

Assessing modern ground survey methods and airborne laser scanning for digital terrain modelling

Gallay, M., Lloyd, C. D., McKinley, J., & Barry, L. (2013). Assessing modern ground survey methods and airborne laser scanning for digital terrain modelling: A case study from the Lake District, England. *Computers and Geosciences*, *51*, 216-227. https://doi.org/10.1016/j.cageo.2012.08.015

Published in:

Computers and Geosciences

Document Version: Peer reviewed version

Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal

Publisher rights

This is the author's version of a work that was accepted for publication in Computers & Geosciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computers & Geosciences, VOL51, 02/2013

General rights

Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access

This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Author's Accepted Manuscript

Assessing modern ground survey methods and airborne laser scanning for digital terrain modelling: a case study from the Lake District, England

Michal Gallay, Christopher D. Lloyd, Jennifer McKinley, Lorraine Barry

www.elsevier.com/locate/cageo

 PII:
 S0098-3004(12)00294-4

 DOI:
 http://dx.doi.org/10.1016/j.cageo.2012.08.015

 Reference:
 CAGEO3006

To appear in: Computers & Geosciences

Received date:7 March 2012Revised date:15 August 2012Accepted date:21 August 2012

Cite this article as: Michal Gallay, Christopher D. Lloyd, Jennifer McKinley and Lorraine Barry, Assessing modern ground survey methods and airborne laser scanning for digital terrain modelling: a case study from the Lake District, England, *Computers & Geosciences*, http://dx.doi.org/10.1016/j.cageo.2012.08.015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Assessing modern ground survey methods and airborne laser scanning for digital terrain
2	modelling: a case study from the Lake District, England
3	
4	Michal Gallay, Christopher D. Lloyd, Jennifer McKinley, Lorraine Barry
5	
6	Corresponding Author: Michal Gallay
7	E-mail address: michal.gallay@upjs.sk
8	Full postal address: Institute of Geography, Faculty of Natural Sciences, Pavol Jozef Šafárik University in
9	Košice, Jesenná 5, 040 01 Košice, Slovakia
10	Telephone number: 00421 55 2342352,
11	Fax number: 00421 55 6222124
12	
13	Michal Gallay, Institute of Geography, Faculty of Natural Sciences, Pavol Jozef Šafárik University,
14	Jesenná 5, 04001 Košice, email: michal.gallay@upjs.sk
15	Christopher D. Lloyd, School of Geography, Archaeology and Palaeoecology, Queen's University
16	Belfast, BT7 1NN Belfast, UK, email: c.lloyd@qub.ac.uk
17	Jennifer McKinley, School of Geography, Archaeology and Palaeoecology
18	Queen's University Belfast BT7 1NN Belfast, UK, email: j.mckinley@qub.ac.uk
19	Lorraine Barry, School of Geography, Archaeology and Palaeoecology, Queen's University Belfast, BT7
20	1NN Belfast, UK, email: l.barry@qub.ac.uk
21	
22	
23	
24	
25	

Abstract: This paper compares the applicability of three ground survey methods for modelling terrain: 26 one man electronic tachymetry (TPS), real time kinematic GPS (GPS), and terrestrial laser scanning 27 (TLS). Vertical accuracy of digital terrain models (DTMs) derived from GPS, TLS and airborne laser 28 scanning (ALS) data is assessed. Point elevations acquired by the four methods represent two sections of 29 a mountainous area in Cumbria, England. They were chosen so that the presence of non-terrain features is 30 constrained to the smallest amount. The vertical accuracy of the DTMs was addressed by subtracting each 31 DTM from TPS point elevations. The error was assessed using exploratory measures including statistics, 32 histograms, and normal probability plots. The results showed that the internal measurement accuracy of 33 TPS, GPS, and TLS was below a centimetre. TPS and GPS can be considered equally applicable 34 alternatives for sampling the terrain in areas accessible on foot. The highest DTM vertical accuracy was 35 achieved with GPS data, both on sloped terrain (RMSE 0.16 m) and flat terrain (RMSE 0.02 m). TLS 36 surveying was the most efficient overall but veracity of terrain representation was subject to dense 37 vegetation cover. Therefore, the DTM accuracy was the lowest for the sloped area with dense bracken 38 (RMSE 0.52 m) although it was the second highest on the flat unobscured terrain (RMSE 0.07 m). ALS 39 data represented the sloped terrain more realistically (RMSE 0.23 m) than the TLS. However, due to a 40 systematic bias identified on the flat terrain the DTM accuracy was the lowest (RMSE 0.29 m) which was 41 above the level stated by the data provider. Error distribution models were more closely approximated by 42 normal distribution defined using median and normalized median absolute deviation which supports the 43 use of the robust measures in DEM error modelling and its propagation. 44

- 45
- 46 47
- 48

49 **Keywords:** tachymetry; GPS; laser scanning; vertical accuracy; DEM/DTM; Great Langdale

51 52

1. Introduction

Digital terrain models (DTM) representing the bare ground surface are utilised in a wide range of 53 academic as well as engineering applications. Models representing landscape canopy surface are referred 54 to as digital surface models (DSM). Both types comprise a set of parameter values describing the surface 55 shape, located in a coordinate system such that the model is a contiguous representation of the real 56 surface (Evans 1972; Krcho 1990; Hengl and Reuter 2008). Elevation, the height above a defined datum, 57 is the most common parameter due to ease of its acquisition and therefore both DSM and DTM are in fact 58 digital elevation models (DEM). The general term DEM will be used throughout the paper unless 59 SCI specifically referring to DSM or DTM. 60 61 Currently, acquiring the elevation data encompasses a variety of ground surveying techniques such as 62 levelling, tachymetry, global navigation satellite systems and remote sensing methods such 63 as photogrammetry, synthetic aperture radar, laser scanning, or sonar. For more details and a thorough 64 review see Bannister et al. (1998) or Lillesand et al. (2008). The measurements are usually point-based 65 and can be used for direct conversion into a triangulated irregular network (TIN) or a regular grid of 66 67 elevations can be derived by the means of spatial prediction from the set of irregularly distributed points (Clarke 1995). The grid representation is more popular among the users for its efficiency in computer-68 based geomorphometric analyses (Li et al. 2005; Hengl and Reuter 2008). Geomorphometric parameters 69 70 derived from the DEM are often more important than elevation itself (Wechsler 2007). Various authors 71 found that the choice of the DEM interpolation method can have a remarkable effect on the DEM surface properties (Carrara et al. 1997; Desmet 1997; Rees 2000; Lloyd and Atkinson, 2006; Chaplot et al. 2006; 72 Hodgson et al. 2003; Wise 2007, 2011). Considerable differences also occur due to the method of data 73 acquisition (Kraus 1997; Baltsavias 1999; Mercer 200; Hopkinson et al. 2009; Rayburg et al. 2009) and 74

they can vary locally (Gallay et al., 2010; Erdogan 2010)

The level of detail represented by the DEM is determined mainly by the accuracy and density of the 77 source data. Digitized contour data were the most widely used for long time as topographic maps were the 78 79 most accessible data source (Wilson and Gallant, 2000). Advances in remote sensing and availability of 80 accurate GNSS positioning (especially the GPS) more than a decade ago provided the opportunity for 81 acquiring highly accurate and high detail DEM data with lower costs than before. The process of generating fine-scale DSMs and DTMs was revolutionised especially in the last decade by the advance of 82 both airborne (ALS) and terrestrial laser scanning (TLS) with increasing geographic applications in the 83 last few years (e.g. Mallet and Bretar 2009; Höfle and Rutzinger, 2009; Bishop et al. 2011). The 84 unprecedented level of detail captured due to dense and highly accurate measurement is the key benefit in 85 mapping the shape of the earth surface. The available ground surveying technology converges to the 86 fusion of photogrammetry, tachymetry and laser scanning into an image assisted scanning total station 87 which will markedly increase efficiency of surveying (Scherer and Lerma, 2009). 88

89

However, the listed technologies do not present the ultimate solution for any task in understanding the 90 landscape (Gallay 2010), there is increasingly more work comparing accuracy of all approaches. The 91 DEM users should appreciate the applicability of new methods and the properties of the measured data. In 92 relation to geoscience, there is limited published research especially on the evaluation of ground-based 93 94 surveying techniques although their applications are abundant. For example, Coveney et al. (2011) validated a photogrammetric DEM of a coastal inundation area with respect to GPS and TLS data. 95 Further, Casula et al. (2010) integrated measurements acquired by TLS, GPS and TPS surveying methods 96 to generate a high-detail DTM suitable for geomorphological research and they evaluated its suitability. 97 These two papers provide a similar framework to the research presented in this paper. 98

The aim of this paper is to advance understanding of the veracity of acquiring terrain elevations with three ground survey methods and one remote sensing method: (i) one man electronic tachymetry positioning system (TPS), (ii) real time kinematic GPS in static mode (GPS), (iii) terrestrial laser scanning (TLS), and

- 103 (iv) airborne laser scanning (ALS), respectively. The aim is addressed by two objectives.
- (i) The first objective concerns internal measurement accuracy and applicability of TPS, GPS,
 and TLS methods in geographical research of a non-forested mountainous area in which a
 realistic and high-detail model of terrain surface is required (Section 3.1).
- 107(ii)The second objective involves assessment of vertical (elevation) accuracy of DTMs generated108from GPS, TLS, and ALS data with respect to the most accurate ground surveyed point
- 109 measurements as identified within the first objective. (Section 3.2).

Preliminary aspects of such evaluation can be found in Gallay et al. (2011), this paper presents new comparisons and more detailed interpretations.

- 112
- 113
- 114
- 115

2. Methods 2.1. Study sites

The data analysed in this study relate to two areas in the Great Langdale Valley, Lake District, England 116 (Fig. 1, 2). The sites represent two types of terrain typical for mountainous areas in the British Isles and 117 other similar parts of the world. The first site is situated at the Rossett Bridge (0.95 ha), 250 metres east of 118 the Middle Fell Farm. The site represented flat unobscured terrain of alluvial plain covered by a low-cut 119 120 meadow where the elevations are between 92.4 - 93.8 meters and the slope between 0 - 1 degree. The 121 second area (2.5 ha) is relatively uneven sloped terrain facing south adjacent to the Middle Fell Farm. The 122 elevations range from 100 to 170 meters and the slope angle gradually increases from 8 to 26 degrees. The lower part was covered by low grazed grass, while bracken 1 - 1.5 metres tall covered considerable 123 part of the upper slope. Several large boulders and shrubs were also present. The ground survey was 124

125	undertaken in June 2007 in order to acquire terrain elevation samples by TPS, GPS, and TLS. The main
126	criteria for choosing the sites were: (i) existing ALS data for the wider area (Section 2.4), (ii) a variable
127	slope gradient, (iii) limited presence of non-terrain features such as individual trees, forest or buildings.
128	The reason for this was to minimize the effect of non-terrain features on the DEM accuracy measures and
129	also reduce the possibility of marked land cover change between the time of the ALS data collection and
130	the ground survey. All data were acquired in the WGS84 coordinate system and transformed to the British
131	National Grid (OSGB36, Ordnance Datum Newlyn), using the OSTN02 transformation.
132	
133	Fig. 1
134	11g. 1.
135	
136	Fig. 2.
137	
138	2.2. Data acquisition
139	
140	2.2.1. One man electronic tachymetric positioning system (TPS)
141	The method was implemented with a total station capable of automatic tracking of a passive prism. The
142	automatic target recognition sensor (ATR) transmits an infrared laser beam, which is reflected by the
143	prism and is received by an internal high-resolution CCD camera (Leica Geosystems 2005). The method
144	allows for a very effective survey by a single person who moves with the prism in the field and operates
145	the total station via a remote control. For the presented survey, Leica TPS 1200 total station with a 360°
146	prism was employed. According to Leica Geosystems (2005), the precision of measurement is 0.1 mm
147	and the stated positioning accuracy of measurement is less than 2 mm + 1 ppm for the 360° prism. The
148	ATR can be effectively used within 100-150 metres from the total station with a maximum of 600 metres
149	under clear sky conditions. The ATR approach was employed to acquire elevation data of the terrain

considering important terrain features with a spacing of 2-7 metres corresponding to the ALS points. Table 1 provides a summary of the data properties. The data were measured in a local coordinate system and transformed to the WGS84 via locating the total station with GPS (section 2.2.2) for five minutes; afterwards the TPS data were transformed to OSGB36. Some uncertainty, in the order of millimetres, was introduced due to the processing while the precision remained unaffected.

155

156

2.2.2. Real-time kinematic surveying with GPS (GPS)

For this research, the real time kinematic measurement (RTK) with GPS (GPSGOV 2011) was 157 undertaken in static mode using two Leica GPS 1200 kits. For more details on RTK differential 158 positioning consult e.g. Sickle (2001). Each point was occupied for about 15 seconds with 1 second 159 record interval. The base was set up on the same location (not previously surveyed) for each site within 160 the surveyed area and the measurement interval was set to 1 second. The positioning was based on carrier 161 phase solution employing both L1 and L2 signal frequencies using the ATX1230 antenna. The stated 162 precision of this kind of positioning is 0.2 mm and the accuracy of positioning is 5 mm + 0.5 ppm in 163 horizontal direction and 10 mm + 0.5 ppm in vertical direction (Leica Geosystems, 2008). Distance 164 between the measured points and the reference was not greater than 250 metres. The base data were post-165 processed after the survey with respect to the RINEX data (an Ordnance Survey service) for the station in 166 Ambleside situated 15 kilometres east of the surveyed sites. Afterwards, the rover measurements were 167 post-processed with respect to the corrected base station position in order to increase their positional 168 accuracy. All GPS data were transformed from the WGS84 coordinate system to OSGB36 coordinate 169 system using the free software GridInQuest (© Quest Geo Solutions Ltd). The RTK GPS static method 170 was used for positioning the total station in WGS84. 171

172

173

2.2.3. Airborne laser scanning (ALS)

Laser scanning systems belong to active remote sensing systems. Details on the main principles are
discussed in Baltsavias (1999) or Wher and Lhor (1999). Briefly, the acquisition is based on measuring

the travelling time between the emitted laser pulse when it leaves the transmitter and is scattered back 176 from the object and is detected. For that reason, laser scanning is also referred to as LiDAR (Light 177 Detection And Ranging). Emitted laser of the same pulse can be backscattered from several objects thus 178 giving multiple echoes. This makes it capable of collecting altitude of several surface levels. The number 179 of the recorded laser echoes (returns) depends on the penetration of laser beam down through the ground. 180 In general, DTM is created from the last returns. However, they can also represent non-terrain objects 181 impermeable to the laser beam and require filtering to separate them from the terrain heights (see e.g. 182 Meng et al., 2010). Earlier lidar systems employed discrete recording of echoes while recent 183 developments enable full-waveform recordings providing improved sampling of land cover and elevation 184 185 (Höfle and Rutzinger 2010). Reviews on different ALS systems are summarised in Mallet and Bretar (2009) or Pfeifer and Briese (2007). 186

187

The ALS data assessed in this paper represent last return echoes which are considered in the paper as 188 samples terrain elevation. They were acquired with a discrete lidar system during a mission flown by 189 plane in December 2000 by the Environment Agency UK (http://www.environment-agency.gov.uk) 190 mainly for the purposes of flood management. Several missions have been flown since 1998 and large 191 areas were repeatedly scanned with higher accuracy. The data supplied for the presented analysis were 192 acquired within the earlier missions for which there are limited statements on the data accuracy or other 193 specifications available. According to the by the Environment Agency (pers. com. March 1, 2007) the 194 ALS mission specifications varied for different locations. The flying height was between 600-800 metres 195 above ground and scanning field of view was about +/- 20 degrees. We assume the footprint to be within 196 20 centimetres in diameter for flying height 800 m above ground and 0.25 mrad beam divergence 197 (Baltsavias, 1999). The ground truth comparisons undertaken by the agency guaranteed a vertical RMSE 198 of 25cm (1σ) for flat unobscured surface. The accuracy generally decreases with increasing surface slope 199 captured within the laser footprint. 200

201

202

2.2.4. Terrestrial laser scanning (TLS)

TLS employs the physical principles of the LiDAR (Pfeifer and Briese, 2007). It can be considered as 203 state-of-art method of ground surveying which became widely used less than decade ago. The main 204 advantage is the automation of fast and dense height sampling from the surface of the objects surrounding 205 206 the scanner. The accuracy is in the order of milimeters and comparable with electronic tachymetry. 207 However, millions of points comprised in one scan pose difficulties for data processing and high redundancy of data especially when DTM creation is concerned. Due to a narrow footprint, the laser 208 beam is usually entirely reflected from the first surface it hits and thus less likely to penetrate vegetation 209 cover while electronic tachymetry and GNSS allows for selection of measurement locations by the 210 surveyor, thus deliberately sampling the terrain. Filtering can be applied to remove the non-terrain objects 211 although automation is more complex for the airborne datasets and manual filtering is preferred (e.g. 212 Casula et al. 2010). The advances in TLS technology to-date provide an opportunity to record several 213 returns especially with the full waveform scanners (Mallet and Bretar, 2009). The main application 214 domain of TLS is in scanning three-dimensional objects for creation of true 3D models, whereas digital 215 terrain modelling is concerned with 2.5D surfaces (one point per single location). Therefore, the most 216 extensive research using TLS is on digital reconstruction of architectural features (Lerma et al. 2010; 217 Armesto-González et al. 2010), engineering structures (Lam 2006) or mapping vertical or subvertical rock 218 faces (Buckley et al. 2008). So far, few studies document the use of TLS for 2.5D surface mapping and in 219 220 the form of a DEM. Hydrological applications for sediment size analysis (Hodge et al. 2009; Heritage and Millan 2009) are the most common. 221

222

The survey was conducted with a Leica HDS 3000 laser scanner which operates in single-return laser pulse mode. According to Leica Geosystems (2006) the minimum spacing of measurement records is 1.2 milimetres. The laser spot size is 4-6 milimetres at the range of 50 metres with accuracy of 6 milimetres. The user definable record spacing was set to 150 milimetres at 50 metres range. The sampling density

depends on the range from the scanner and varied between 0.5 - 50 cm; on average it is 10 cm. The 227 density of points decreases with increasing distance and the effective range of scanning is about 100 228 metres. Altogether seven scans were completed at the Middle Fell Farm, and these were stitched together 229 via common targets. Their location was chosen so that the targets were captured from at least two 230 different scanner positions. On both sites, the position of the targets was measured with a total station and 231 located by GPS into the WGS84 coordinate system. Thus, all TLS points were georeferenced in WGS84 232 and finally transformed to the OSGB36. Specifications of the TLS survey can be found in Table 1 and 2. 233 The postprocessing and registration of the TLS point clouds was performed in the Cyclone software (© 234 Leica Geosystems). In order for data to be operable in the GIS analyses they were decimated to every 20 235 150 236 cm.

- 237
- 238

2.3. Data processing and assessment

239

Usually, DEM error assessment is based on statistics calculated for residuals from subtracting two 240 spatially overlapping data sets of which one is more accurate (reference) than the other. The reference 241 data typically comprise fewer highly accurate point measurements which are either randomly distributed 242 or taken at selected locations. However for any two sets of data, measurement support size, location of 243 point measurements and spatial distribution are often different which imposes uncertainty on the accuracy 244 assessment (Atkinson and Tate 2000). The data analysed in this research were acquired with different 245 spatial density and distribution (Fig. 2). The measurement support size was also different. While it was 246 247 comparable for TPS, GPS, and TLS (1-10 milimeters), ALS measurement had the largest support (20 - 30 248 cm). For practical reasons, it is difficult to satisfy all the three aspects of terrain sampling for accuracy assessment. Hence, in order to eliminate the effect of differing location, spatial density, and support size a 249 relatively small area was surveyed with a higher point density and the following approach was adopted in 250 the analysis using ArcGIS software (ESRI 2009). 251

252

A TIN based DTM was generated from each of the four point data sets and then converted to gridded 253 DEMs. Linear interpolation associated with TIN to grid conversion was preferred for its simplicity as 254 other more sophisticated methods (e.g. splines, kriging) could introduce greater uncertainty due to 255 variable parameter settings (Rees 2000). Bater and Coops (2009) also report negligible differences 256 between linear interpolation and other TIN based evaluated techniques. The DTMs were generated with a 257 20cm cell size. This reflects the spatial density of the decimated TLS points representing the finest level 258 of scale and approximate size of the ALS laser footprint, largest measurement support of the methods 259 employed for terrain sampling. Finally, TPS point elevations as the most accurate measurements were 260 261 subtracted from elevations of DTMs generated from the remaining data types (Fig. 3). Thus, elevation residuals were calculated and used for characterisation of DTM vertical errors. 262

263

The errors were assessed in R open-source software (R Development Core Team, 2008) using the 264 framework outlined in Höhle and Potuckova (2012, pp. 33-52). The exploratory data analysis included 265 standard accuracy statistical measures (mean, standard deviation, RMSE) and also robust measures 266 (median, NMAD, Oabs 68.3, Oabs 95) which are more resistant to the presence of outliers (see Table 3). 267 The statistics are defined in Höhle and Höhle (2009). The measures are supplied with their 95% 268 confidence intervals. For example, a 95% confidence interval for the sample mean says that 95% of the 269 errors between the lower and upper margin contain the true but unknown mean of the error distribution. 270 The exploratory data analysis indicated outliers are present in some cases and have to be dealt with. 271 Otherwise, the standard DEM accuracy measures (mean, standard deviation, RMSE) would inaccurately 272 describe the error distribution. Hence, the standard measures were calculated before and after outlier 273 removal. The rule of 3.RMSE as applied in Höhle and Höhle (2009) was tested but it did not provide 274 sufficient outlier removal in the case study detailed above. Instead, the threshold of 1% of the extreme 275 values considered as outliers (0.5%) on both tails) was more applicable. At the Middle Fell Farm, the 276

outliers well corresponded with locations of larger non-terrain features such as boulders or shrubs 277 captured by TLS and, in some extent, also by ALS. The part covered by bracken remained unaffected as it 278 formed a substantial proportion of the elevation distribution. As the rationale of applying TLS in this case 279 study was to test the suitability of the method for modelling the terrain, manual filtering of any non-280 terrain features captured within the TLS point-cloud was avoided. 281

282

The error distributions were also tested for normality using the D'Agostino's K^2 omnibus test 283 (D'Agostino and Pearson, 1973) using the R package by Wuertz et al. (2012). The test is considered more 284 powerful for large samples with kurtosis slightly higher than the normal distribution (Seier 2002). The 285 rationale was based on ascertaining whether the data could be assessed by a model based on the normal 286 distribution which is an important expectation of DEM error modelling and its propagation (e.g. Holmes 287 et al., 2000; Fisher and Tate, 2006). The null hypothesis was that data distribution does not deviate from 288 normal distribution due to either skewness or kurtosis. The normality was also graphically explored in 289 histograms and normal probability (Q-Q) plots (Fig. 4, 5). 290 Accepted

291

-	-	~	•	

292

293

294

295

296

297

298

3. Results and discussion

Fig. 2.

Fig. 3.

The practical experience with the employed technologies in the field and statistics summarizing internal 300 accuracy of each ground-based method allows for addressing their applicability in similar types of terrain 301 and extent. Table 1 provides the overview of the efficiency of each method. The number of measurements 302 taken across the same area by TPS and GPS is in the order of hundreds while the TLS data comprised 303 hundreds of thousands of points after decimation of the original point cloud. In the effort of objective 304 evaluation of surveying efficiency, the ratio between the number of measurements taken with respect to 305 the duration of acquisition was calculated and when the duration of data post-processing is considered per 306 area unit. Data post-processing involved the data download, checking for errors, geodetic transformations 307 and data format conversion. The required amount of post-processing is the shortest for GPS and the 308 309 longest for the TLS due more steps involved to get the data into the national coordinate system. Even though the duration of acquisition and post-processing is subject to individual skills of the surveyor and 310 field conditions, the values assist the judgment. The statistics in the last two columns of Table 1 represent 311 the efficiency. 312

313

In order to assess the measurement accuracy we refer to total standard deviation of measurement error 314 (SDM Total) in Table 2. It involves both horizontal and vertical measurement error and other 315 contributions due to positioning the measurement device by other instruments to transform the data in 316 WGS84, and subsequently into the national system OSGB36. The SDM Total values support the 317 expectations according to the metadata from the device manufacturer. The TPS measurements were the 318 most accurate (below 5 mm). The accuracy of GPS measurements is slightly lower (6.5 mm). TLS 319 measurement accuracy is the lowest among the employed techniques (ca.10 mm). This is largely due to 320 propagation of errors from locating the scanner position with a total station and positioning the total 321 station with GPS. Registration of targets in neighbouring scans also introduces some errors which 322 occurred at the Middle Fell Farm. As there was only one scan taken at the Rossett Bridge the highest 323

- SDM Total value is due to scanning itself (SDM TLS of 6 mm). In conclusion, the measurement accuracy
 can be regarded sufficient for terrain modelling purposes for all three methods.
- 326

TPS and GPS data collection can be considered equivalent alternatives. As both methods require direct 327 presence of the surveyor at the measured location their applicability is limited to areas accessible on foot. 328 On the other hand, one can deliberately sample terrain heights what is not as certain as in TLS or ALS 329 remote sensing. For small sites however, TPS data preparation can be considerably slower if geodetic 330 transformations of data are necessary in the post-processing stage. At the Rossett Bridge, the processing 331 the data after the survey took as much time as for more points collected at Middle Fell Farm. If it is 332 possible to link the survey to the national network of geodetic benchmarks, TPS collection could be faster 333 and cheaper without any need for GPS instruments and positioning of the total station in WGS84. TLS 334 appears as the most efficient method but the analyst has to consider the total area and terrain 335 configuration which determines the number of scans (relocations of the scanner). In particular, 336 reconnaissance of the site in order to find suitable locations for targets took a considerable amount of time 337 Accept prior to the scanning. 338 339 Tab. 1. 340 341 342 Tab. 2. 343 344 3.2. GPS, TLS, and ALS DTM vertical accuracy 345 346

The findings presented in the Section 3.1 indicated TPS data as the most accurately measured. Hence, 347 vertical accuracy of GPS, TLS, and ALS data was assessed with respect to the TPS points. Since the 348 analysis revealed marked differences between TLS and ALS DTMs, the ALS DTM was also compared 349 with respect to the TLS points. Thus, four distributions of elevation residuals (errors) are further 350 discussed. The distributions are statistically quantified in Table 4 and the error distributions are 351 graphically portrayed in Fig. 4 and 5. Spatial distribution of vertical accuracy can be depicted from Fig. 352 4c and 5c showing local RMSE. The results show the differing nature of the error distributions for each 353 DTM type and study area. It is indicated by differences between the standard statistical measures (mean, 354 standard deviation, RMSE) before and after outlier removal, and further with respect to the robust 355 356 measures (median, NMAD, Qabs 68.3, Qabs 95). It is important to compare median with the mean, standard deviation NMAD, and NMAD with Qabs 68.3. In case large discrepancies exist, robust 357 measures should be preferred (Höhle and Höhle, 2009). 358

359

360 3.2.1. Flat unobscured terrain at the Rosset Bridge

Overall, the vertical accuracy of DTMs was found higher in this area than on the sloped uneven terrain at 361 the Middle Fell Farm. The effect of outlier removal on the standard measures was negligible (Tab. 3). 362 However in other aspects, the results revealed marked overestimation of the terrain by the ALS DTM. 363 Vertical accuracy of the GPS and TLS DTMs was very high (RMSE around 2 cm and 7 cm, respectively). 364 365 The RMSE was also similar to standard deviations which points to normally distributed errors. The errors show no systematic bias (almost zero mean) therefore the standard accuracy measures are sufficient. It is 366 also supported by negligible differences between NMAD and Oabs 68.3. As much as 95% of the absolute 367 errors (Qabs 95) were within 3.8 to 5.6 cm at 95% probability confidence interval (CI 95%) for GPS 368 DTM. Likewise, the TLS DTM errors were between 11.6 and 15.5 cm at CI 95%. 369

Although the standard deviation of the ALS DTM error and NMAD were relatively low, large mean error 371 and the marked difference between standard deviation and RMSE (over 24 cm) revealed positive 372 systematic bias against the TPS points (mean of 28 cm) and the TLS points (mean of 23 cm), 373 respectively. This increased RMSE (28 cm and 23 cm, respectively) above the accuracy level stated by 374 the ALS data provider (25 cm). The systematic global overestimation of terrain is well depicted in Fig. 375 4c, 6d. Šíma (2010) explains that most likely either (i) inaccurate registration of neighbouring swaths with 376 GPS or (ii) different quasigeoid models used for the coordinate transformation between WGS84 and 377 OSGB36 systems of the ALS data and the reference data. As the ALS data for both sites were supplied in 378 379 a single tile collected during the same mission, we do not expect the systematic bias to be due to (ii). Several empirical studies revealed accuracies of other ALS data between 0.08 - 0.33 m RMSE (Hodgson 380 et al., 2003; French, 2003; Hodgson and Bresnahan, 2004; Rayburg et al., 2009; Höhle and Höhle, 2009), 381 which were subject to parameters of the platform and environmental conditions. 382

383

Fig. 4a-h depicts a close match between the error distributions and normal distribution. High p-values for the TLS and ALS DTMs (Tab. 3) indicate that normal distribution well approximates their error distributions. In case of the GPS DTM, the null hypothesis must be rejected due to higher kurtosis caused by thin tails (best depicted in the Q-Q plots Fig. 4e). In such a case, robust measures can more closely define the normal distribution.

389

390

391 *3.2.2. Sloped uneven terrain at the Middle Fell Farm*

For this area, lower DTM accuracy was expected and also revealed in the results. According to RMSE, the GPS DTM was the most accurate (18 cm), followed by the ALS DTM (30 cm) while TLS DMT was the least accurate (53 cm). However, for correct assessment of this site, the effect of outliers and robust measures were important. The effect of outlier removal was considerably greater than at the Rossett

Bridge. The values of mean error, standard deviation, and RMSE decreased slightly in the order of few milimeters to centimetres for all DTMs apart from the elevation errors of the ALS DTM with respect to TPS points. Standard deviation and RMSE decreased by 10 cm and 7 cm, respectively which indicated presence of outliers markedly influencing the standard accuracy measures (Fig. 5c, g). Outliers were due to unfiltered non-terrain objects present in the ALS last return data. RMSE after outlier removal was reduced below the accuracy level stated by the data provider (25 cm) which was, however, claimed for flat ground. In fact, Qabs 68.3 of 25.5 cm appeared more realistic.

403

With regard to the uneven terrain surface, the GPS DTM can be considered systematically unbiased with respect to TPS points (mean of 5 cm). Although RMSE and Qabs 68.3 indicated the highest vertical accuracy of the GPS DTM among the evaluated the values were relatively large:18 cm, 15cm, respectively. As much as 95% of the absolute errors (Qabs 95) were within 38 to 43 cm at 95% probability confidence interval (CI 95%). This can be due to sampling different locations on uneven terrain (rocky scree) and interpolation of measured elevation into the TPS reference point locations for calculation of residuals.

411

The TLS and ALS DTMs manifested positive global bias (27 cm and 22 cm, respectively). The TLS 412 DTM had several times higher error measures as oppose to the Rossett Bridge area. Inspection of 413 histograms and Q-Q plots in Fig. 5a-h clearly revealed bimodal distribution as a mixture of normal 414 distributions. Reason for that is illustrated by profiles in Fig. 6a, c. The ALS profile follows the cross-415 section through TPS and GPS data which were purposely sample from the terrain, while there is a clear 416 overestimation of terrain in the TLS data. TLS captured the upper parts of the dense bracken which grew 417 over a large proportion of the upper slope. The laser entirely reflects from objects it hits which are larger 418 (e.g. plant leaves) than the TLS footprint whereas the ALS footprint is considerably larger hence capable 419 of penetrating deeper in the vegetation cover hitting several surface levels. Hladik and Alber (2012) 420

presented useful analysis of ALS accuracy stratified by land cover types and plant species. This elucidates 421 higher accuracy reported for the ALS DTM and its marked differences with respect to TLS data. Also the 422 RMSE maps in Fig. 51 clearly show the areas of higher errors between the ALS DMT and TLS points 423 which produced similar pattern to TLS DTM errors with respect to TPS points. Filtering the TLS points 424 would probably not be successful due to the vegetation cover impermeable to TLS laser beam as Coveney 425 and Fotheringham (2011) discuss. 426

427

Differences between the standard deviations and respective RMSEs, especially for TLS and ALS DTMs, 428 indicated that normality of the error distributions is questionable. The null hypothesis of the D'Agostino-429 Pearson K^2 omnibus test had to be rejected for all DTMs for p-values approaching zero mainly due to 430 high kurtosis values. Nevertheless, Fig. 5e-h illustrate the normal probability curves calculated using 431 robust measures (median, NMAD) closely fit the models of normal distribution to the unimodal error 432 distributions of GPS DTM and ALS DTM. The TLS errors could not be confidently modelled in this way 433 Accepted due to bimodality. 434

435

436

437

438

439

440

441

442

443

444

Fig. 6. 445

18

Fig. 5.

Tab. 1.

Tab. 2.

Tab. 3.

4	4	7
4	4	8

449

4. Conclusions and future work

- This paper compared veracity of acquiring terrain elevations with TPS, TLS, GPS, and ALS. Applicability of the three ground survey methods was discussed and the vertical accuracy of DTMs derived from GPS, TLS, and ALS data was assessed. Significance of findings is relevant particularly for digital terrain modelling in geoscientific research. Other applications can take a different stand point to the issue of applicability and DTM accuracy, e.g. forensic investigation (Ruffell and McKinley 2008) or construction engineering (Brimicombe 2009).With regards to the landscape settings and other circumstances of the presented research the results showed that:
- The applicability of the employed ground surveying methods depends on accessibility of the surveyed area and sampling density. TPS and GPS techniques can be regarded as equivalent alternatives for terrain mapping albeit accessibility of the area by person poses limitations. Terrain sampling with TLS is much more effective, however, the technique can be ineffective where dense vegetation covers the terrain.
- The elevation errors assessed were lower on the flat unobscured surface than on the inclined uneven slope. The GPS DTM for both sites was the most accurate (RMSE: flat 2 cm, sloped 18 cm). Accuracy of the TLS DTMs (RMSE: flat 7 cm, sloped 55 cm) was subject to land cover while it was less influential for the ALS DTM (RMSE: flat 29 cm, sloped 23 cm). ALS data systematically overestimated elevations on flat ground for which the vertical accuracy was above the stated level.
- The robust accuracy measures enhanced understanding of the DEM errors therefore they should be integrated in DEM validation reports. Median and NMAD and provided closer fitting models

470

471

of normal distribution than mean and standard deviation and could be recommended for DEM error modelling.

472

The future work could extend the findings in testing the application of ALS data for assessing 473 accuracy of lower accuracy DEMs such as those with national coverage derived from other methods. 474 Such approach can improve DEM error propagation modelling (Fisher and Tate 2006) in which fewer 475 reference measurements are often used to estimate the error distribution as opposed to large amount of 476 ALS points. Useful frameworks applied with ALS data are presented in Darnell et al. (2008) or 477 Aguilar et al. (2010). The robust statistics as defined in Höhle and Höhle (2009) could be then used to 478 fit models of normal distribution more realistically. Before the ALS data are used for benchmarking 479 they have to be checked not only for vertical accuracy but also for the horizontal accuracy. Stratified 480 assessment of the TLS DTM accuracy based on land cover and TLS data filtering is also challenging 481 tedn for the future research. 482

483

Acknowledgements 484

485

The research presented in this paper was supported by the British Society for Geomorphoplogy 486 Postgraduate Grant for field survey within the doctoral project "Assessing alternative methods of 487 488 acquiring and processing digital elevation data" funded by the European Social Fund at the School of Geography, Archaeology and Palaeoecology, Queen's University Belfast. We would like to thank Mr. 489 490 Mike Tomms, tenant of the Middle Fell Farm managed by the National Trust, who kindly permitted surveying his land. The Environment Agency is thanked for providing the ALS data free of charge. This 491 research was also undertaken within the project VVGS 63/12-13 supported by the internal grant system of 492 the Pavol Jozef Šafárik University in Košice. We also greatly appreciate the reviewers comments which 493 helped to considerably improve the quality of the paper. 494

495	
496	
497	References
498	
499	Aguilar, F.J., Mills, J.P., Delgado, J., Aguilar, M.A., Negreiros, J.G., Pérez, J. L., 2010. Modelling
500	vertical error in LiDAR-derived digital elevation models. ISPRS Journal of Photogrammetry and Remote
501	Sensing, 65, 103-110.
502	
503	Armesto-González, J., Riveiro-Rodríguez, B., González-Aguilera, D., Rivas-Brea, M. T., 2010.
504	Terrestrial laser scanning intensity data applied to damage detection for historical buildings. Journal of
505	Archaeological Science 37(12), 3037-3047. doi:10.1016/j.jas.2010.06.031.
506	
507	Atkinson, P.M., Tate, N.J., 2000. Spatial Scale Problems and Geostatistical Solutions: A Review. The
508	Professional Geographer, 52, 607-623.
509	
510	Bannister, A., Raymond, S., Baker, R., 1998. Surveying, 7th edn., Pearson Education Ltd., Harlow, 512
511	pp.
512	
513	Baltsavias, E.P., 1999. A comparison between photogrametry and laser scanning. ISPRS Journal of
514	Photogrametry and Remote Sensing, 54, 83-94.
515	
516	Bater, C.W., Coops, N.C., 2009. Evaluating error associated with lidar-derived DEM interpolation.
517	Computers & Geosciences, 35(2), 289-300. doi: 10.1016/j.cageo.2008.09.001.
518	

519	Bishop, M.P., Jam	es, L.A., S	hroder Jr., J	. F., Wa	alsh, S	S.J., 2012.	Geospatial technolo	ogies and	digital
520	geomorphological	mapping:	Concepts,	issues	and	research.	Geomorphology,	137(1),	5-26.
521	doi:10.1016/j.geom	orph.2011.0	06.027.						

522

Buckley, S.J., Howell, J.A., Enge, H.D., Kurz, T.H., 2008: Terrestrial laser scanning in geology: data
acquisition, processing and accuracy considerations. Journal of the Geological Society, London, 165(3),
625-638.

526

- Brimicombe, A., 2009. GIS, Environmental Modelling and Engineering. CRC Press, New York, 378 pp.
 528
- Carrara, A., Bitelli, G., Carla, R., 1997. Comparison of techniques for generating digital terrain models
 from contour lines. International Journal of Geographical Information Science, 11(5), 451-473.

531

Casula, G., Mora, P., Bianchi, M.G., 2010. Detection of Terrain Morphologic Features Using GPS, TLS,
and Land Surveys: "Tana della Volpe" Blind Valley Case Study. Journal of Surveying EngineeringASCE, 136(3), p. 132-138.

535

Chaplot, V., Darboux, F., Bourennane, H., Leguédois, S., Silvera, N., Phachomphon, K., 2006. Accuracy
of interpolation techniques for the derivation of digital elevation models in relation to landform types and
data density. Geomorphology, 77(1-2), p. 126-141.

539

Clarke, K. C., 1995. Analytical and Computer Cartography, Second Edition, Prentice-Hall, Englewood
Cliffs, NJ, 290 pp.

- 543 Coveney, S., Fotheringham, A.S., 2011. Terrestrial laser scan error in the presence of dense ground 544 vegetation. The Photogrammetric Record, 26(135), 307-324.
- 545
- 546 Coveney, S., Fotheringham, A.S., Charlton, M., McCarthy, T., 2011. Dual-scale validation of a medium-
- resolution coastal DEM with terrestrial LiDAR DSM and GPS. Computers & Geosciences, 36, 489-499.
- 548
- D'Agostino, R.B. and Pearson, E.S., 1973. Tests for Departure from Normality. Biometrika, 60(3): 613–
 22. doi:10.1093/biomet/60.3.613.
- 551
- Darnell, A.R., Tate, N.J., Brunsdon, C., 2008. Improving user assessment of error implications in digital
 elevation models. Computers, Environment and Urban Systems Geographical Information Science
 Research, 32(4), 268-277.
- 555
- Desmet, P.J.J., 1997. Effects of Interpolation Errors on the Analysis of DEMs. Earth Surface Processes
 and Landforms, 22(6), 563-580.
- 558
- Environment Agency, 2009. Information for Re-Use Register (IfRR), Environment Agency. URL:
 http://www.environment-agency.gov.uk/static/documents/Utility/IfRR_v2_0_(2).pdf (accessed 10 June
 2010)
- 562
- Erdogan, S., 2010. Modelling the spatial distribution of DEM error with geographically weighted
 regression: An experimental study. Computers & Geosciences, 36(1): p. 34-43.
- 565
- 566 Evans, I.S., 1972. General geomorphometry, derivatives of altitude and descriptive statistic, In Chorley,
- 567 R.J. (Ed.) Spatial analysis in Geomorphology. Methuen: London. p. 17-90.

568	
569	ESRI, 2009. ArcGIS 9.3. Environmental Systems Resource Institute, Redlands, California, USA.
570	French, J.R., 2003. Airborne LiDAR in support of geomorphological and hydraulic modelling. Earth
571	Surface Processes and Landforms, 28(3), 321-335.
572	
573	Fisher, P.F., Tate, N.J., 2006. Causes and consequences of error in digital elevation models. Progress in
574	Physical Geography, 30(4), 467-489.
575	
576	Gallay, M., Lloyd, C.D., McKinley, J., 2010. Using geographically weighted regression for analysing
577	elevation error of high-resolution DEMs. In: Fisher, P.F., Tate, N. (Eds.), Accuracy 2010 - The Ninth
578	International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental
579	Sciences, July 20 - 23 2010. University of Leicester, UK., pp. 109-112
580	http://www.spatial-accuracy.org/system/files/img-X03141139_0.pdf
581	
582	Gallay, M., 2010. Assessing alternative methods of acquiring and processing digital elevation data. Ph. D.
583	Dissertation, Queen's University Belfast, Belfast, 389 pp.
584	
585	Gallay, M., Lloyd, C., McKinley, J., Barry, L., 2011: Comparing the vertical accuracy of digital elevation
586	models derived using modern ground survey and airborne laser scanning (In Slovak). Cartographic letters
587	(Kartografické listy), 19, 61-71.
588	
589	GPSGOV, 2011: Official U.S. Government information about the Global Positioning System (GPS) and
590	related topics. URL: http://www.gps.gov (accessed 21 June 2011).
591	

Hengl, T., Reuter, H.I. (Eds.), 2008. Geomorphometry: Concepts, Software, Applications. Developments
in Soil Science, 33, Elsevier, 772 pp.

594

Heritage, G.L., Milan, D.J., 2009. Terrestrial laser scanning of grain roughness in a gravel-bed river,
Geomorphology 113, 4–11.

597

Hladik, C., Alber, M., 2012. Accuracy assessment and correction of a LIDAR-derived salt marsh digital
elevation model. Remote Sensing of Environment, 121, 224-235.doi: 10.1016/j.rse.2012.01.018.

600

Hodge R., Brasington J., Richards K., 2009. Analysing laser-scanned digital terrain models of gravel bed
surfaces: linking morphology to sediment transport processes and hydraulics. Sedimentology 56(7),
2024–2043.

604

Hodgson, M.E., Jensen, J.R., Schmi dt, L., Schill, S., Davis, B., 2003. An evaluation of LIDAR- and
IFSAR-derived digital elevation models in leaf-on conditions with USGS Level 1 and Level 2 DEMs.
Remote Sensing of Environment, 84, 295-308.

608

- Hodgson, M.E., Bresnahan, P., 2004. Accuracy of Airborne LiDAR-Derived Elevation: Empirical
 Assessment and Error Budget. Photogrametric Engineering and Remote Sensing, 2004. 70(3), 331-339.
- Hopkinson, C., Hayashi, M., Peddle, D., 2009. Comparing alpine watershed attributes from LiDAR,
- 613 Photogrammetric, and Contour-basd Digital Elevation Models. Hydrological processes, 23, 451-463.

614

Höfle, B., Rutzinger, M., 2009.Topographic airborne LiDAR in geomorphology: A technological
perspective. Zeitschrift für Geomorphologie 55(2), 1–29.

61	7
----	---

Höhle, J., Höhle, M., 2009. Accuracy assessment of digital elevation models by means of robust
statistical methods. ISPRS Journal of Photogrammetry and Remote Sensing, 64(4), 398-406.

620

- Höhle, J. and Potuckova, M., 2012. Assessment of the Quality of Digital Terrain Models, Official
- 622 Publication no. 60. European Spatial Data Research (EuroSDR).
- 623 URL: http://www.eurosdr.net/publications/60.pdf (accessed 19 June 2012).

624

Holmes, K.W., Chadwick, O.A., Kyriakidis, P.C., 2000. Error in a USGS 30-meter digital elevation

model and its impact on terrain modeling. Journal of Hydrology, 233(1-4). p. 154-173.

627

Kraus, K., 1997. Restitution of airborne laser scanner data in wooded areas. Advances in Remote Sensing.
Yearbook 1997(5), 120-127.

630

Krcho, J., 1990. Morfometrická analýza a digitálne modely georeliéfu (Morphometric Analysis and
Digital Models of Georelief). Veda, Bratislava, Slovakia, 466 pp.

633

- Lam, S.Y.W., 2006. Application of terrestrial laser scanning methodology in geometric tolerances
 analysis of tunnel structures. In: Tunnelling and Underground Space Technology
- 636 Safety in the Underground Space Proceedings of the ITA-AITES 2006 World Tunnel Congress and
- 637 32nd ITA General Assembly 21(3-4): 410. URL: http://www.ctta.org/FileUpload/ita/2006/data/pita06-

638 0462.pdf (accessed 10 Nov 2011)

639

641 Geosystems AG, Switzerland, URL:

⁶⁴⁰ Leica Geosystems, 2005. Leica TPS1200 Series Technical Data. Leica Geosystems (user guide). Leica

- 642 http://www.leica-geosystemssolutionscenters.com/Site/Instrument%20PDF%27s/
- 643 Total%20Stations/TPS1200/TPS1200_brochure_en.pdf (accessed 10 Nov 2011)
- 644
- Leica Geosystems, 2006. Leica HDS3000 Versatile, high-accuracy 3D laser scanner (user guide). Leica
- 646 Geosystems AG, Switzerland, URL:
- 647 http://hds.leica-geosystems.com/hds/en/Leica_HDS3000.pdf (accessed 10 Nov 2011)
- 648
- 649 Leica Geosystems, 2008. Leica GPS1200 Series Technical data (user guide). Leica Geosystems AG,
- 650 Switzerland, URL:
- 651 http://www.leica-geosystemssolutionscenters.com/Site/Instrument%20PDF%27s/
- 652 GPS%20Systems/SmartRover%20&%20GPS1200/GPS1200_TechnicalData_en.pdf (accessed 10 Nov

653 2011)

- 654
- Lerma, J. L., Navarro, S., Cabrelles, M., Villaverde, V, 2010. Terrestrial laser scanning and close range
 photogrammetry for 3D archaeological documentation: the Upper Palaeolithic Cave of Parpalló as a case
 study. Journal of Archaeological Science 37(3), 499-507. doi:10.1016/j.jas.2009.10.011
- 658
- Li, Z., Zhu, Q., Gold, C., 2005. Digital terrain modeling: Principles and Methodology. London, CRC
 Press. 323 pp.
- 661
- Lillesand, T.M., Kiefer, R.W., Chipman, J.W., 2008. Remote Sensing and Image Interpretation. John
 Wiley & Sons, Inc., USA, 756 pp.
- 664
- 665 Lloyd, C.D., Atkinson, P.M., 2006. Deriving ground surface digital elevation models from LiDAR data
- with geostatistics. International Journal of Geographical Information Science 20(5), 535-563.

- Mallet, C. Bretar, F., 2009. Full-waveform topographic lidar: State-of-the-art. ISPRS Journal of
 Photogrammetry and Remote Sensing, 64, (1),1-16.
- 670
- Mercer, B., 2001. Combining LIDAR and IfSAR: What can you expect? Photogrammetric Week 2001.
- D. Fritsch and R. Spiller. Heidelberg, Wichmann Verlag: 227-237. URL: http://www.ifp.unistuttgart.de/publications/phowo01/Mercer.pdf (accessed 16 March 2010).

674

Meng, X. Currit, N., Zhao, K. 2010. Ground Filtering Algorithms for Airborne LiDAR Data: A Review
of Critical Issues. Remote Sensing, 2010(2), p. 833-860. doi:10.3390/rs2030833.

677

- ⁶⁷⁸ Pfeifer, N., Briese, C., 2007. Geometrical aspects of airborne laser scanning and terrestrial laser scanning.
- ⁶⁷⁹ In Proceedings of the ISPRS Workshop on Laser Scanning and SilviLaser 2007, Espoo, Finland, ISPRS.
- p. 311-319. URL: http://foto.hut.fi/ls2007/final_papers/Pfeifer_2007_keynote.pdf (accessed 20 June
 2010)
- 682
- Prokop, A., 2008. Assessing the applicability of terrestrial laser scanning for spatial snow depth
 measurements. Cold Regions Science and Technology 54(3), 155-163.
- 685
- R Development Core Team, 2008. R: A language and environment for statistical computing. R
 Foundation for Statistical Computing. URL: http://www.R-project.org (accessed 23 March 2011)

- Rees, W. G., 2000. The accuracy of Digital Elevation Models interpolated to higher resolutions.
 International Journal of Remote Sensing, 21, 7-20.
- 691

692	Ruffell, A., McKinley, J., 2008. Geoforensics. John Wiley & Sons, Chichester, UK. 340 pp.
693	
694	Rayburg, S., Thoms, M., Neave, M., 2009. A comparison of digital elevation models generated from
695	different data sources. Geomorphology 106, 261–270.
696	
697	Scherer, M., Lerma, J.L., 2009. From the Conventional Total Station to the Prospective Image Assisted
698	Photogrammetric Scanning Total Station: Comprehensive Review. Journal of Surveying Engineering-
699	ASCE, 135(4), p. 173-178.
700	
701	Seier, E., 2002. Comparison of Tests for Univariate Normality. Interstat (1), 1-17. URL:
702	http://interstat.statjournals.net/YEAR/2002/articles/0201001.pdf. (accessed 16 July 2012)
703	
704	Sickle, J.V., 2001. GPS for land surveyors. 2nd edn., Ann Arbor Press, 284 p.
705	
706	Šíma, J., 2011. Příspěvek k rozboru přesnosti digitálných modelů reliéfu odvozených z dat leteckého
707	laserového skenování celého území ČR (Contribution to the Accuracy Analysis of Digital Terrain Models
708	Derived from Airborne Laser Scanning Data of Entire Territory of the Czech Republic). Geodetický a
709	kartografický obzor 57/99 (5), 101-106.
710	
711	Wechsler, S.P., 2007. Uncertainties associated with digital elevation models for hydrologic applications: a
712	review. Hydrology and Earth System Sciences, 11(4), p. 1481-1500.
713	
714	Wehr, A., Lohr, U., 1999. Airborne laser scanning-an introduction and overview. ISPRS Journal of
715	Photogrammetry & Remote Sensing, (54), 68-82.
716	

Wilson, J.P., Gallant, J.C., 2000. Terrain analysis: principles and applications. John Wiley and Sons, New 717 York, NY, USA, 479 pp. 718

719

Wise, S.M., 2007. Effect of differing DEM creation methods on the results from a hydrological model. 720

Computers and Geosciences, 33(10), 1351-1365. 721

722

Wise S.M., 2011. Cross-validation as a means of investigating DEM interpolation error. Computers and 723 Geosciences, 37(8), 978-991. 724

725

Wuertz, D., Chauss, P., King, R., Gu, C., Gross, J., Scott, D., Lumley, T., Zeileis A., Aas. K. (2012). 726 fBasics: Rmetrics - Markets and Basic Statistics. R package version 2160.81. URL: http://CRAN.R-727 project.org/package=fBasics. 728 201

729

List of figure captions 730

731

Fig. 1. Location of the surveyed sites. The 3D view portrays surface of the DTM (2 metre cell) based on 732 the last return ALS data with contours (5 meters interval) and without vertical exaggeration. Detailed map 733 shows the location with respect to other landscape features. The coordinates along margins refer to the 734 British National Grid (OSGB36) and WGS84. 735

736

Fig. 2. Spatial distribution of the measurements acquired with one man electronic tachymetry (TPS), real 737 time kinematic GPS in static mode (GPS), terrestrial laser scanning (TLS), and airborne laser scanning 738 (ALS) for the Middle Fell Farm (MFF) site, and the Rossett Bridge area (RB), respectively. The values of 739 average spacing are in brackets. 740

Fig. 3. Calculation of elevation residuals between assessed DTM and reference points. Reference TPS
points overlaid as crosshairs over the DTM surface from TLS data (cell size 0.2 m) on the left.
Corresponding elevation residuals as difference between TLS DTM and TPS points in meters (right).

745

Fig. 4. Graphical visualization of elevation error distributions of GPS, TLS and ALS DTMs of the Rossett 746 Bridge area. TPS and TLS point were used as the reference data. Normal probability (Q-Q) plots 747 combined with boxplots (a-d) show the full error distributions. The 1% outlier threshold is indicted by 748 749 dashed red lines (0.5% and 99.5% quantiles) and the dotted grey lines locate the sample quartiles. Solid 750 straight red line represents the normal distribution. Histograms (e-h) are truncated to 99% of the full distributions for better visualisation. Density curves show normal distribution modelled using the mean, 751 and standard deviation of all errors, after removing outliers, and robust measures (median, NMAD) after 752 Höhle and Höhle (2009). Maps of local root mean square error (i-l) were calculated from elevation 753 residuals at the reference points which were interpolated into a 0.5 meter regular grid using bilinear 754 interpolation. Each cell represents RMSE value was calculated in a 5x5 moving window. 755

756

Fig. 5. Graphical visualization of elevation error distributions of GPS, TLS and ALS DTMs of the Middle Fell Farm area visualized normal probability (Q-Q) plots (a-d), in histograms (e-h), and maps of local root mean square error (i-l). TPS and TLS point were used as the reference data. See caption of Fig. 4 for details.

761

Fig. 6. Three dimensional visualisation of a DSM surface derived from terrestrial laser scanning data at the Middle Fell Farm (a) and Rossett Bridge (b) sites. Mesh cell size 10 metres, DSM cell size 0.2 m. The extruded line marks the cross-sectional profiles showed in (c) and (d). The black line denotes the region for which the analyses of residuals were conducted. The line of the profile at the Middle Fell Farm

766	(a): $x=328312$, $y=506202$, end: $x=328398$, $y=506202$.) The cross-section of an alluvial plain at the
767	Rossett Bridge (b), start: x=328971, y=506125, middle: x=329050, y=506164, end: x=329127, y=506140.
768	

769

770 List of Table captions

771

Table 1. Specifications of data acquisition efficiency with one man electronic tachymetry (TPS), real time
kinematic GPS in static mode (GPS), terrestrial laser scanning (TLS), and airborne laser scanning (ALS)
for the Middle Fell Farm (MFF) and Rossett Bridge (RB) sites.

775

Table 2. Accuracy of measurement (1σ) with one man electronic tachymetry (TPS), real time kinematic 776 GPS in static mode (GPS), and terrestrial laser scanning (TLS) for the Middle Fell Farm (MFF) and 777 Rossett Bridge (RB) sites. SDM Total - standard deviation of measurement after RINEX post-processing 778 the base and transformation into WGS 1984, SDM RINEX - contribution of standard deviation of 779 positioning the base station with respect to the RINEX station in Ambleside, SDM XYZ - standard 780 deviation of RTK GPS measurement in both horizontal and vertical direction before post-processing, 781 SDM XY - standard deviation of RTK GPS measurement in horizontal direction before post-processing, 782 SDM Z - standard deviation of RTK GPS measurement in vertical direction before post-processing, SDM 783 TPS - standard deviation of measurement with total station in the ATR mode, SDM TLS - standard 784 deviation of measurement with TLS, * - refers to positioning the TPS device in WGS84 with real time 785 kinematic GPS in static mode. 786

787

Table 3. Summary statistics of elevation residuals (DTM errors) calculated according to Höhle and
Potuckova (2012). Errors of DTMs derived from real time kinematic GPS in static mode (GPS),
terrestrial laser scanning (TLS), and airborne laser scanning (ALS). Measurements acquired with one man

electronic tachymetry (TPS) and TLS used as reference points. St. Dev. – standard deviation of errors, RMSE – root mean squared error, Mean Abs. – mean of the absolute errors, NMAD – normalized median absolute deviation after Höhle and Höhle (2009) $1.4826*median(r - med_r)$, where *r* denotes the individual errors and *med_r* is their median which is reported as the Median in the table); Qabs 68.3 – 68.3% quantile of the absolute errors, Qabs 95 – 95% quantile of the absolute errors, CI 95% - confidence interval at 95% probability level calculated using the R script in Höhle and Potuckova (2012).

797

Accepted manuscript

- TPS, GPS, and TLS applicability and measurement error were assessed.
 - Vertical error for GPS, TLS, and ALS DTM was checked against the TPS points.
 - TLS sampling was very efficient, but TLS DTM was inaccurate for areas with bracken.
 - Dense bracken was less influential for ALS, but systematic offset was present.
 - Median and NMAD provided error models closer fitting the normal distribution.

Acquisition method	Survey site	Station positions	Acquisition area	Points measured	Average point spacing	Average point density	Duration of acquisition	Duration of data processing	Points per hour of acquisition per area	Points per hour of acquisition and processing per area
		count	hectares	count	meters	count per meter sq.	hours	hours	count per hour per hectare **	count per hour per hectare ***
TDC	RB	1	0.95	175	7.36	0.14	1.2	3.0	154	58
115	MFF	3	2.49	864	5.36	0.19	10.0	3.0	35	27
CDC	RB	1	0.95	369	5.07	0.20	2.5	2.5	156	78
GPS	MFF	1	2.49	616	6.35	0.16	6.6	2.5	37	27
	RB	1(4 targets)	0.95	122 109*	0.27	3.70	2.0	5.5	64268	17138
TLS	MFF	7(15 targets)	2.49	581 269*	0.21	4.76	29.5	8.0	7913	6225
ALS	RB	-	0.95	1 540	2.40	0.42	-	6	-	-
	MFF	-	2.49	6 262	2.00	0.50	-		-	-

* - after decimating the original point cloud to 20 centimeters point separation distance which reduced the original data about ten times,

** - the duration of acquisition divided by the number of measured points,

*** - the sum of duration of acquisition and duration of data processing divided by the number of measured points

Accepted In

803

799

800

801

Acquistion method	Survey site	SDM Total	SDM RINEX	SDM SDM RINEX XYZ		SDM Z	SDM TLS	SDM TPS
		mm	mm	mm	mm	mm	mm	mm
GPS	RB	6.5	0.4	6.1	3.3	5.0	NA	NA
	MFF	6.5	0.4	6.1	3.0	5.2	NA	NA
TPS	RB	4.9	0.4*	3.9*	3.1*	2.2*	NA	0.6
	MFF	4.7	0.4*	3.4*	2.8*	1.9*	NA	0.9
TLS	RB	10.0	0.4*	3.0*	-	-	6.0	0.6
	MFF	9.2	0.4*	3.9*	-	-	4.0	0.9

804

805

Accepted manuscript

Site:	Elevation errors (DTM ELEV - Ref. Points ELEV)								
Middle Fell Farm	GPS-TPS	CI 95% (m)	TLS-TPS	CI 95% (m)	ALS-TPS	CI 95% (m)	ALS-TLS	CI 95% (m)	
Sample size (n)	854	-	854	-	854	-	577 053	-	
Number of outliers (n)	10	-	10	-	10	-	5801	-	
Outlier lower threshold (m)	-0.653	-	-0.293	-	-0.307	-	-1.312	-	
Outlier upper threshold (m)	0.519	-	1.431	-	0.986	-	0.676	-	
Median (m)	0.049	0.039;0.058	0.031	0.016;0.046	0.204	0.195;0.213	0.061	0.051;0.069	
Mean (m)	0.054	0.043; 0.066	0.277	0.247;0.307	0.215	0.200;0.229	-0.140	-0.141;-0.139	
Mean (after outlier removal) (m)	0.056	0.046;0.067	0.273	0.244;0.302	0.207	0.199;0.214	-0.137	-0.138;-0.136	
St. Dev. (m)	0.173	0.163;0.185	0.446	0.420;0.476	0.217	0.205;0.232	0.465	0.464;0.466	
St. Dev. (after outlier removal) (m)	0.158	0.149;0.169	0.432	0.406;0.460	0.114	0.107;0.121	0.445	0.444;0.446	
RMSE (m)	0.182	-	0.525	-	0.306	-	0.485	-	
RMSE (after outlier removal) (m)	0.168	-	0.511	-	0.236	-	0.465	-	
Mean Abs. (m)	0.130	-	0.326	-	0.225	-	0.341	-	
NMAD (m)	0.124	0.115;0.137	0.155	0.130;0.180	0.095	0.088;0.102	0.224	0.209;0.242	
Qabs 68.3 (m)	0.150	0.136;0.163	0.343	0.246;0.421	0.255	0.245;0.259	0.331	0.310;0.356	
Qabs 95 (m)	0.388	0.354;0.431	1.147	1.119;1.190	0.395	0.370;0.420	1.037	1.018;1.057	
Skewness (m)	-0.663	-	1.089	-	9.485	-	-1.131	-	
Kurtosis (m)	6.744	-	2.971	-	150.230	-	4.288	-	
D'Agostino-Pearson K ² test (p-value)	0.000	-	0.000	-	0.000		0.000	-	
Site:	Elevation errors (DTM ELEV - Ref. Points ELEV)								
Rossett Bridge	GPS-TPS	CI 95% (m)	TLS-TPS	CI 95% (m)	ALS-TPS	CI 95% (m)	ALS-TLS	CI 95% (m)	
Sample size (n)	173	-	173	-	173	-	120 887	-	
Number of outliers (n)	2	-	2	- 7	2	-	1222	-	
Outlier lower threshold (m)	-0.052	-	-0.142		0.174	-	-0.014	-	
Outlier upper threshold (m)	0.059	-	-0.180	-	0.398	-	0.393	-	
Median (m)	-0.002	-0.004;0.001	0.046	0.029;0.050	0.283	0.275;0.290	0.230	0.229;0.230	
Mean (m)	0.000	-0.003;0.003	0.034	0.024;0.043	0.283	0.277;0.289	0.226	0.225;0.226	
Mean (after outlier removal) (m)	0.000	-0.003;0.003	0.034	0.025;0.042	0.283	0.277;0.289	0.226	0.226;0.226	
St. Dev. (m)	0.021	0.018;0.024	0.061	0.054;0.071	0.041	0.036;0.048	0.070	0.070;0.071	
St. Dev. (after outlier removal) (m)	0.019	0.017;0.022	0.058	0.051;0.068	0.039	0.034;0.045	0.066	0.066;0.066	
RMSE (m)	0.021	-	0.070	-	0.286	-	0.236	-	
RMSE (after outlier removal) (m)	0.019	-	0.067	-	0.286	-	0.236	-	
Mean Abs. (m)	0.015	2	0.057	-	0.283	-	0.226	-	
NMAD (m)	0.016	0.012;0.018	0.058	0.049;0.071	0.041	0.033;0.046	0.066	0.066;0.067	
Qabs 68.3 (m)	0.016	0.014;0.019	0.068	0.057;0.079	0.301	0.294;0.311	0.260	0.260;0.261	
Qabs 95 (m)	0.046	0.038;0.056	0.135	0.116;0.155	0.345	0.333;0.362	0.331	0.330;0.332	
Skewness (m)	0.153	-	-0.094	-	-0.124	-	-0.578	-	
Kurtosis (m)	5.345	-	3.179	-	3.733	-	4.707	-	
D'Agostino-Pearson K ² test (p-value)	0.001	-	0.622	-	0.126	-	0.000	-	

nusciet

Accepted manuscript

Γ

0

5 m

The Middle Fell Farm area (sloped terrain)

(i)

(j)

(k)

(I)

