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Abstract
The	acute	respiratory	distress	syndrome	(ARDS)	describes	a	heterogenous	pop-
ulation	 of	 patients	 with	 acute	 severe	 respiratory	 failure.	 However,	 contempo-
rary	advances	have	begun	 to	 identify	distinct	 sub-	phenotypes	 that	exist	within	
its	broader	envelope.	These	sub-	phenotypes	have	varied	outcomes	and	respond	
differently	 to	 several	 previously	 studied	 interventions.	 A	 more	 precise	 under-
standing	of	their	pathobiology	and	an	ability	to	prospectively	identify	them,	may	
allow	for	the	development	of	precision	therapies	in	ARDS.	Historically,	animal	
models	 have	 played	 a	 key	 role	 in	 translational	 research,	 although	 few	 studies	
have	 so	 far	assessed	either	 the	ability	of	animal	models	 to	 replicate	 these	 sub-	
phenotypes	or	investigated	the	presence	of	sub-	phenotypes	within	animal	mod-
els.	Here,	in	three	ovine	models	of	ARDS,	using	combinations	of	oleic	acid	and	
intravenous,	 or	 intratracheal	 lipopolysaccharide,	 we	 investigated	 the	 presence	
of	sub-	phenotypes	which	qualitatively	resemble	those	found	in	clinical	cohorts.	
Principal	Component	Analysis	and	partitional	clustering	identified	two	clusters,	
differentiated	 by	 markers	 of	 shock,	 inflammation,	 and	 lung	 injury.	 This	 study	
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1 	 | 	 INTRODUCTION

It	 is	 increasingly	 understood	 that	 the	 acute	 respiratory	
distress	syndrome	(ARDS)	describes	a	clinically	and	 im-
munologically	heterogenous	population	(Sinha	&	Calfee,	
2019).	Heterogeneity	among	patients	with	ARDS	has	been	
proffered	as	an	explanation	for	consistently	negative	trials	
of	 pharmacological	 treatments.	 Contemporary	 advances	
in	 phenotyping,	 using	 unsupervised	 machine	 learning	
techniques,	have	identified	novel	sub-	phenotypes	in	clin-
ical	 trial	 cohorts	 (Calfee	 et	 al.,	 2014).	These	 phenotypes	
have	 discrepant	 outcomes,	 and	 importantly,	 appear	 to	
respond	differently	to	several	interventions	(Calfee	et	al.,	
2018).	An	ability	to	prospectively	identify	sub-	phenotype	
membership	in	patients	with	ARDS	opens	the	possibility	
of	delivering	personalized	treatments.

Historically,	 animal	 models	 of	 ARDS	 have	 played	 an	
important	role	in	biological	discovery	and	in	therapeutic	
translation	 (Yehya,	 2019).	 Numerous	 models	 of	 ARDS	
have	 been	 developed	 in	 both	 large	 and	 small	 animals.	
However,	 an	 animal	 model	 that	 fully	 recapitulates	 the	
clinical	 pathobiology	 of	 ARDS	 is	 not	 available.	This	 has	
contributed	 to	 the	 gap	 between	 results	 generated	 from	
preclinical	models	and	those	obtained	in	subsequent	clin-
ical	 trials.	 As	 our	 knowledge	 of	 clinical	 sub-	phenotypes	
grows,	 a	 new	 question	 arises	 for	 those	 modelling	 ARDS	
in	 animals;	 how	 well	 does	 an	 animal	 model	 reflect	 the	
pathobiology	of	a	specific	clinical	sub-	phenotype?	To	an-
swer	 this	 question	 several	 preliminary	 facts	 need	 to	 be	
elucidated.	Do	existing	preclinical	models	of	ARDS	more	
closely	resemble	one	phenotype	or	another?	And,	do	ani-
mals	with	experimental	ARDS	exhibit	phenotypes	given	a	
common	method	of	injury?

Thus,	we	sought	to	develop	an	approach	to	these	prob-
lems	 by	 testing	 three	 models	 of	 ARDS	 in	 sheep.	 Using	
a	 combination	 of	 dimensionality	 reduction	 and	 parti-
tional	 clustering,	 we	 investigated	 the	 presence	 of	 sub-	
phenotypes,	 arising	 dependent	 or	 independent	 of	 the	
means	of	injury.	Previously,	others	have	pursued	a	related	
approach	 to	 identify	 sub-	phenotypes	 in	a	murine	model	
of	sepsis	(Seymour,	Kerti,	et	al.,	2019).	Similarly,	we	aimed	
to	undertake	a	preliminary	exploration	of	sub-	phenotypes	

arising	 in	preclinical	models	of	ARDS,	and	 to	propose	a	
methodology	 for	 investigating	 these	 phenomena	 in	 ani-
mal	models.

2 	 | 	 MATERIALS AND METHODS

2.1	 |	 Study design

Ethical	 approval	 for	 this	 study	 was	 obtained	 from	
University	Animal	Ethics	Committees	(QUT1600001108,	
UQPCH/483/17).	The	study	was	conducted	in	accordance	
with	the	Australian	Code	of	Practice	for	the	Care	and	Use	
of	Animals	for	Scientific	Purposes	(Council	NHMR,	2013),	
and	reported	in	compliance	with	the	ARRIVE	guidelines	
(Percie	du	Sert	et	al.,	2019).	Detailed	methods	are	provided	
in	an	online	supplement.	A	diagrammatic	summary	of	the	
study	is	presented	in	Figure	1.

2.2	 |	 Animal model

Nineteen	 healthy	 Border	 Leicester	 Cross	 ewes,	 aged	 be-
tween	 1	 and	 3  years	 and	 weighing	 52  kg	 (47–	54),	 were	
randomly	 assigned	 to	 one	 of	 three	 groups;	 injury	 by	 in-
travenous	infusion	of	oleic	acid	(OA,	n = 7),	by	OA	and	
intratracheal	E.	coli	lipopolysaccharide	(IT,	n = 7),	or	by	
OA	and	intravenous	E.	coli	lipopolysaccharide	(IV,	n = 5).

Briefly,	animals	were	anesthetized	with	ketamine,	mid-
azolam,	and	fentanyl.	Continuous	neuromuscular	block-
ade	 was	 maintained	 by	 infusion	 of	 vecuronium.	 After	
induction,	animals	were	tracheostomized	and	ventilated	
using	a	low	tidal	volume	strategy.	After	instrumentation,	
acute	lung	injury	was	induced	by	infusion	of	OA	(0.06 ml/
kg;	 O1008,	 Sigma-	Aldrich,	 Castle	 Hill,	 NSW,	 Australia),	
with	or	without,	intratracheal	E.	coli	LPS	(100 µg;	O55:B5,	
Sigma-	Aldrich,	 Castle	 Hill,	 NSW,	 Australia)	 or	 intrave-
nous	E.	coli	LPS	(1 μg/kg	infused	over	1 h;	O55:B5,	Sigma-	
Aldrich,	Castle	Hill,	NSW,	Australia).	Once	a	PaO2/FiO2	
ratio	<100 mmHg	(PEEP	≥5 cmH2O)	was	achieved	(0 h),	
animals	received	protocolized	intensive	care	for	the	dura-
tion	of	the	study.	At	6 h,	animals	were	euthanized.

provides	a	first	exploration	of	ARDS	phenotypes	in	preclinical	models	and	sug-
gests	a	methodology	for	investigating	this	phenomenon	in	future	studies.

K E Y W O R D S

acute	respiratory	distress	syndrome,	animal,	models,	phenotype
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F I G U R E  1  Study	overview,	measures	of	gas	exchange,	and	respiratory	mechanics.	(a)	Schematic	overview	of	study	design.	(b)	Measures	
of	gas	exchange.	(c)	Measures	of	respiratory	mechanics.	Data	are	presented	as	mean	and	95%	confidence	intervals

%

Estimated shunt

Timepoint

PaO2/FiO2 ratio

mmHg

Timepoint

(b)

(C)
Plateau pressure

cmH2O

Timepoint Timepoint

TimepointTimepoint

mmHg

mmHgmL/cmH2O

PaCO2

Mean pulmonary artery pressureStatic compliance

PEEP

FiO2 adjusted to maintain SpO2 88-93%

PEEP initially set to 5 cmH2O and then adjusted to maintain Pplat < 30 cmH2O
- Total PEEP (intirnsic + extrinsic) not to exceed 20 cmH2O
- PEEP never < 5 cmH2O

Respiratory rate adjusted to maintain pH 7.30-7.45 but limited to <= 35 breaths per minute

I:E ratio 1:1 to 1:3 throughout

(a)



4 of 11 |   MILLAR et al.

2.3	 |	 Blood and cytokine analysis

Blood	samples	were	analyzed	by	and	independent	veteri-
nary	laboratory	(IDEXX	Laboratories,	Brisbane,	Australia)	
to	clinical	standards.	Routine	biochemical,	hematological,	
and	coagulation	tests	were	performed.	The	concentration	
of	 interleukin-	6	 (IL-	6),	 IL-	8,	 IL-	1β,	and	IL-	10	was	meas-
ured	in	blood	and	in	bronchoalveolar	lavage	(BAL)	fluid.	
Our	development	of	ovine-	specific	ELISA	assays	has	been	
described	before	(Bouquet	et	al.,	2020).	Detailed	methods	
are	provided	in	an	online	supplement.

2.4	 |	 Statistical analysis

Data	are	expressed	as	median	(IQR).	Analysis	was	un-
dertaken	 in	 R	 4.0.3	 (R	 Core	 Team,	 Vienna,	 Austria,	
2020).	The	dataset	for	this	study,	along	with	reproduc-
ible	 code	 and	 supplementary	 methods	 and	 results,	 is	
available	 at	 http://doi.org/10.5281/zenodo.4677513.	
Longitudinal	data	were	analyzed	by	fitting	linear	mixed	
models,	 using	 the	 R	 package	 lme4.	 Non-	longitudinal	
data	were	compared	with	one-	way	ANOVA.	Where	a	
significant	 interaction	 was	 observed,	 post	 hoc	 com-
parisons	 were	 made	 using	 Tukey's	 test,	 using	 the	 R	
package	 rstatix.	 Correction	 for	 multiple	 comparisons	
was	 made	 using	 the	 Benjamini–	Hochberg	 method.	
Frequency	data	were	compared	using	the	Chi-	squared	
test.	 Co-	linearity	 was	 assessed	 by	 calculating	 the	
Spearman	correlation	coefficient	for	each	pair	of	vari-
ables,	 using	 the	 R	 package	 corrplot.	 Principal	 com-
ponent	 analysis	 (PCA)	 was	 performed	 to	 reduce	 the	

dataset	 to	a	smaller	number	of	principal	components	
(PCs),	using	the	R	package	FactoMineR	(Husson	et	al.,	
2017).	Beforehand,	missing	data	were	imputed	using	a	
random	forest	approach	with	predictive	mean	match-
ing	(using	the	R	package	missRanger)	and	the	dataset	
was	 z-	score	 normalized	 by	 subtracting	 the	 variable	
mean	 and	 dividing	 by	 the	 variable	 standard	 devia-
tion	(Josse	&	Husson,	2012).	After	examination	of	the	
scree	plot,	principal	components	sufficient	to	explain	
>75%	of	the	total	variance	were	retained.	Partitioning	
around	 medoids	 (PAM)	 clustering	 was	 performed,	
after	PCA,	on	the	imputed	dataset,	using	the	R	pack-
age	 cluster.	 A	 Euclidean	 distance	 measure	 was	 em-
ployed.	The	optimal	number	of	clusters	to	specify	was	
derived	from	a	“majority”	assessment	of	26 measures,	
using	 the	 NbClust	 package.	 In	 event	 of	 a	 tie	 a	 parsi-
monious	solution	was	preferred.	To	assess	the	stability	
of	 clusters,	 we	 employed	 a	 nonparametric	 bootstrap-	
based	strategy	using	the	R	package	fpc.	This	generated	
1000	new	datasets	by	randomly	drawing	samples	from	
the	initial	dataset	with	replacement	and	applying	the	
same	clustering	 technique	 to	each.	Clustering	results	
were	then	compared	for	each	cluster	identified	in	the	
primary	 analysis	 and	 the	 most	 similar	 cluster	 identi-
fied	 for	 each	 random	 re-	sampling.	 A	 mean	 value	 for	
the	 Jaccard	 coefficient,	 for	 the	 sum	 of	 the	 compari-
sons,	was	generated	for	each	cluster.	Z-	scores	for	each	
variable,	by	cluster,	were	descriptively	compared	with	
clusters	 derived	 from	 a	 previously	 published	 latent	
class	analysis	of	the	ARMA	study	(Calfee	et	al.,	2014),	
obtained	 using	 a	 digital	 ruler.	 Statistical	 significance	
was	assumed	if	p < 0.05.

T A B L E  1 	 Physiological	characteristics	at	0 hours	(injury).	Data	are	presented	as	median	(IQR)

Overall
(n=19)

OA
(n=7)

IT
(n=7)

IV
(n=5)

Weight	(kg) 52	(47–	54) 55	(53–	57) 47	(46–	51) 52	(46–	52)

PEEP	(cmH2O) 10	(10–	10) 10	(7.5–	10) 10	(10–	10) 10	(10–	10)

Plateau	pressure	(cmH2O) 27	(26–	30) 26	(26–	27) 27	(26–	29) 29	(28–	34)

Static	compliance	(mL/cmH2O) 16	(14–	22) 21	(16–	25) 16	(14–	18) 16	(14–	16)

PaO2/FiO2	(mmHg) 52	(47–	90) 52	(49–	69) 47	(46–	51) 100	(55–	133)

Effective	shunt	(%) 49	(43–	54) 49	(44–	54) 50	(48–	54) 45	(37–	52)

PaCO2	(mmHg) 49	(46–	57) 47	(46–	53) 52	(46–	57) 49	(48–	53)

pH 7.31	(7.28–	7.35) 7.31	(7.25–	7.32) 7.33	(7.3–	7.38) 7.32	(7.31–	7.37)

Bicarbonate	(mmol/L) 23.8	(22.3–	24.9) 22.4	(21.9–	23.3) 24.3	(23.9–	24.9) 23.4	(22.6–	25.4)

Base	excess	(mmol/L) −0.6	(−2.5	to	1.1) −2.5	(−3	to	−2.4) 1	(0–	1.8) 0.8	(−1.4	to	2.6)

Heart	rate	(bpm) 112	(102–	134) 121	(96–	134) 111	(100–	132) 112	(106–	117)

Mean	arterial	pressure	(mmHg) 96	(85–	109) 104	(96–	111) 80	(76–	92) 108	(99–	115)

Mean	pulmonary	arterial	pressure	(mmHg) 21	(19–	25) 22	(19–	26) 23	(20–	27) 20	(19–	21)

Central	venous	pressure	(mmHg) 12	(9–	13) 13	(12–	15) 11	(9–	13) 11	(3–	19)

http://doi.org/10.5281/zenodo.4677513
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F I G U R E  2  Partitional	clustering	and	sub-	phenotypes.	(a)	Clustering	results	projected	on	PCs	1	and	2	of	the	PCA.	B.	Half-	dot,	half-	violin	
plots	of	key	variables	stratified	by	cluster	membership
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3 	 | 	 RESULTS

Baseline	characteristics	at	injury	(0 h)	are	summarized	in	
Table	1	and	in	Table	E1	(Supplementary	results	available	
at	 http://doi.org/10.5281/zenodo.4677513).	 All	 animals	
completed	the	study	protocol	and	were	euthanized	at	6 h	
(Table	 E2).	 There	 were	 some	 missing	 data	 in	 our	 study	
(Table	E3)	and	prior	to	analysis	these	data	were	imputed	
using	a	random	forest	method.

Oleic	acid,	with	or	without	LPS,	induces	acute	severe	
respiratory	failure.	However,	LPS	prolongs	or	prevents	im-
provements	in	oxygenation	in	the	first	6 h

The	 infusion	 of	 OA	 produced	 severe	 lung	 injury	
(PaO2/FiO2	<100 mmHg).	However,	oxygenation	began	
to	recover	within	1 h	(Figure	1).	LPS	consistently	main-
tained	 PaO2/FiO2	 within	 the	 range	 of	 severe	 ARDS.	
Differences	in	oxygenation	between	groups	were	not	as-
sociated	with	differences	in	respiratory	system	mechan-
ics	(Figure	1).

3.1	 |	 The addition of LPS increases the 
plasma concentration of interleukin- 6

Both	 intravenous	and	 intratracheal	LPS	 increased	 the	
plasma	 concentration	 of	 IL-	6	 (group:time,	 p	 <0.001)	
when	compared	to	OA	alone	(Figure	E1	and	Tables	E4	
and	 E5).	 The	 use	 of	 intravenous	 LPS	 was	 associated	
with	 non-	sustained	 increases	 in	 the	 plasma	 concen-
tration	 of	 IL-	8	 (group:time,	 p  <  0.001).	 Similarly,	 the	
use	of	 intravenous	LPS	resulted	in	 increase	 in	plasma	
IL-	10	 (group:time,	 p  <  0.001).	 All	 three	 injury	 meth-
ods	 were	 associated	 with	 low	 plasma	 levels	 of	 IL-	1β.	
Cytokine	 concentrations	 in	 bronchoalveolar	 lavage	
(BAL)	fluid	were	 less	distinct	between	groups	(Figure	
E1	 and	 Tables	 E4	 and	 E5).	 Animals	 injured	 with	 in-
travenous	 LPS,	 as	 compared	 to	 OA	 alone,	 had	 higher	
white	cell	and	neutrophil	counts	at	6 h	(p = 0.049	and	
0.034,	respectively).

3.2	 |	 In the first 6 hours, intravenous LPS 
induces more severe shock in comparison 
to intratracheal LPS or OA alone

All	 pulmonary	 injury	 methods	 produced	 shock	 requir-
ing	 vasopressor	 support	 (Figure	 E2).	 While	 reductions	

in	 MAP	 from	 baseline	 to	 6  h	 were	 greater	 in	 animals	
receiving	 LPS,	 these	 differences	 were	 not	 statistically	
significant.	 Similarly,	 there	 were	 no	 significant	 differ-
ences	in	heart	rate	or	CVP,	between	groups	(Figure	E2).	
Cumulative	fluid	balance	was	greatest	in	OA	animals,	and	
significantly	different	when	compared	to	sheep	given	LPS	
(Figure	 E2).	 Cumulative	 urine	 output	 did	 not	 differ	 be-
tween	groups	(p = 0.109).

Hematological	and	biochemical	parameters,	at	6 h,	are	
presented	 in	Table	E2.	Following	correction	for	multiple	
comparisons,	 there	 were	 no	 significant	 differences	 be-
tween	groups	in	indices	of	renal	function.

3.3	 |	 Two sub- phenotypes are 
identifiable and are associated with the 
method of injury

A	priori	assessment	of	the	data	suggested	that	two	clus-
ters	 were	 the	 optimal	 partition	 of	 our	 data	 (Table	 E6).	
The	 distribution	 of	 the	 clusters	 in	 two-	dimensional	
space	is	shown	in	Figure	2.	Animals	in	cluster	B	(n = 4)	
tended	to	have	a	 lower	MAP,	 lower	urine	output,	were	
more	 acidotic,	 coagulopathic,	 and	 had	 higher	 plasma	
levels	of	IL-	6,	IL-	8,	and	IL-	10	(Figure	2).	Proportionally,	
more	animals	injured	with	intravenous	LPS	were	found	
in	Cluster	B	(p = 0.036).	All	animals	injured	with	IT	LPS	
were	assigned	to	Cluster	A.	The	clusterwise	stability	was	
good	 (mean	 Jaccard	 similarities,	 0.85	 Cluster	 A,	 0.71	
Cluster	B).

3.4	 |	 Differences in variables 
describing the severity of shock and of lung 
injury explain the majority of variance 
between animals

There	was	a	high	degree	of	correlation	between	variables	
recorded	in	our	study	at	6 h	(Figure	E3).	In	an	effort	to	re-
duce	the	dimensionality	of	the	data	and	identify	the	most	
differentiating	 variables	 we	 performed	 principal	 compo-
nent	analysis	(PCA).	In	total,	eight	principal	components	
(PCs)	 explained	 >75%	 of	 the	 variance	 between	 animals,	
with	the	first	4	PCs	explaining	>50%	(Figure	3).	Markers	
of	shock	severity	contributed	heavily	to	PCs	1	and	2,	while	
markers	of	lung	injury	defined	PCs	4	and	5	(Figures	3	and	
4	and	Figure	E4).

F I G U R E  3  Principal	component	analysis	(PCA).	(a)	Biplot	of	principal	components	(PCs)	1	and	2.	The	top	five	variables	in	PC	1	
are	shown.	Large	dots	represent	the	group	mean.	(b)	Scree	plot	of	first	eight	PCs.	(c)	Pairs	plot	of	PCA	projections	for	first	eight	PCs.	(d)	
Contribution	and	quality	of	representation	of	variables	to	PCs.	The	quality	of	representation	(cos2)	sums	to	one	for	each	variable	across	all	
PCs.	The	contribution	of	variables	to	variance	in	a	PC	are	expressed	as	percentages

http://doi.org/10.5281/zenodo.4677513
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F I G U R E  4  Preclinical	clusters	and	clinical	cohorts.	(a)	Z-	core	plot	of	animal	clusters	for	variables	common	with	those	in	published	
clustering	studies.	VE,	minute	volume,	WCC,	white	cell	count,	MAP,	mean	arterial	pressure.	(b)	Preclinical	cluster	z-	score	plots	contrasted	
with	clinical	trial	clustering	sub-	phenotypes.	Green	line,	ARMA	trial	sub-	phenotypes
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4 	 | 	 DISCUSSION

In	 a	 study	 combining	 three	 ovine	 models	 of	 ARDS,	 we	
provide	 a	 preliminary	 exploration	 of	 sub-	phenotypes	 oc-
curring	early	in	the	course	of	illness.	In	doing	so,	we	pro-
vide	the	first	characterization	of	OA	and	LPS	“double-	hit”	
models	of	ARDS	in	 large	animals.	 In	 this	study,	OA	was	
capable	of	inducing	severe	acute	respiratory	failure,	how-
ever	 oxygenation	 began	 to	 improve	 rapidly	 unless	 ani-
mals	were	additionally	insulted	with	LPS.	All	three	injury	
models	produced	an	elevation	in	plateau	airway	pressure	
and	a	reduction	in	compliance.	Likewise,	all	exhibited	evi-
dence	of	shock,	requiring	vasopressor	support.	Plasma	lev-
els	 of	 IL-	6	 were	 higher	 in	 animals	 receiving	 intravenous	
LPS,	 however	 BAL	 concentrations	 remained	 unchanged.	
Decomposition	 of	 the	 dataset	 by	 PCA,	 revealed	 that	 the	
first	4	PCs	explained	54%	of	the	variance	in	the	dataset,	and	
may	be	characterized	as	representing	the	degree	of	shock/
inflammation	(PCs	1	and	2)	and	lung	injury	(PCs	3	and	4).	
Unsupervised	clustering,	using	PAM,	 identified	 the	pres-
ence	of	two	sub-	phenotypes.	These	were	primarily	differ-
entiated	 along	 PC1.	 Cluster	 membership	 was	 associated	
with	method	of	injury	with	more	animals	belonging	to	the	
intravenous	LPS	group	in	cluster	B.	These	data	may	have	
implications	 for	 translational	 research	 in	 ARDS.	 First,	
the	 presence	 of	 sub-	phenotypes	 in	 animal	 models	 opens	
the	 possibility	 of	 developing	 phenotype-	specific	 models.	
Second,	 unappreciated	 sub-	phenotypic	 variation	 in	 exist-
ing	or	future	preclinical	studies	may	result	in	differential	
treatment	effects	where	interventions	are	being	studied.

Several	 methods	 of	 inducing	 preclinical	 ARDS	 have	
been	described	in	large	animals	(Yehya,	2019).	In	this	study,	
we	attempted	to	model	the	spectrum	of	host-	inflammatory	
responses,	with	OA	at	the	“hypo-	inflammatory”	end	and	
OA	and	intravenous	LPS	at	the	“hyper-	inflammatory”	ex-
treme	(intratracheal	LPS	being	an	intermediate).	OA	infu-
sion	is	a	classical	model	of	ARDS,	first	described	by	David	
Ashbaugh	and	colleagues,	in	1971	(King	et	al.,	1971).	The	
intravenous	 infusion	 of	 OA	 results	 in	 rapid-	onset	 lung	
injury,	largely	due	to	pulmonary	endothelial	damage	and	
the	 formation	 of	 proteinaceous	 edema	 in	 alveoli	 (Wang	
et	al.,	2008).	This	is	evident	in	our	data,	where	OA	infu-
sion	 generated	 PaO2/FiO2	 ratios	 <100  mmHg,	 within	
30 min.	OA	has	also	been	associated	with	 the	upregula-
tion	of	inflammatory	cytokines	and	chemokines,	such	as;	
IL-	6,	IL-	8,	TNF-	α,	and	matrix	metalloproteinases	(Ballard-	
Croft	et	al.,	2012;	Gonçalves-	de-	Albuquerque	et	al.,	2012).	
However,	OA	is	not	implicated	in	the	activation	of	several	
signalling	 pathways	 known	 to	 be	 important	 in	 clinical	
ARDS,	such	as	NF-	κB	(Moine	et	al.,	2000).	In	this	study,	
animals	 receiving	 OA	 alone	 had	 consistently	 lower	 lev-
els	 of	 pro-	inflammatory	 cytokines	 measured	 in	 plasma.	
These	 differences	 may	 also	 be	 accounted	 for	 by	 the	 fact	

that	 the	 injury	 caused	 by	 OA	 is	 predominantly	 pulmo-
nary,	as	85%	of	the	free-	fatty	acids	from	OA	are	retained	in	
the	 lung	(Gonçalves-	de-	Albuquerque	et	al.,	2015).	These	
features	may	restrict	 the	ability	of	OA	to	accurately	rep-
licate	 the	 full	pathobiology	of	ARDS,	particularly	ARDS	
of	 a	 non-	pulmonary	 etiology.	 The	 addition	 of	 LPS	 may	
address	some	of	these	limitations.	As	a	common	constitu-
ent	of	Gram-	negative	bacterial	cell	walls,	LPS	participates	
in	 the	 pathology	 of	 causes	 of	 direct	 and	 indirect	 ARDS.	
The	 mechanisms	 of	 LPS-	mediated	 injury	 include;	 lung	
epithelial	injury	(involving	NF-	κB	induction),	pulmonary	
endothelial	 damage,	 neutrophilic	 infiltration,	 and	 the	
activation	 of	 alveolar	 macrophages	 (Chen	 et	 al.,	 2010).	
The	intravenous	infusion	of	LPS	is	also	associated	with	a	
systemic	inflammatory	response	and	the	development	of	
shock	in	preclinical	models;	as	an	alternative,	by	admin-
istering	 LPS	 via	 the	 intratracheal	 route,	 systemic	 effects	
may	be	 limited,	while	 inducing	similar	pathways	within	
the	lung	(Wiener-	Kronish	et	al.,	1991).	In	this	study,	the	
addition	of	LPS	was	associated	with	prolonged	severe	hy-
poxaemia,	in	contrast	to	OA	alone.

An	 expanding	 number	 of	 studies	 has	 identified	 two	
consistent	 sub-	phenotypes	 of	 ARDS	 in	 clinical	 cohorts,	
which	 have	 been	 broadly	 characterized	 as	 hyper-		 and	
hypo-	inflammatory	 (Bos	 et	 al.,	 2017;	 Calfee	 et	 al.,	 2014,	
2018;	Famous	et	al.,	2017;	Sinha	et	al.,	2018).	These	sub-	
phenotypes	have	distinct	outcomes	and,	 in	 retrospective	
analysis,	have	been	shown	 to	 respond	differently	 to	 sev-
eral	 interventions.	 Related	 sub-	phenotypes	 have	 also	
been	 identified	 in	 other	 conditions	 causing	 critical	 ill-
ness	(Neyton	et	al.,	2019;	Seymour,	Kennedy,	et	al.,	2019;	
Vranas	 et	 al.,	 2017).	 However,	 the	 predominant	 cluster-
ing	 method	 employed	 in	 clinical	 cohorts,	 finite	 mixture	
modelling,	 is	 restricted	 in	 its	 applicability	 to	 preclinical	
studies,	which	are	typically	constrained	to	relatively	small	
sample	sizes	(Dziak	et	al.,	2014).	Similarly,	there	are	meth-
odological	challenges	in	assessing	the	similarity	of	these	
sub-	phenotypes	between	studies,	exacerbated	by	a	lack	of	
understanding	of	the	mechanisms	underpinning	their	de-
velopment	and	differences	in	the	methods	used	to	cluster	
groups.	However,	to	date,	no	study	has	sought	to	identify	
these	groupings	by	any	means	in	animal	models	of	ARDS.

In	 this	 study,	 partitional	 clustering,	 as	 opposed	 to	
model-	based	 clustering,	 was	 used	 to	 investigate	 the	
presence	 of	 sub-	phenotypes	 within	 the	 combined	 study.	
Partitional	 clustering	 is	 a	 common	 method	 to	 partition	
objects,	 in	 this	case	animals,	 into	an	optimal	number	of	
related	clusters	 (Steinley,	2006).	The	aim	 is	 to	maximize	
homogeneity	within	clusters	while	minimizing	it	between	
them.	The	algorithm	is	agnostic	to	the	number	of	clusters,	
therefore	 an	 assessment	 of	 the	 optimal	 number	 of	 clus-
ters	was	made	before	clustering	was	applied.	This	is	unlike	
model-	based	clustering	where	parametric	techniques	can	
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be	used	to	accept	or	refute	the	addition	of	classes	versus	
a	null	model	(usually	starting	with	k = 1).	However,	we	
performed	this	assessment	in	a	principled	manner,	accept-
ing	the	consensus	of	26	independent	measures	of	cluster	
number.	Here,	two	clusters	provided	the	optimal	solution.	
Mapping	of	individual	animals	on	to	the	PCs	derived	by	
PCA	allowed	us	to	visualize	the	differences	between	clus-
ters	in	a	two-	dimensional	space.

The	 sub-	phenotypes	 identified	 in	 this	 study	 share	
some	 qualitative	 similarities	 with	 those	 described	 in	
ARDS	 clinical	 cohorts.	 Cluster	 B	 animals	 in	 this	 study	
exhibited	 higher	 levels	 of	 plasma	 IL-	6,	 IL-	8,	 creatinine,	
and	serum	sodium,	with	elevated	prothrombin	times	and	
heart	 rates.	 On	 the	 other	 hand,	 they	 had	 lower	 serum	
albumin,	 leukocyte	 count,	 bicarbonate	 concentration,	
and	PaO2/FiO2	ratio.	This	is	a	similar	trend	to	that	of	the	
hyper-	inflammatory	sub-	phenotype	identified	in	clinical	
studies	(Calfee	et	al.,	2014).	However,	as	alluded	to,	direct	
comparisons	between	studies	of	this	nature	are	challeng-
ing	and	 features	 such	as	 the	magnitude	of	z-	scores	and	
the	 rank	 order	 of	 variables	 should	 be	 interpreted	 with	
caution	 (Sinha	 et	 al.,	 2021).	 Advances	 in	 methodology	
alongside	more	granular	phenotyping,	using	-	omics	tech-
nologies,	may	be	required	to	provide	valid	comparisons.

This	study	is	exploratory	and	has	important	limitations.	
First,	large	animals	like	humans,	exhibit	variability	in	their	
response	to	injury.	This	effect	of	variability	can	be	reduced	
with	 the	 inclusion	 of	 a	 greater	 number	 of	 experimental	
subjects.	This	study	used	a	small	number	of	animals	which	
limit	the	conclusions	which	can	be	drawn.	However,	large	
animal	experimentation,	particularly	those	involving	com-
plex	critical	care	interventions,	are	resource	intensive	and	
future	studies	are	likely	to	face	challenges	in	including	sub-
stantially	 greater	 numbers.	 Second,	 although	 differences	
were	 observed	 between	 groups	 and	 sub-	phenotypes,	 the	
duration	of	 the	study	was	short.	A	longer	period	of	sam-
pling	may	have	captured	evolving	differences	among	mea-
sured	parameters.	This	may	be	especially	true	of	indices	in	
which	 there	 is	 likely	 to	 be	 lag	 after	 injury,	 such	 as	 renal	
dysfunction.	 Third,	 the	 choice	 of	 clustering	 technique	 is	
flexible,	 given	 the	 variety	 available	 to	 investigators.	 PAM	
has	several	specific	disadvantages,	not	least	of	which	is	its	
vulnerability	 to	 the	 influence	 of	 outliers.	 Future	 studies	
may	seek	to	validate	clustering	solutions	by	adopting	more	
than	one	technique	(Castela	Forte	et	al.,	2019).

In	 conclusion,	 we	 identified	 preliminary	 evidence	 of	
sub-	phenotypes	 occurring	 in	 animal	 models	 of	 ARDS.	
These	phenotypes	are	characterized	by	differences	in	the	
severity	of	shock,	systemic	inflammation,	and	lung	injury.	
Sub-	phenotypes	bear	a	qualitative	similarity	to	those	iden-
tified	in	clinical	cohorts.	The	method	of	injury	chosen	in	
animal	models	may	tend	toward	one	or	the	other	which	
should	 be	 borne	 in	 mind	 when	 interpreting	 preclinical	

trials	of	interventions.	Further	studies	are	required	to	con-
firm	these	findings	and	to	develop	our	understanding	of	
the	biological	underpinning	of	sub-	phenotypes	in	ARDS.
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