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Abstract
The acute respiratory distress syndrome (ARDS) describes a heterogenous pop-
ulation of patients with acute severe respiratory failure. However, contempo-
rary advances have begun to identify distinct sub-phenotypes that exist within 
its broader envelope. These sub-phenotypes have varied outcomes and respond 
differently to several previously studied interventions. A more precise under-
standing of their pathobiology and an ability to prospectively identify them, may 
allow for the development of precision therapies in ARDS. Historically, animal 
models have played a key role in translational research, although few studies 
have so far assessed either the ability of animal models to replicate these sub-
phenotypes or investigated the presence of sub-phenotypes within animal mod-
els. Here, in three ovine models of ARDS, using combinations of oleic acid and 
intravenous, or intratracheal lipopolysaccharide, we investigated the presence 
of sub-phenotypes which qualitatively resemble those found in clinical cohorts. 
Principal Component Analysis and partitional clustering identified two clusters, 
differentiated by markers of shock, inflammation, and lung injury. This study 
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1   |   INTRODUCTION

It is increasingly understood that the acute respiratory 
distress syndrome (ARDS) describes a clinically and im-
munologically heterogenous population (Sinha & Calfee, 
2019). Heterogeneity among patients with ARDS has been 
proffered as an explanation for consistently negative trials 
of pharmacological treatments. Contemporary advances 
in phenotyping, using unsupervised machine learning 
techniques, have identified novel sub-phenotypes in clin-
ical trial cohorts (Calfee et al., 2014). These phenotypes 
have discrepant outcomes, and importantly, appear to 
respond differently to several interventions (Calfee et al., 
2018). An ability to prospectively identify sub-phenotype 
membership in patients with ARDS opens the possibility 
of delivering personalized treatments.

Historically, animal models of ARDS have played an 
important role in biological discovery and in therapeutic 
translation (Yehya, 2019). Numerous models of ARDS 
have been developed in both large and small animals. 
However, an animal model that fully recapitulates the 
clinical pathobiology of ARDS is not available. This has 
contributed to the gap between results generated from 
preclinical models and those obtained in subsequent clin-
ical trials. As our knowledge of clinical sub-phenotypes 
grows, a new question arises for those modelling ARDS 
in animals; how well does an animal model reflect the 
pathobiology of a specific clinical sub-phenotype? To an-
swer this question several preliminary facts need to be 
elucidated. Do existing preclinical models of ARDS more 
closely resemble one phenotype or another? And, do ani-
mals with experimental ARDS exhibit phenotypes given a 
common method of injury?

Thus, we sought to develop an approach to these prob-
lems by testing three models of ARDS in sheep. Using 
a combination of dimensionality reduction and parti-
tional clustering, we investigated the presence of sub-
phenotypes, arising dependent or independent of the 
means of injury. Previously, others have pursued a related 
approach to identify sub-phenotypes in a murine model 
of sepsis (Seymour, Kerti, et al., 2019). Similarly, we aimed 
to undertake a preliminary exploration of sub-phenotypes 

arising in preclinical models of ARDS, and to propose a 
methodology for investigating these phenomena in ani-
mal models.

2   |   MATERIALS AND METHODS

2.1  |  Study design

Ethical approval for this study was obtained from 
University Animal Ethics Committees (QUT1600001108, 
UQPCH/483/17). The study was conducted in accordance 
with the Australian Code of Practice for the Care and Use 
of Animals for Scientific Purposes (Council NHMR, 2013), 
and reported in compliance with the ARRIVE guidelines 
(Percie du Sert et al., 2019). Detailed methods are provided 
in an online supplement. A diagrammatic summary of the 
study is presented in Figure 1.

2.2  |  Animal model

Nineteen healthy Border Leicester Cross ewes, aged be-
tween 1 and 3  years and weighing 52  kg (47–54), were 
randomly assigned to one of three groups; injury by in-
travenous infusion of oleic acid (OA, n = 7), by OA and 
intratracheal E. coli lipopolysaccharide (IT, n = 7), or by 
OA and intravenous E. coli lipopolysaccharide (IV, n = 5).

Briefly, animals were anesthetized with ketamine, mid-
azolam, and fentanyl. Continuous neuromuscular block-
ade was maintained by infusion of vecuronium. After 
induction, animals were tracheostomized and ventilated 
using a low tidal volume strategy. After instrumentation, 
acute lung injury was induced by infusion of OA (0.06 ml/
kg; O1008, Sigma-Aldrich, Castle Hill, NSW, Australia), 
with or without, intratracheal E. coli LPS (100 µg; O55:B5, 
Sigma-Aldrich, Castle Hill, NSW, Australia) or intrave-
nous E. coli LPS (1 μg/kg infused over 1 h; O55:B5, Sigma-
Aldrich, Castle Hill, NSW, Australia). Once a PaO2/FiO2 
ratio <100 mmHg (PEEP ≥5 cmH2O) was achieved (0 h), 
animals received protocolized intensive care for the dura-
tion of the study. At 6 h, animals were euthanized.

provides a first exploration of ARDS phenotypes in preclinical models and sug-
gests a methodology for investigating this phenomenon in future studies.

K E Y W O R D S

acute respiratory distress syndrome, animal, models, phenotype
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F I G U R E  1   Study overview, measures of gas exchange, and respiratory mechanics. (a) Schematic overview of study design. (b) Measures 
of gas exchange. (c) Measures of respiratory mechanics. Data are presented as mean and 95% confidence intervals
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2.3  |  Blood and cytokine analysis

Blood samples were analyzed by and independent veteri-
nary laboratory (IDEXX Laboratories, Brisbane, Australia) 
to clinical standards. Routine biochemical, hematological, 
and coagulation tests were performed. The concentration 
of interleukin-6 (IL-6), IL-8, IL-1β, and IL-10 was meas-
ured in blood and in bronchoalveolar lavage (BAL) fluid. 
Our development of ovine-specific ELISA assays has been 
described before (Bouquet et al., 2020). Detailed methods 
are provided in an online supplement.

2.4  |  Statistical analysis

Data are expressed as median (IQR). Analysis was un-
dertaken in R 4.0.3 (R Core Team, Vienna, Austria, 
2020). The dataset for this study, along with reproduc-
ible code and supplementary methods and results, is 
available at http://doi.org/10.5281/zenodo.4677513. 
Longitudinal data were analyzed by fitting linear mixed 
models, using the R package lme4. Non-longitudinal 
data were compared with one-way ANOVA. Where a 
significant interaction was observed, post hoc com-
parisons were made using Tukey's test, using the R 
package rstatix. Correction for multiple comparisons 
was made using the Benjamini–Hochberg method. 
Frequency data were compared using the Chi-squared 
test. Co-linearity was assessed by calculating the 
Spearman correlation coefficient for each pair of vari-
ables, using the R package corrplot. Principal com-
ponent analysis (PCA) was performed to reduce the 

dataset to a smaller number of principal components 
(PCs), using the R package FactoMineR (Husson et al., 
2017). Beforehand, missing data were imputed using a 
random forest approach with predictive mean match-
ing (using the R package missRanger) and the dataset 
was z-score normalized by subtracting the variable 
mean and dividing by the variable standard devia-
tion (Josse & Husson, 2012). After examination of the 
scree plot, principal components sufficient to explain 
>75% of the total variance were retained. Partitioning 
around medoids (PAM) clustering was performed, 
after PCA, on the imputed dataset, using the R pack-
age cluster. A Euclidean distance measure was em-
ployed. The optimal number of clusters to specify was 
derived from a “majority” assessment of 26 measures, 
using the NbClust package. In event of a tie a parsi-
monious solution was preferred. To assess the stability 
of clusters, we employed a nonparametric bootstrap-
based strategy using the R package fpc. This generated 
1000 new datasets by randomly drawing samples from 
the initial dataset with replacement and applying the 
same clustering technique to each. Clustering results 
were then compared for each cluster identified in the 
primary analysis and the most similar cluster identi-
fied for each random re-sampling. A mean value for 
the Jaccard coefficient, for the sum of the compari-
sons, was generated for each cluster. Z-scores for each 
variable, by cluster, were descriptively compared with 
clusters derived from a previously published latent 
class analysis of the ARMA study (Calfee et al., 2014), 
obtained using a digital ruler. Statistical significance 
was assumed if p < 0.05.

T A B L E  1   Physiological characteristics at 0 hours (injury). Data are presented as median (IQR)

Overall
(n=19)

OA
(n=7)

IT
(n=7)

IV
(n=5)

Weight (kg) 52 (47–54) 55 (53–57) 47 (46–51) 52 (46–52)

PEEP (cmH2O) 10 (10–10) 10 (7.5–10) 10 (10–10) 10 (10–10)

Plateau pressure (cmH2O) 27 (26–30) 26 (26–27) 27 (26–29) 29 (28–34)

Static compliance (mL/cmH2O) 16 (14–22) 21 (16–25) 16 (14–18) 16 (14–16)

PaO2/FiO2 (mmHg) 52 (47–90) 52 (49–69) 47 (46–51) 100 (55–133)

Effective shunt (%) 49 (43–54) 49 (44–54) 50 (48–54) 45 (37–52)

PaCO2 (mmHg) 49 (46–57) 47 (46–53) 52 (46–57) 49 (48–53)

pH 7.31 (7.28–7.35) 7.31 (7.25–7.32) 7.33 (7.3–7.38) 7.32 (7.31–7.37)

Bicarbonate (mmol/L) 23.8 (22.3–24.9) 22.4 (21.9–23.3) 24.3 (23.9–24.9) 23.4 (22.6–25.4)

Base excess (mmol/L) −0.6 (−2.5 to 1.1) −2.5 (−3 to −2.4) 1 (0–1.8) 0.8 (−1.4 to 2.6)

Heart rate (bpm) 112 (102–134) 121 (96–134) 111 (100–132) 112 (106–117)

Mean arterial pressure (mmHg) 96 (85–109) 104 (96–111) 80 (76–92) 108 (99–115)

Mean pulmonary arterial pressure (mmHg) 21 (19–25) 22 (19–26) 23 (20–27) 20 (19–21)

Central venous pressure (mmHg) 12 (9–13) 13 (12–15) 11 (9–13) 11 (3–19)

http://doi.org/10.5281/zenodo.4677513
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F I G U R E  2   Partitional clustering and sub-phenotypes. (a) Clustering results projected on PCs 1 and 2 of the PCA. B. Half-dot, half-violin 
plots of key variables stratified by cluster membership
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3   |   RESULTS

Baseline characteristics at injury (0 h) are summarized in 
Table 1 and in Table E1 (Supplementary results available 
at http://doi.org/10.5281/zenodo.4677513). All animals 
completed the study protocol and were euthanized at 6 h 
(Table E2). There were some missing data in our study 
(Table E3) and prior to analysis these data were imputed 
using a random forest method.

Oleic acid, with or without LPS, induces acute severe 
respiratory failure. However, LPS prolongs or prevents im-
provements in oxygenation in the first 6 h

The infusion of OA produced severe lung injury 
(PaO2/FiO2 <100 mmHg). However, oxygenation began 
to recover within 1 h (Figure 1). LPS consistently main-
tained PaO2/FiO2 within the range of severe ARDS. 
Differences in oxygenation between groups were not as-
sociated with differences in respiratory system mechan-
ics (Figure 1).

3.1  |  The addition of LPS increases the 
plasma concentration of interleukin-6

Both intravenous and intratracheal LPS increased the 
plasma concentration of IL-6 (group:time, p <0.001) 
when compared to OA alone (Figure E1 and Tables E4 
and E5). The use of intravenous LPS was associated 
with non-sustained increases in the plasma concen-
tration of IL-8 (group:time, p  <  0.001). Similarly, the 
use of intravenous LPS resulted in increase in plasma 
IL-10 (group:time, p  <  0.001). All three injury meth-
ods were associated with low plasma levels of IL-1β. 
Cytokine concentrations in bronchoalveolar lavage 
(BAL) fluid were less distinct between groups (Figure 
E1 and Tables E4 and E5). Animals injured with in-
travenous LPS, as compared to OA alone, had higher 
white cell and neutrophil counts at 6 h (p = 0.049 and 
0.034, respectively).

3.2  |  In the first 6 hours, intravenous LPS 
induces more severe shock in comparison 
to intratracheal LPS or OA alone

All pulmonary injury methods produced shock requir-
ing vasopressor support (Figure E2). While reductions 

in MAP from baseline to 6  h were greater in animals 
receiving LPS, these differences were not statistically 
significant. Similarly, there were no significant differ-
ences in heart rate or CVP, between groups (Figure E2). 
Cumulative fluid balance was greatest in OA animals, and 
significantly different when compared to sheep given LPS 
(Figure E2). Cumulative urine output did not differ be-
tween groups (p = 0.109).

Hematological and biochemical parameters, at 6 h, are 
presented in Table E2. Following correction for multiple 
comparisons, there were no significant differences be-
tween groups in indices of renal function.

3.3  |  Two sub-phenotypes are 
identifiable and are associated with the 
method of injury

A priori assessment of the data suggested that two clus-
ters were the optimal partition of our data (Table E6). 
The distribution of the clusters in two-dimensional 
space is shown in Figure 2. Animals in cluster B (n = 4) 
tended to have a lower MAP, lower urine output, were 
more acidotic, coagulopathic, and had higher plasma 
levels of IL-6, IL-8, and IL-10 (Figure 2). Proportionally, 
more animals injured with intravenous LPS were found 
in Cluster B (p = 0.036). All animals injured with IT LPS 
were assigned to Cluster A. The clusterwise stability was 
good (mean Jaccard similarities, 0.85 Cluster A, 0.71 
Cluster B).

3.4  |  Differences in variables 
describing the severity of shock and of lung 
injury explain the majority of variance 
between animals

There was a high degree of correlation between variables 
recorded in our study at 6 h (Figure E3). In an effort to re-
duce the dimensionality of the data and identify the most 
differentiating variables we performed principal compo-
nent analysis (PCA). In total, eight principal components 
(PCs) explained >75% of the variance between animals, 
with the first 4 PCs explaining >50% (Figure 3). Markers 
of shock severity contributed heavily to PCs 1 and 2, while 
markers of lung injury defined PCs 4 and 5 (Figures 3 and 
4 and Figure E4).

F I G U R E  3   Principal component analysis (PCA). (a) Biplot of principal components (PCs) 1 and 2. The top five variables in PC 1 
are shown. Large dots represent the group mean. (b) Scree plot of first eight PCs. (c) Pairs plot of PCA projections for first eight PCs. (d) 
Contribution and quality of representation of variables to PCs. The quality of representation (cos2) sums to one for each variable across all 
PCs. The contribution of variables to variance in a PC are expressed as percentages

http://doi.org/10.5281/zenodo.4677513
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F I G U R E  4   Preclinical clusters and clinical cohorts. (a) Z-core plot of animal clusters for variables common with those in published 
clustering studies. VE, minute volume, WCC, white cell count, MAP, mean arterial pressure. (b) Preclinical cluster z-score plots contrasted 
with clinical trial clustering sub-phenotypes. Green line, ARMA trial sub-phenotypes
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4   |   DISCUSSION

In a study combining three ovine models of ARDS, we 
provide a preliminary exploration of sub-phenotypes oc-
curring early in the course of illness. In doing so, we pro-
vide the first characterization of OA and LPS “double-hit” 
models of ARDS in large animals. In this study, OA was 
capable of inducing severe acute respiratory failure, how-
ever oxygenation began to improve rapidly unless ani-
mals were additionally insulted with LPS. All three injury 
models produced an elevation in plateau airway pressure 
and a reduction in compliance. Likewise, all exhibited evi-
dence of shock, requiring vasopressor support. Plasma lev-
els of IL-6 were higher in animals receiving intravenous 
LPS, however BAL concentrations remained unchanged. 
Decomposition of the dataset by PCA, revealed that the 
first 4 PCs explained 54% of the variance in the dataset, and 
may be characterized as representing the degree of shock/
inflammation (PCs 1 and 2) and lung injury (PCs 3 and 4). 
Unsupervised clustering, using PAM, identified the pres-
ence of two sub-phenotypes. These were primarily differ-
entiated along PC1. Cluster membership was associated 
with method of injury with more animals belonging to the 
intravenous LPS group in cluster B. These data may have 
implications for translational research in ARDS. First, 
the presence of sub-phenotypes in animal models opens 
the possibility of developing phenotype-specific models. 
Second, unappreciated sub-phenotypic variation in exist-
ing or future preclinical studies may result in differential 
treatment effects where interventions are being studied.

Several methods of inducing preclinical ARDS have 
been described in large animals (Yehya, 2019). In this study, 
we attempted to model the spectrum of host-inflammatory 
responses, with OA at the “hypo-inflammatory” end and 
OA and intravenous LPS at the “hyper-inflammatory” ex-
treme (intratracheal LPS being an intermediate). OA infu-
sion is a classical model of ARDS, first described by David 
Ashbaugh and colleagues, in 1971 (King et al., 1971). The 
intravenous infusion of OA results in rapid-onset lung 
injury, largely due to pulmonary endothelial damage and 
the formation of proteinaceous edema in alveoli (Wang 
et al., 2008). This is evident in our data, where OA infu-
sion generated PaO2/FiO2 ratios <100  mmHg, within 
30 min. OA has also been associated with the upregula-
tion of inflammatory cytokines and chemokines, such as; 
IL-6, IL-8, TNF-α, and matrix metalloproteinases (Ballard-
Croft et al., 2012; Gonçalves-de-Albuquerque et al., 2012). 
However, OA is not implicated in the activation of several 
signalling pathways known to be important in clinical 
ARDS, such as NF-κB (Moine et al., 2000). In this study, 
animals receiving OA alone had consistently lower lev-
els of pro-inflammatory cytokines measured in plasma. 
These differences may also be accounted for by the fact 

that the injury caused by OA is predominantly pulmo-
nary, as 85% of the free-fatty acids from OA are retained in 
the lung (Gonçalves-de-Albuquerque et al., 2015). These 
features may restrict the ability of OA to accurately rep-
licate the full pathobiology of ARDS, particularly ARDS 
of a non-pulmonary etiology. The addition of LPS may 
address some of these limitations. As a common constitu-
ent of Gram-negative bacterial cell walls, LPS participates 
in the pathology of causes of direct and indirect ARDS. 
The mechanisms of LPS-mediated injury include; lung 
epithelial injury (involving NF-κB induction), pulmonary 
endothelial damage, neutrophilic infiltration, and the 
activation of alveolar macrophages (Chen et al., 2010). 
The intravenous infusion of LPS is also associated with a 
systemic inflammatory response and the development of 
shock in preclinical models; as an alternative, by admin-
istering LPS via the intratracheal route, systemic effects 
may be limited, while inducing similar pathways within 
the lung (Wiener-Kronish et al., 1991). In this study, the 
addition of LPS was associated with prolonged severe hy-
poxaemia, in contrast to OA alone.

An expanding number of studies has identified two 
consistent sub-phenotypes of ARDS in clinical cohorts, 
which have been broadly characterized as hyper-  and 
hypo-inflammatory (Bos et al., 2017; Calfee et al., 2014, 
2018; Famous et al., 2017; Sinha et al., 2018). These sub-
phenotypes have distinct outcomes and, in retrospective 
analysis, have been shown to respond differently to sev-
eral interventions. Related sub-phenotypes have also 
been identified in other conditions causing critical ill-
ness (Neyton et al., 2019; Seymour, Kennedy, et al., 2019; 
Vranas et al., 2017). However, the predominant cluster-
ing method employed in clinical cohorts, finite mixture 
modelling, is restricted in its applicability to preclinical 
studies, which are typically constrained to relatively small 
sample sizes (Dziak et al., 2014). Similarly, there are meth-
odological challenges in assessing the similarity of these 
sub-phenotypes between studies, exacerbated by a lack of 
understanding of the mechanisms underpinning their de-
velopment and differences in the methods used to cluster 
groups. However, to date, no study has sought to identify 
these groupings by any means in animal models of ARDS.

In this study, partitional clustering, as opposed to 
model-based clustering, was used to investigate the 
presence of sub-phenotypes within the combined study. 
Partitional clustering is a common method to partition 
objects, in this case animals, into an optimal number of 
related clusters (Steinley, 2006). The aim is to maximize 
homogeneity within clusters while minimizing it between 
them. The algorithm is agnostic to the number of clusters, 
therefore an assessment of the optimal number of clus-
ters was made before clustering was applied. This is unlike 
model-based clustering where parametric techniques can 
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be used to accept or refute the addition of classes versus 
a null model (usually starting with k = 1). However, we 
performed this assessment in a principled manner, accept-
ing the consensus of 26 independent measures of cluster 
number. Here, two clusters provided the optimal solution. 
Mapping of individual animals on to the PCs derived by 
PCA allowed us to visualize the differences between clus-
ters in a two-dimensional space.

The sub-phenotypes identified in this study share 
some qualitative similarities with those described in 
ARDS clinical cohorts. Cluster B animals in this study 
exhibited higher levels of plasma IL-6, IL-8, creatinine, 
and serum sodium, with elevated prothrombin times and 
heart rates. On the other hand, they had lower serum 
albumin, leukocyte count, bicarbonate concentration, 
and PaO2/FiO2 ratio. This is a similar trend to that of the 
hyper-inflammatory sub-phenotype identified in clinical 
studies (Calfee et al., 2014). However, as alluded to, direct 
comparisons between studies of this nature are challeng-
ing and features such as the magnitude of z-scores and 
the rank order of variables should be interpreted with 
caution (Sinha et al., 2021). Advances in methodology 
alongside more granular phenotyping, using -omics tech-
nologies, may be required to provide valid comparisons.

This study is exploratory and has important limitations. 
First, large animals like humans, exhibit variability in their 
response to injury. This effect of variability can be reduced 
with the inclusion of a greater number of experimental 
subjects. This study used a small number of animals which 
limit the conclusions which can be drawn. However, large 
animal experimentation, particularly those involving com-
plex critical care interventions, are resource intensive and 
future studies are likely to face challenges in including sub-
stantially greater numbers. Second, although differences 
were observed between groups and sub-phenotypes, the 
duration of the study was short. A longer period of sam-
pling may have captured evolving differences among mea-
sured parameters. This may be especially true of indices in 
which there is likely to be lag after injury, such as renal 
dysfunction. Third, the choice of clustering technique is 
flexible, given the variety available to investigators. PAM 
has several specific disadvantages, not least of which is its 
vulnerability to the influence of outliers. Future studies 
may seek to validate clustering solutions by adopting more 
than one technique (Castela Forte et al., 2019).

In conclusion, we identified preliminary evidence of 
sub-phenotypes occurring in animal models of ARDS. 
These phenotypes are characterized by differences in the 
severity of shock, systemic inflammation, and lung injury. 
Sub-phenotypes bear a qualitative similarity to those iden-
tified in clinical cohorts. The method of injury chosen in 
animal models may tend toward one or the other which 
should be borne in mind when interpreting preclinical 

trials of interventions. Further studies are required to con-
firm these findings and to develop our understanding of 
the biological underpinning of sub-phenotypes in ARDS.
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