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Respiratory syncytial virus (RSV) or measles virus (MeV) infection modifies host
responses through small non-coding RNA (sncRNA) expression. We show that RSV
or MeV infection of neuronal cells induces sncRNAs including various microRNAs and
transfer RNA fragments (tRFs). We show that these tRFs originate from select tRNAs
(GCC and CAC for glycine, CTT and AAC for Valine, and CCC and TTT for Lysine).
Some of the tRNAs are rarely used by RSV or MeV as indicated by relative synonymous
codon usage indices suggesting selective cleavage of the tRNAs occurs in infected
neuronal cells. The data implies that differentially expressed sncRNAs may regulate host
gene expression via multiple mechanisms in neuronal cells.

Keywords: respiratory syncytial virus, measles virus, neuronal cells, microRNAs, piwi-associated RNAs,
transfer RNAs

INTRODUCTION

Small non-coding RNAs (sncRNAs) are <200 nucleotides and include microRNAs (miRs), PIWI-
interacting RNAs (piRs), and transfer RNA fragments (tRNA)-derived RNA fragments (tRFs)
(Petrov et al., 2017). The expression of sncRNAs differs in their biogenesis and functional activity
(Bartel, 2009; Bakre et al., 2019). Most sncRNAs induced by viral infection involve regulatory
mechanisms affecting virus replication, persistence, or latency (Grassmann and Jeang, 2008;
Roizman et al., 2011), and immune evasion (Cullen, 2013; Bernier and Sagan, 2018). RSV typically
infects ciliated respiratory epithelial cells, while MeV may infect dendritic cells and subsequently
infect the epithelia for virus release from the respiratory tract (Lay et al., 2016; Lin and Richardson,
2016; Singh et al., 2016; Taniguchi et al., 2019). These viruses cause a spectrum of diseases and
may infect a spectrum of people, i.e., the very young to the elderly (Griffin, 2018; Mazur et al.,
2018). RSV is a major cause of serious lower respiratory tract infections in childhood (Mirra et al.,
2018; Paes, 2018), but also affects the elderly and immune-compromised (Haber, 2018). MeV causes
acute viral infection with respiratory involvement leading to symptoms of rash and more serious
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complications, and in some cases to mortality (Bohmwald
et al., 2018; Leung et al., 2018). Both RSV and MeV are
paramyxoviruses with non-segmented negative-sense single-
stranded RNA genomes (Russell et al., 2018). Unfortunately,
there are no approved RSV vaccines and anti-viral treatments
are limited. Although there is an effective MeV vaccine,
incidences of MeV infection are increasing worldwide due to
vaccine complacency.

Respiratory syncytial virus and MeV can infect neuronal
cells, and MeV may cause persistent infection (Rota et al.,
2017; Griffin et al., 2018). Compromised immunity may facilitate
neuronal infection (Rima and Duprex, 2005; Omar et al., 2017;
Ganesan et al., 2018; Ferren et al., 2019). MeV infection of
neuronal cells may lead to subacute sclerosing panencephalitis
(SSPE), and measles inclusion body encephalitis (MIBE) in
immunocompromised individuals. In MIBE, MeV replicates in
the central nervous system usually because of an inadequate
immune response (McQuaid et al., 1998; Hardie et al., 2013; Rota
et al., 2017). RSV infection in mice has been associated with
exaggerated neurogenic inflammation in the airways, and studies
have shown that the neuropeptide, substance P (SP) is a mediator
of neurogenic inflammation (King et al., 2001; Tan et al., 2008).

Expression of the RSV G protein is associated with increased
pulmonary expression of SP, and lung neurons express CX3CR1
(Tripp et al., 2000, 2002, 2003; Haynes et al., 2003). CX3CR1 is the
receptor for fractalkine (aka neurotactin) and CX3CR1 has been
shown to bind RSV G protein (Tripp et al., 2001; Harcourt et al.,
2004; Choi et al., 2012; Bakre et al., 2017; Bergeron et al., 2021).

Studies in mice suggest that RSV may cause lasting infection
(Dakhama et al., 1997; Li et al., 2006). RSV has been shown
to infect mouse primary cortical neuronal cells as shown by
co-localization of the RSV N protein and neuronal markers
(Li et al., 2006). These findings support how RSV may cause
neurological irregularities in patients (Eisenhut, 2006; Li et al.,
2006; Morichi et al., 2017). Several studies have described an
association between lower respiratory tract RSV infection in
infancy and the subsequent development of persistent wheezing
in children (Zhou N. et al., 2017; Zhong et al., 2018). In mice, RSV
induces long-term airway disease characterized by chronic airway
inflammation and airway hyperreactivity (Long et al., 2016; Zhou
N. et al., 2017), and RSV antigens have been detected in the lungs
>100 days (Schwarze et al., 2004). However, RSV persistence does
not appear in the bronchial epithelium (the primary site of viral
replication) but in deeper lung structures (Long et al., 2016; Zhou
N. et al., 2017).

Respiratory syncytial virus and MeV infection modulate
sncRNA expression inducing mRNA degradation or translation
inhibition and have a role in determining the level of protein
expression of host cells (Munday et al., 2012). It has been
shown that tRNAs are cleaved during cellular stress, and that
cleavage results in tRFs that contain the 5′ end (5′tRFs) or the
3′ end (3′tRFs) of the parent tRNA molecule (Sofos et al., 2015;
Advani and Ivanov, 2019). Although the specific activity of tRFs
is not well-understood, tRFs can behave as small interfering
RNA leading to the degradation of transcripts (Ivanov et al.,
2011) which can regulate ribosomal loading and protein chain
elongation (Sobala and Hutvagner, 2013).

Accumulating data have shown that both coding and non-
coding transcriptomes are modified during RSV infection. We
have shown that RSV infection of human A549 lung cells
modifies sncRNA expression and that the RSV G protein and
NS1/NS2 proteins modulate miR expression (Bakre et al., 2012,
2015, 2017). Other studies have shown that the pattern of
miR expression is modified following RSV infection of nasal
epithelial cells (Inchley et al., 2015; Hasegawa et al., 2018), and
PBMCs from children (Wang et al., 2017). Deregulated miR
expression occurs in MeV-infected human neuroblastoma cells
and PBMCs (Inchley et al., 2015; Yis et al., 2015; Naaman
et al., 2017; Hasegawa et al., 2018), as well as in PBMCs
from RSV-infected children (Wang et al., 2017). It is known
that MeV persistence in neuroblastoma cells is assisted by the
downregulation of CDK6, a component of cell cycle progression
regulated by miRNA-124 (Riddell et al., 2007; Naaman et al.,
2017; Griffin et al., 2018).

In this study, we examined sncRNA responses in neuronal
SHSY5Y (SHS) cells infected with RSV or MeV and show
that infection with either of these viruses modifies miRs and
tRF expression in a temporal and virus-specific manner. Anti-
microbial peptides (AMPs) are generated in the response to
pathogens, and arginine and glycine are especially abundant
in AMPs (Mishra and Wang, 2012). In this study, we show
that RSV or MeV infection modifies the extent of transfer
RNA fragments (tRFs), and the finding of decreased full-
length tRNAs after infection indicates decreased translation
rates possibly indicative of a lessened anti-viral state. Together,
these findings strengthen the notion that sncRNAs have a
key role in regulating the host cell response to infection and
viral replication.

MATERIALS AND METHODS

Cells and Viruses
Human SHSY5Y (SHS) neuroblastoma cells (ATCC CRL 2266)
were grown in DMEM (Sigma, St. Louis, MO, United States)
containing 10% FBS (Atlanta Biologicals, Atlanta, GA,
United States). SHS cells were maintained at 37◦C, 5% CO2.
RSV strain A2 (ATCC CCL 81) was propagated in Vero cells
(Oshansky et al., 2009; Dahiya and Atreya, 2014). Briefly, 80%
confluent Vero cells were infected (MOI = 1.0) for 1 h at 37◦C,
5% CO2. After infection, 2% FBS was added to the DMEM, and
the cells were incubated for 3 days until syncytia were evident.
On the day of harvest, the cells were removed and centrifuged
at 500 × g for 15 min at 4◦C. RSV strain A2 was used for the
infection in SHS cells and rgRSV224 GFP (Hallak et al., 2000,
2007; Techaarpornkul et al., 2002) (a kind gift from Dr. Michael
Teng, University of South Florida) for microscopy studies.
The WT strain Dublin-3267 of MeV was grown in Vero cells
expressing human CD150 (SLAM), a high-affinity receptor for
MeV (Tatsuo et al., 2000).

RNA Isolation and Library Construction
Total RNA from mock-treated or virus-infected SHS cells was
isolated using RNAzol RT (MRC, Cincinnati, OH, United States)
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TABLE 1 | Summary of read numbers.

Sample Original # of
reads

% Trimmed
reads

% Uniquely
mapped reads

12 hpi–RSV-1 5,953 98% 5%

12 hpi–RSV-2 18,599 92% 42%

12 hpi–RSV-3 7,546 94% 23%

12 hpi–MeV-1 101,182 78% 50%

12 hpi–MeV-2 27,880 74% 41%

12 hpi–MeV-3 12,088 41% 11%

24 hpi–RSV-1 46,761 72% 10%

24 hpi–RSV-2 239,242 74% 9%

24 hpi–RSV-3 74,687 74% 12%

24 hpi–MeV-1 27,320 66% 7%

24 hpi–MeV-2 26,797 62% 6%

24 hpi–MeV-3 92,746 66% 9%

SHS-1 57,494 79% 51%

SHS-2 77,356 79% 44%

Numbers indicate raw read counts, percent of reads with adaptor trimming [59], and those mapping to unique loci on the genome.

FIGURE 1 | Hierarchical clustering of miR expression. Analysis of overall read composition following RSV- or MeV-infection of SHS cells. Clustering is indicated by
dashed circles. 12 h = 12 hpi; 24 h = 24 hpi. Samples 1–3 are 12 h MeV infection, samples 4–6 are 12 h RSV infection, samples 7–9 are 24 h MeV infection,
samples 10–12 are 24 h RSV infected SHS cells and mock infected samples are samples 13 and 14. PCA involved all miR, differential expression profiles, and RSV
and MeV time points (12 h vs. 24 h) to determine the derived variables known as principal components (PCs). Principal component 1 (PC1) was separated by time
(hpi) while principal component 2 (PC2) was separated by infected vs. non-infected.

per the manufacturer’s instructions and divided into small
and large RNA fractions and quantified using a Qubit
fluorimeter-based RNA assay (Invitrogen Life Tech, Carlsbad,
CA, United States). Illumina next-generation sequencing (NGS)

libraries were constructed using a TruSeq R© small RNA library
(Illumina, San Diego, CA, United States). Briefly, small RNA
from mock-treated SHS cells (n = 2/group), or RSV- or
MeV-infected SHS cells (n = 3/group) was isolated at 12
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TABLE 2 | Normalized read counts between mock, RSV- and MeV-infected samples as analyzed by OASIS 2.0 (Rahman et al., 2018a).

Mock 12 h 24 h

Mature log2 fold-change padj Mock RSV MeV RSV MeV

miR-10b-5p −2 0.00 1,416, 1,636 94, 144, 78 369, 262, 128 165, 248, 158 166, 173, 243

miR-181c-5p −2 0.03 25, 26 12, 3, 6 6, 10, 12 9, 3, 9 10, 5, 6

miR-125b-5p −2 0.02 50, 34 12, 12, 10 9, 9, 27 12, 10, 10 7, 21, 12

miR-375 2 0.01 56, 49 82, 225, 273 137, 165, 155 168, 132, 193 128, 163, 136

p-miR-247 2 0.02 128, 147 222, 336, 458 131, 298, 530 560, 688, 694 416, 446, 387

miR-21-5p 2 0.03 11, 11 211, 19, 29 43, 23, 15 32, 65, 27 57, 26, 62

miR-877-5p 2 0.02 1, 3 12, 28, 45 5, 10, 19 5, 6, 8 14, 21, 4

miR-7704 3 0.03 1, 1 0, 1, 6 1, 2, 4 25, 16, 17 14, 10, 18

miR-100-5p 3 0.05 0, 1 35, 1, 3 3, 2, 4 2, 1, 4 10, 10, 3

p-miR-330 3 0.01 1, 2 23, 6, 10 3, 4, 15 17, 13, 6 17, 52, 16

miR-182-5p 3 0.00 3, 3 12, 22, 16 34, 30, 23 18, 37, 24 20, 47, 39

miR-4532 4 0.02 0, 0 0, 0, 0 0, 0, 0 11, 29, 10 7, 26, 10

miR-1273g-3p 5 0.00 0, 0 0, 1, 3 0, 1, 0 15, 20, 18 24, 21, 22

miR-483-3p 4 0.00 0, 0 12, 11, 6 3, 10, 12 3, 4, 9 14, 0, 3

miR-3141 5 0.05 0, 0 0, 0, 0 0, 0, 0 29, 32, 14 61, 47, 17

p-miR-338 5 0.01 0, 0 0, 0, 0 0, 0, 0 23, 32, 10 24, 47, 11

miR-1246 5 0.00 0, 1 0, 3, 3 0, 1, 0 32, 42, 22 44, 110, 32

p-miR-317 6 0.00 0, 0 0, 0, 0 0, 0, 0 42, 44, 36 47, 68, 41

miR-3196 6 0.02 0, 0 0, 0, 0 0, 0, 0 29, 52, 14 54, 68, 24

miR-4516 6 0.01 0, 0 0, 0, 3 0, 0, 0 20, 20, 6 41, 26, 11

p-miR-106 6 0.01 0, 0 0, 0, 0 0, 0, 0 22, 18, 12 27, 52, 7

miR-4488 6 0.00 0, 0 0, 0, 0 0, 0, 0 25, 22, 11 34, 63, 15

p-miR-113 6 0.00 0, 0 0, 0, 0 0, 0, 0 37, 61, 35 44, 68, 50

p-miR-256 6 0.00 0, 0 12, 0, 3 0, 1, 0 12, 11, 10 10, 10, 3

p-miR-232 6 0.00 0, 0 0, 0, 0 0, 0, 0 8, 16, 6 20, 26, 9

p-miR-103 7 0.00 0, 0 0, 1, 0 0, 0, 0 22, 29, 21 17, 5, 34

Negative log2 fold-change values indicate downregulation.
“p,” predicted miR; RSV, respiratory syncytial virus; MeV, measles virus; padj, Adjusted p-value.

FIGURE 2 | Raw miR reads from RSV- or MeV-infected SHS cells were
analyzed for post-transcriptional modifications using Chimira (Vitsios and
Enright, 2015). Total counts of internal, 3′ arm and 5′ arm modifications per
sample type are shown. Differences in the number of modifications were
analyzed by 2-way ANOVA with post hoc Dunnet’s test. p-values are indicated
by ∗∗<0.01; ns, not significant. Error bars represent ± SD from three replicate
measurements. 3p ARM, 3′ end of miRNA; 5P ARM, 5′ arm of miRNA.

or 24 hpi and ligated with 3′ and 5′ RNA adaptors using
T4 RNA ligase 2 (Epicenter Biotechnologies, Madison, WI,
United States) at 28◦C for 60 min. Ligated RNA was reverse

transcribed using proprietary reverse primers and the first-
strand cDNA was amplified with a combination of a proprietary
forward primer and reverse primers containing unique index
bar codes per the manufacturer’s instructions. Amplicons
were run on a Tapestation 2200 (Agilent, Santa Clara, CA,
United States) high-sensitivity DNA chip to visualize products.
Indexed samples were pooled per the manufacturer’s protocol
and electrophoresed on a 6% TBE-urea PAGE gel. Bands
corresponding to 147 and 157 bp corresponding to adaptor-
ligated mature miRNA and other non-coding RNAs were cut
out and cDNAs were precipitated. Libraries were validated on
a Tapestation 2200 (Agilent) using a high-sensitivity DNA chip.
Libraries were denatured for 5 min using 5 M NaOH and
loaded onto a MiSeq (Agilent) for sequencing by synthesis.
Reads were trimmed to remove adaptor sequences and then
analyzed for miRNA differential expression using Chimira
(Vitsios and Enright, 2015) and OASIS 2.0 (Rahman et al.,
2018a). Read counts were normalized to a total number
of reads per sample and then differential expression was
calculated using DESeq2 (Love et al., 2014). All reads used
for analysis had quality scores (Q_ > 30. This represents less
than or equal to 1 error per 1,000 nts corresponding to a
99.99% accuracy.
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FIGURE 3 | RSV- and MeV -infection influence tRF expression in SHS cells. Total counts for the principal 5′tRFs in MeV- or RSV- infected SHS cells are shown. Error
bars represent ± SD from three replicate data. Val, valine; Gly, glycine; Glu, glutamate; Lys, lysine; Asp, aspartate.

FIGURE 4 | Anti-codons for foremost 5′tRFs during RSV- and MeV-infection. Anti-codon sequence for the top 5′tRFs deregulated in mock, RSV-, or MeV-infected
SHS cells. Error bars represent ± SD from three replicate data. Comparisons were done using 2-way ANOVA with a mixed model (to account for outliers) and two
replicates for mock followed by post hoc Tukey’s correction for multiple comparisons. ∗ Indicate comparisons with significance p ≤ 0.05. Triplets on the x-axis
indicate codon sequence.

miR Analysis
The host genes and pathways predicted to be regulated by miRs
were determined by DIANA miRPath analysis (Vlachos et al.,
2015). miRs were examined using the DIANA-miRPath server
and targets extracted from the Tarbase database (Karagkouni
et al., 2018). Enriched KEGG pathway analysis was used to
determine intersections (Kanehisa et al., 2016, 2017). We applied
a p-value threshold of ≤0.05 along with a false-discovery
rate correction.

Virus Quantitation
QRT-PCR of RSV M, or MeV M, and N gene primer-probes
were examined for each replicate to confirm infection of
SHS cells. Sequences of the primers/probes used were RSV
M forward 5′- ACACCCAAGGGACCTTCACTAAGA, RSV
M reverse 5′-GCCTTGATTTCACAGGGTGTGGTT-3′, RSV M

probe/56-FAM/AAG TGC AGT GCT AGC ACA AAT GCC
CA/3BHQ_1. For MeV, primer sequences were forward primer
MeVEdNPF-5′-CAAGACCCTGAGGGATTCAA-3′ and reverse
primer MeVEdNPR-5′-CTCTCGCATCACTTGCTCTG-3. For
both viruses, 100 ng of RNA was reverse transcribed using
Lunascript RT Supermix (New England Biolabs, Ipswitch,
MA, United States) using the following conditions: primer
annealing at 25◦C for 2 min, reverse transcription at 55◦C for
30 min followed by heat-inactivation of reverse transcriptase
at 95◦C for 1 min. Undiluted cDNA was used for PCR.
PCR reactions contained cDNA, 0.4 µM of forward and
reverse oligomers, 0.8 µM of the probe, 2X Luna Universal
probe master mix (New England Biolabs) and were amplified
as follows: initial denaturation at 95◦C for 60 s, 40 cycles
of denaturation at 95◦C for 10 s, and combined annealing
and extension at 60◦C for 30 s. For MeV NP amplification,
PCR reactions contained cDNA, 10 µM of forward and
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FIGURE 5 | Relative synonymous codon usage (RSCU) index for RSV (A) and
MeV (B) genomes. The standard genetic code table with RSCUs for RSV (A)
and MeV (B) is shown. RSCU indices < 1.0 are indicated by downward arrow
icons; RSCU indices > 1.5 are indicated by upward arrows. U, C, A, and G
indicate uracil, cytosine, adenosine, and guanosine, respectively.

reverse primers, Q5 2X High-Fidelity master mix (New
England Biolabs), and was amplified using the conditions:
initial denaturation at 98◦C for 30 s, 25 cycles of 98◦C for
10 s, annealing at 65◦C for 30 s and extension at 72◦C
for 2 min, and a final extension at 72◦C for 2 min. MeV
NP amplicons were resolved on a 1% agarose gel in low
osmolality buffer at 5 V/cm and imaged using a Protein Simple
imager (Invitrogen).

RESULTS

sncRNAs and Virus-Infected SHS Cells
Previous studies from our laboratory have shown that RSV
infection of A549 cells modifies miR expression (Bakre
et al., 2012, 2015, 2017) however, information regarding miR
expression in RSV- or MeV-infected neuronal SHS cells is
inadequate (Naaman et al., 2017; Cakmak Genc et al., 2018;

Haralambieva et al., 2018). Neuronal cells are not the primary
cell type infected by RSV, but they can be infected and may
act as a reservoir of infection. Mechanisms that contribute
to this are poorly understood. Thus, we examined SHS cells
that were RSV- or MeV-infected (MOI = 1.0), or mock-treated
and sncRNA expression determined at 12 and 24 hpi by
Illumina NGS. We confirmed RSV infection of SHS neuronal
cells using RSV-GFP. SHS cells were infected with RSV-
GFP at a MOI = 0.1 (Supplementary Figure 1). At 48 h
and 72 hpi, virus replication was evident using combined
dark field and fluorescence microscopy (UV Eclipse Ti2000-U
microscope, Nikon).

It is important to note that production of infectious viral
particles is restricted in the neuronal environment and viral
spread is mediated by fusogenic events leading to syncytia
formation that are common to both MeV and RSV infection
(Sato et al., 2018). Total reads expressed in a text-based
format (fastq) were used and the corresponding reads passing
quality scores (Q > 30) are listed in Table 1. Raw fastq
reads were mapped to the human genome, and miRs using
Chimira (Vitsios and Enright, 2015) and Oasis 2.0 (Rahman
et al., 2018a) were normalized to the total read counts and
used to calculate differential expression using DESeq 2.0 (Love
et al., 2014) relative to mock-treated cells. We used principal
component analysis (PCA) to determine sample clustering
based on similarity for miR expression profiling. PCA is a
method of taking combinations of measured variables and
lowering the dimensionality of the data to find the principal
source of variance. As the human genome encodes > 2,300
miRs and we examined RSV and MeV and two time points,
the dataset had > 9,200 variables. PCA identified two major
component dimensions—PC1 consists of the time component
in addition to virus and miRNA expression, and PC2 is the
infection state. PC1 and PC2 are principal components and
organized by the percent of variability they explain. Being
derived from combinations of variables, PCs do not have
labels/units. Samples 1–3 (12 h MeV), 4–6 (12 h RSV), 7–9
(24 h MeV), and 10–12 (24 h RSV) clustered together and away
from mock infected cells (samples 13–14) suggesting that the
sncRNA response to MeV or RSV infection is distinct from
mock infected cells. In addition, clustering of 12 and 24 h
MeV and RSV datasets suggests that infections elicit temporal
responses. The PCA results indicate that the time post infection
is a major component driving differential miRNA expression
as shown on PC1 (x-axis with 54% variance) compared to
pathogen (PC2 y-axis 13% variance). This is evident in the
clustering among mock-treated vs. virus-infected cells (Figure 1).
Similarly, miR expression profiles in RSV- or MeV-infected
SHS cells at 12 and 24 hpi revealed distinct clustering. Most
RSV samples clustered separately from MeV at each time-
point (Figure 1).

The data were filtered to contain only read numbers > 5
(Table 1), and those having p-values ≤0.05, and fold-change
≤1.5 or ≥1.5 were used to help identify downregulated vs.
upregulated miRs. RSV or MeV infection was confirmed by
qPCR. The chief deregulated miRs expressed in SHS cells
following RSV- or MeV-infection are shown in Table 2.
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TABLE 3 | RSCU indices for selected codons for MeV and RSV genes.

Codon RSV_NS1 RSV_NS2 RSV_NP RSV_P RSV_M RSV_SH RSV_G RSV_F RSV_M2 RSV_L

GUU (V) 0.8 0 1.2 0.9 0.7 0 0 2.0 1.3 1.6

GUG (V) 1.2 0 1.0 2.2 1.4 0 0.5 0.4 0.8 0.6

GGC (G) 1.14 0 0.8 0 0.7 0 0.7 0.7 0 0.5

GGG (G) 0.57 2.0 0.8 1.7 0.7 4.0 0.7 0.3 0.4 0.5

Codon MeV_N MeV_P MeV_M MeV_F MeV_H MeV_L

GUU (V) 2.0 0.9 0.6 0.9 0.6 1.9

GUG (V) 0.2 2.0 2.3 0.65 1.6 0.7

GGC (G) 0.7 0.6 1.1 0.8 0.5 1.0

GGG (G) 0.5 1.3 0.4 1.4 1.8 0.8

RSCU scores for individual RSV and MeV genes were determined using MEGA X (Kumar et al., 2018).
RSV_NS1, RSV Non-structural protein 1; RSV_NS2, RSV Non-structural gene 2; RSV_NP, RSV Nucleoprotein; RSV_P, RSV Phosphoprotein; RSV_M, RSV Matrix
protein; RSV_SH, RSV Small hydrophobic protein; RSV_G, RSV glycoprotein; RSV_F, RSV Fusion protein; RSV_M2, RSV Matrix ORF2 protein; RSV_L, RSV Large
polymerase protein; MeV_N, Measles virus Nucleocapsid protein; MeV_P, Measles virus Phosphoprotein; MeV_M, Measles virus Matrix protein; MeV_F, Measles virus
fusion glycoprotein; MeV_H, Measles virus hemagglutinin; MeV_L, Measles virus large polymerase.

Compared to mock-infection, expression of miR-10b-5p, miR-
181c-5p, and miR-125b-5p were strikingly downregulated in
SHS cells at 12 or 24 hpi following RSV or MeV infection.
In contrast, expression of p-miR-330, p-miR-338, p-miR-317,
p-miR-106, p-miR-113, p-miR-256, p-miR-232, p-miR-103 and
miR-182-5p, miR-4532, miR-1273g-3p, miR-483-3p, miR-3141,
miR-1246 miR-3196, miR-4516, and miR-4488 were substantially
upregulated in SHS cells.

Studies suggest that modifications involving Adenosine
to Inosine (A- > I) or Cytosine to Uracil (C- > U)
within miRs, N6 methylation, and oxidation affect miR
stability, maturation and target specificity (Alarcon et al., 2015;
Wang et al., 2015; Correia De Sousa et al., 2019). Post-
transcriptional modifications to miRNAs have been shown
to alter their binding and function (Pirouz et al., 2019;
Briand et al., 2020; Cheray et al., 2020). We therefore
examined epitranscriptional modifications of the deregulated
miRs using Chimira (Figure 2; Vitsios and Enright, 2015).
Most modifications were located on the 3p arms of the
deregulated miRs. RSV infection in SHS cells decreased the
abundance of 3p modifications at 12 hpi (Figure 2 and
Supplementary Table 1).

RSV or MeV Infection Induces tRNA
Fragments
Cellular stress triggers the degradation of tRNA to tRFs (Shen
et al., 2018). tRFs may encompass the 5′, 3′, or internal anti-codon
loop and are classified as 5′-, 3-, or class I tRFs (Shen et al., 2018).
Functions of tRFs are poorly understood, but tRFs can perform
as siRNAs degrading target transcripts (Maute et al., 2013),
and regulate ribosomal loading and protein chain elongation
(Sobala and Hutvagner, 2013). The biosynthesis of tRFs involves
degradation of pre-tRNA molecules via the nuclear TRAMP
pathway (Anderson, 2005; Maraia and Lamichhane, 2011) or
cytosolic degradation of mature tRNAs via the rapid tRNA decay
pathway. Analysis of the small RNA sequencing dataset in this

study showed a differing abundance of tRFs following RSV or
MeV infection. Analysis of tRFs showed that among the most
abundant were 5′tRFs derived from tRNAs for glycine and valine
(Figure 3), suggesting that tRNAs for these two amino acids
were targeted during RSV and MeV infection. Levels of 5′tRFs
for glycine and valine were substantially increased at 24 hpi
following RSV or MeV infection. Frequencies of glycine and
valine 5′tRFs increased with time, i.e., from 12 to 24 hpi in
RSV- and MeV-infected SHS cells. Analysis of the anti-codon
sequence for these tRFs showed that GCC, AAC, and CAC
anticodons are enriched in 5′tRFs in SHS cells following RSV
or MeV infection (Figure 4). A previous report showed that
5′tRF-Glu-CTC produced during RSV infection of A549 cells
interacted with apolipoprotein E receptor 2 (APOER2) mRNA
to inhibit translation of the gene, favoring RSV replication
(Deng et al., 2015).

We postulated that tRFs had a direct effect on translation
and compared tRF profiles in RSV- or MeV-infected SHS cells
with synonymous codon usage. Our analysis compared how
frequently each codon in the RSV or MeV genome is utilized
relative to the standard genetic code frequencies that are given
as a codon adaptation index (CAI). CAI ranges from 0 to
1.0, with 0 representing least used, and 1.0 representing most
common codons. A comparison of RSCU profiles for RSV and
MeV genomes using Mega X (Kumar et al., 2018) showed
the codon usage to be considerably different than standard
human codon usage frequencies (Figures 5A,B). The assessment
showed that of the four possible codons that encode glycine
(GGU, GGC, GGA, GGG), three codons (GGC, GGU, GGG)
are under-utilized for RSV genes, and valine, RSV uses the
GUC codon less frequently. For MeV, two of the four codons
for glycine (GGU, GGC) and GUA for valine are under-
utilized. The consequence of these findings is unknown but
suggests that the tRNAs used during RSV or MeV infection
are selectively processed to produce these tRNAs potentially
for two reasons—to reduce host translation (Kim et al., 2017,
2019; Mesitov et al., 2017), and/or to function as siRNAs and
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silence host genes (Emara et al., 2010; Wang et al., 2013;
Kuscu et al., 2018; Jehn et al., 2020). For valine, and the
increased abundance of valine 5′tRFs (AAC and CAC), the
corresponding codon usage was not low suggesting that valine
tRFs might have functions other than reducing translation
rates. RSCU analysis of individual RSV and MeV genes showed
that glycine and valine tRNAs were under-utilized following
RSV or MeV infection in SHS cells (Table 3). Together these
findings suggest that tRNA cleavage is linked with codon usage.
The sncRNA results show that the expression profiles for
small RNAs differ in kinetics of expression for RSV and MeV
infection of SHS cells.

DISCUSSION

In this study, we examined differentially expressed sncRNAs
following RSV or MeV infection of SHS cells at 12 and
24 hpi using NGS. NGS showed unique miR expression profiles
following RSV or MeV infection (Figure 1 and Table 2). We
identified that (1) miR-10b-5p was expressed in mock-treated
cells but showed reduced expression in RSV- or MeV-infected
cells, (2) p-miR-247 and miR-375 had robust expression in
RSV- or MeV-infected cells, (3) miRs had no/low expression
in mock-treated cells, but were increased by RSV or MeV
infection, and (4) miRs were not expressed in mock-infected
cells at 12 hpi but showed robust copy numbers at 24 hpi.
These findings show that RSV or MeV infection induces distinct
miR expression in SHS cells that is virus-type and time-point
specific. While the sequencing data from our study has identified
these deregulated miRNAs, the mechanisms contributing to
their biogenesis remains unknown and is out of the scope of
this manuscript.

Evidence suggests that epitranscriptomics (or post-
transcriptional modification of cellular RNAs) especially 3′
end uridylation and adenylation of miRs can alter both miRNA
stability and target repertoire (Vitsios and Enright, 2015). We
explored the nature of epitranscriptional miR modifications
following RSV or MeV infection. The findings suggest that RSV
and MeV induce sncRNA modifications affecting target cell
specificity. The results showed extensive 3′ modifications (mostly
uridylation and adenylation) in the miRs following RSV or
MeV infection that may alter host mRNA or miRNA transcript
stability. Further studies are needed to elucidate the function of
these epitranscriptional modifications on miRNA function.

Post-transcriptional regulatory mechanisms control
translation of >60% of the human transcriptome (Friedman
et al., 2009). The identification of cleaved tRNAs during RSV
or MeV infection of SHS cells is novel. The tRFs identified
contained exclusively of 5′tRFs during later stages of RSV or
MeV infection, and of these tRNAs, glycine, and valine were
the primary targets for 5′tRF formation. Other studies showed
that RSV infection can induce angiogenin (ANG)-mediated
cleavage of tRNAs to produce tRFs (Deng et al., 2015; Zhou
J. et al., 2017). These studies identified a pro-viral role for
5′tRF-GlyCCC, 5′tRF-LysCTT, and 5′tRF-GluCTC by depression
of APOER2 mRNA. We postulate that tRNA cleavage to tRFs

may have a broader anti-viral role. Degradation of host tRNAs
may reduce the anti-viral protein response, and recent findings
from proteomic studies in RSV-infected A549 cells have shown
that the host nuclear proteins are considerably reduced following
RSV infection (Munday et al., 2012, 2015). Similar results have
also been shown for MeV, an attribute linked to the N protein
(Sato et al., 2007; Okonski and Samuel, 2013). It is important to
investigate why RSV or MeV infection induces selective cleavage
of glycine and valine tRNAs as glycine, and valine tRNAs are
selectively under-utilized by most RSV and MeV genes (Table 3).
Transfer RNA fragments operate in mucosal immunity (Chen
and Shen, 2021) regulating retrotransposon expression (Schorn
et al., 2017) and viral adaptation to the host (Lauring et al., 2012;
Pavon-Eternod et al., 2013; Rahman et al., 2018b; Le Nouën et al.,
2020; Nunes et al., 2020).

The degradation of tRNAs may be a host stress response
to viral infection, however, the increases in tRNA for glycine
and valine hint that MeV and RSV may potentially target these
tRNAs. The mechanisms that cause are unknown and are difficult
to resolve in the context of this study. Currently, we do not
understand the mechanisms involved in sncRNA deregulation,
nor the functional outcome, thus further studies are necessary.
Translation of mRNAs linked to the anti-viral response is key to
control of virus infection and clearance. The findings show that
RSV or MeV infection induces several classes of sncRNAs that
regulate post-transcriptional gene expression and emphasizes the
need to better understand the host-virus interface.
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Supplementary Figure 1 | RSV infects SHS neuronal cells. SHS cells were
infected with rgRSV-GFP at MOI = 0.1 for indicated time points. Viral replication

was visualized by dark field fluorescence microscopy on a Nikon UV Eclipse
TE2000-U microscope at 10X magnification.

Supplementary Table 1 | MiRNA modification data patterns in RSV and MeV
infected neuronal cells. Table lists samples, microRNAs, type of modifications,
modification site, pattern, modification position, internal modification type, internal
modification position, repeat modifications and counts of modifications for all
deregulated miRNAs identified in the study.
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