 

(i) CO2 and (j) 18O (Buizert et al., 2018). 445 
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