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Abstract 

PHD finger protein 20 (PHF20) is a transcription factor, which was originally identified in 

glioma patients. PHF20 appears to be a novel antigen in glioma, and has also termed glioma-

expressed antigen 2. PHF20 is thought to contribute to the development of cancers, including 

glioblastoma, lung cancer, colon cancer and ovarian cancer. However, little is known about 

the function of PHF20 in various cancers. Here we report that PHF20 contains two consensus 

sites for protein kinase B (PKB) phosphorylation (RxRxxS/T). PKB can directly 

phosphorylate PHF20 on Ser291 in vitro and in vivo. It has been shown that PKB participates 

in the tumor suppressor p53 regulated gene expression program and has a direct effect on p21 

regulation after DNA damage. UV induced DNA damage result in accumulation of p53 and 

PKB activation. Interestingly, PKB-mediated PHF20 phosphorylation led to an inhibition of 

p53 induction following UV treatment, leading to the reduction of p21 transcriptional activity. 

Using anti PHF20 and anti pPKB (S473) antibodies, these events were mapped in various 

human cancer tissues. Taken together, these data suggest that PHF20 is a novel substrate for 

PKB and its phosphorylation by PKB plays an important role in tumorigenesis via regulating 

of p53 mediated signaling. 
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1. Introduction 

Plant homeodomain finger protein 20 (PHF20, also termed glioma-expressed antigen 2; 

GLEA2 and hepatocellular carcinoma associated antigen 58; HCA58), can elicit immune 

responses in glioblastoma patients and some controls [1, 2]. PHF20 shows the most frequent 

antibody response in glioma patients [2], and auto-antibodies against PHF20 significantly 

correlated with prolonged survival in patients with glioblastoma [3]. Paradoxically, lower 

survival was observed in non-small-cell lung carcinoma (NSCLC) patients with PHF20 [4]. 

In addition, PHF20 was identified as a homolog of hepatocellular carcinoma associated 

antigen 58 (HCA58) [5]. Interestingly PHF20 was prevalent in hepatocellular tumors of stage 

I. [4] and was also abundantly expressed in both advanced small-cell lung cancer and 

advanced adenocarcinoma, indicating that PHF20 might be tumor-associated antigen and 

could play a role in cancer progression. It has been reported that PHF20 works as a 

transcription factors and/or gene expression regulators [6]. Similar to PHF20, other members 

of PHD finger family are well documented as transcriptional regulators [7]. Notably, PHD 

finger family proteins (e.g., PHF1, PHF6, PHF3, PHF10 and PHF11) have been implicated in 

cancer and autoimmune diseases due to their transcriptional and immunogenic function on 

targeted proteins [7-10, 11 ]. 

Protein kinase B (PKB/Akt) is activated by receptor tyrosine kinases and regulates a number 

of essential cellular processes, such as transcription, growth, proliferation, survival, and 

motility [12, 13]. PKB activation occurs when PtdIns[3,4,5]P3 (a product of PI3K) binds to 

the pleckstrin homology (PH) domain of PKB. Phosphorylation of two amino acids (Thr308 

and Ser473) is then required for full PKB activation [14]. To date, over 50 proteins have been 

identified as putative PKB substrates, which contribute to a variety of cellular responses, 

including growth, metabolism and survival [15]. It has been suggested that PKB-mediated 

MDM2 phosphorylation promotes its nuclear translocation, leading to downregulation of p53 
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and decreased p53 transcription [16, 17]. Furthermore, PKBα directly phosphorylates and 

inhibits p21, thereby blocking cell-cycle progression [18]. Recently PKB was shown to 

activate and phosphorylate transcription factor Twist-1, resulting in the inhibition of p53 

induction in response to DNA damage in MCF-7 cells [19]. Consistent with previous studies, 

PKB activation in response to DNA insults promotes cell survival in vivo [12, 20, 21], clearly 

suggesting that PKB may be a major player in DNA damage response via p53 regulation. 

PHF20 is a transcription factor located in the nucleus [6]. We have identified two putative 

phosphorylation motifs for PKB (RxRxxS/T), using Scansite software [22]. Previously 

PHF20 and PKB have not been described in the same signaling pathway. Here we show that 

PKB phosphorylates PHF20 on Ser291 both in vitro and in vivo. Overexpression of PHF20 in 

HCT116 cells caused the reduction of p53 accumulation and the inhibition of p53 

transcriptional activity toward downstream target, p21 and Bax in response to DNA damage. 

UV-mediated cell death, monitored by FACS and cell cycle analysis, was enhanced in S291A 

expressed cells. Furthermore PHF20 overexpression was found in various cancer tissues 

compared to adjunct normal tissues. A high correlation between PHF20 expression and pPKB 

(Ser473) staining was observed in these cancers. Taken together, our data show that PHF20 is 

a novel PKB nuclear substrate and contributes to cancer development by controlling p53 

tumor suppression via PKB mediated PHF20 phosphorylation.   
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2. Materials and Methods 

2.1. Reagents  

Anti-phospho-Ser473 (PKB), anti-PKB, anti-phospho-Ser/Thr PKB substrate and anti-PHF20 

antibody were purchased from Cell Signaling Technology. Anti-p53 (DO-1) and anti-actin 

antibodies were obtained from Santa Cruz Biotechnology. HRP conjugated anti-mouse, anti-

rabbit IgG antibody, and LY294002 were from Calbiochem. -phosphatase was purchased 

from Biolabs. Insulin was from Roche. Recombinant PKBα was purchased from Upstate. 

Doxorubicin was from sigma. 

2.2. Construction of expression vectors  

GFP-C-terminal tagged full length PHF20 (pEGEP-N1-PHF20) and pDs-Red-PHF20 were 

prepared by amplifying the cDNA library of HCT116 cells with primer 5’ GAC CTC GAG 

ATG ACA AAG CAT CCA CCT AAC and 3’ GAC GAA TTC G TGT TGA GCA GCA 

GAG GGC. GFP-N-terminal tagged full length PHF20 (ENTR-GFP-PHF20) and Flag tagged 

full length PHF20 (ENTR-Flag-PHF20) constructs were also prepared. Adenoviral 

expression vector for wild type PHF20 and LacZ was prepared by using Adenoviral 

Expression Kit (Invitrogen) according to the manufacturer. Adenoviruses were concentrated 

and purified using ultracentrifugation in a CsCl gradient as described previously [23, 24]. The 

deletion mutants of PHF20 were constructed in pGEX4T.1 expression vector by a standard 

PCR cloning strategy (pGEX4T.1-PHF20a, b, c and d). The mutants of PHF20 at Ser265 and 

Ser291 were created by using the QuickChangeTM site-directed mutagenesis kit (Stratagene) 

with pENTR-Flag-PHF20 WT as template. All constructs were amplified by PureHelixTM 

Fast-n-Pure Plasmid Kit (NanoHelix, South Korea) and confirmed by automated DNA 

sequencing. Sequences of the mutagenic oligonueotides are available upon request. p21
waf

-luc 

reporter plasmid was kindly provided by Prof. Minho Song (Chungnam National University, 
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South Korea) and Bax-luc reporter plasmid were obtained from Dr. Gongda Xue (Friedrich 

Miescher Institute, Switzerland). 

2.3. Cell culture and stimulation  

HEK293 and HCT116 cells were maintained in Dulbecco's modified Eagle's medium 

(DMEM) supplemented with 10% fetal bovine serum, 2 mM glutamine, 100 unit/ml 

penicillin and 100 μg/ml streptomycin (Life Technologies). These cells were transfected by 

using jetPEI (Q-biogene) or FuGENE (Roche) reagent according to the manufacturer’s 

instructions. The transfection mixture was removed after 24hr of incubation and cells were 

serum-starved for 24 hr before stimulation with 20% fetal bovine serum for 1 hr. LY294002 

inhibitor was pretreated for 30 min before stimulation as indicated. UV Cross-linker (Bio-

LINK BLX, Vilber Lourmat) was used for UVC irradiation. HCT116 cells were irradiated 

with 50mj UVC at about 80% confluence with 2 ml of medium in a 60-mm Petri dish with 

the lid removed, and were further incubated for 4-8h. This approach was adapted from that as 

described previously [25].  

2.4. Expression of GST-fusion protein in bacterial system  

GST-tagged deletion mutants of PHF20 (PHF20 a, b, c and d) were purified from bacterial 

strain BL21DE3, transformed with GST-PHF20 expression constructs as described 

previously [26]. Briefly, bacteria were initially grown at 37 °C for 2 h (A600 = 0.5–0.7) and 

subsequently induced with 0.5 mM isopropyl-thio-D-galactopyranoside (Promega) for 6 h at 

30 °C.  

2.5. Immunoprecipitation and in vitro kinase assay  

HEK293 cells were placed on ice and extracted with lysis buffer containing 50 mM Tris-HCl, 

pH 7.5, 1% (v/v) Nonidet P-40, 120 mM NaCl, 25 mM sodium fluoride, 40 mM β-glycerol 

phosphate, 0.1 mM sodium orthovanadate, 1 mM phenylmethyl-sulfonyl fluoride, 1 mM 

benzamidine and 2 µM microcystin-LR. Flag-PHF20 was immunoprecipitated from 500 ug 
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of cell-free extracts with anti-Flag M2 agarose (sigma). The immune complexes were washed 

once with lysis buffer containing 0.5 M NaCl, followed by lysis buffer and finally with 

kinase assay buffer containing 50 mM Tris-HCl, pH 7.5, 0.1% v/v 2-mercaptoethanol. In 

vitro kinase assays with substrate peptides were performed for 30 min at 30 °C in a 30 µl 

reaction volume containing 100 ng of the activated recombinant PKBα, 1 mg/ml of substrate 

peptides (S265-tide; KRGRPPSIAPTAV, S265A-tide; KRGRPPAIAPTAV, S291-tide; 

LRRRKISKGCEVP, S291A-tide; LRRRKIAKGCEVP, Crosstide; GRPRTSSFAEG), 1 µM 

protein kinase A inhibitor peptide (Alexis) and 50 µM [γ-
32

P]ATP (Amersham Biosciences; 

1,000–2,000 cpm/pmol) in kinase assay buffer. Reactions were stopped by adding EDTA to a 

final concentration of 50 mM and processed as described previously [27]. For in vitro kinase 

assays with substrate proteins, 5-10µg of GST fusion proteins or the immunoprecipitates 

from 500µg of lysates were used. The reaction was stopped by adding SDS sample buffer and 

protein phosphorylation was analyzed by SDS-PAGE. 

2.6. Imaging analysis of cells  

HCT116 and U373MG cells were fixed in 4% paraformaldehyde at room temperature (RT) 

for 10 min, mounted with Fluoromount-G (Vector Laboratories) for 10 min and visualized 

using a OLYMPUS confocal microscope.  

2.7. Flow cytometry analysis  

After the proper treatment of cells, as described in the figure legends, cells were harvested 

and fixed in 70% ethanol overnight. Each sample was stained with 50µg/ml propidium iodide 

(PI) in PBS and analyzed for the cell cycle by FL2 channels of a FACS Calibur flow 

cytometer (BD Biosciences), using emission filters of 532 nm. At least 10,000 cells were 

analyzed in each of three independent experiments. For measurement of apoptotic or necrotic 

cell death, cells were stained with 10 μM fluorescein isothiocyanate (FITC)-labeled annexin 

V and PI, in a Ca
2+

-enriched binding buffer (10mM HEPES, pH7.4, 140mM NaCl, and 2.5 
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mM CaCl 2 ), and analyzed by two-color flow cytometry. Annexin V and PI emissions were 

detected in the FL1 and FL2 channels of the FACS Calibur flow cytometer, using emission 

filters of 488 and 532 nm, respectively. At least 10,000 cells were analyzed in each of three 

independent experiments. 

2.8. Luciferase reporter gene assays  

Cells were lysed in reporter lysis buffer containing 25mM Tris-phosphate, 2 mM DTT, 2 mM 

trans-1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid, 10% (v/v) glycerol and 1% (v/v) 

Triton X-100. Luciferase activity was determined in a luminometer (Duo Lumat LB 9507) by 

incubating 20 µg of cell lysate with luciferase assay substrate (Promega) and measuring light 

emission for 10 s. 

2.9. Animal experiments  

All mice were acclimatized to a 12-hour light/dark cycle at 22°C ± 2°C for 2 weeks with free 

access to food and water in a specific pathogen-free facility. PKBβ (-/-) mice were described 

previously [28]. Eight-week-old male PKBβ (+/+) mice and PKBβ (-/-) mice were used. 

Fasting and refeeding were carried out as described in figure legends. All animal experiments 

were approved and performed by the Institutional Animal Use and Care Committee of the 

Friedrich Miescher Institute for Biomedical Research (FMI; Basel, Switzerland). 

2.10. Statistical analysis  

Quantification of Western blot analysis was carried out using the Tina version 2.1 program. 

Briefly, the relative intensity (area density) of bands of interest was quantitated by a 

densitometer. The background value from a blank band was subtracted. The results were 

calculated as the ratio change compared with the corresponding control bands. Data are 

presented as means ± S.D. of the three independent experiments. The results were analyzed 

by Student’s unpaired t-test (SPSS version 12.0 software, SPSS Inc.). p < 0.05 (*) was 
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considered significant, and p < 0.01 (**) was highly significant compared with corresponding 

control values. 
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3. Results 

3.1. PKB mediated phosphorylation of PHF20 in vitro at Ser265 and Ser291  

Using bioinformatics tools (Scansite motif; [22, 29]), we identified a PKB consensus 

substrate motif in human PHF20 (Fig. 1A; Ser265 and Ser291). Both phosphosites were 

conserved in mouse and bovine PHF20 (data not shown). In order to determine if PHF20 was 

a PKB substrate, synthetic peptides containing the potential PKB phosphorylation sites of 

PHF20 were tested in an in vitro PKB kinase assay. As shown in Fig. 1B, recombinant PKBα 

could phosphorylate these two peptides (S265-tide and S291-tide) as efficiently as Crosstide, 

which is derived from GSK-3β and the canonical PKB substrate peptide [30]. Substitution of 

serine to alanine in the corresponding peptide leads to complete loss of phosphorylation by 

PKB, indicating that Ser265 and Ser291 are the phospho-acceptor sites in these peptides (Fig. 

1B). To further characterize PKB mediated phosphorylation of PHF20, a series of GST-fused 

deletion mutants of PHF20 were prepared (Fig. 1C, top panel). In vitro PKB kinase assays 

revealed that only PHF20-b fusion protein containing the Ser265 and Ser291 residues were 

phosphorylated by PKB (Fig. 1C, bottom panel). In addition, this phosphorylation event was 

also confirmed with anti-phospho(S/T)-PKB substrate antibody (Suppl. Fig. 1). These data 

were further supported by the dose-dependency on PHF20-b phosphorylation on increasing 

amounts of recombinant PKB (Fig. 1D). These data identify Ser265 and Ser291 as novel 

potential PKB phosphorylation sites in PHF20. 

 

3.2. Ser291 is a novel site for serum-induced phosphorylation of PHF20 in vivo.  

In order to evaluate PKB mediated phosphorylation of full-length PHF20, Flag-PHF20 was 

transiently transfected in HEK293 cells, immunoprecipitated and used as a substrate for in-

vitro PKB kinase assay. Purified PKBα phosphorylated full-length PHF20 as efficiently as 

the GST-PHF20-b mutant (Fig. 2A), confirming PKB’s ability to phosphorylate PHF20 as a 
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full-length protein. The specificity of immunoprecipitation was confirmed by Western blot 

analysis with anti-PHF20 antibody (bottom panel, Fig. 2A). PHF20 phosphorylation was 

markedly enhanced by treating HEK293 cells with insulin or serum, with a concomitant 

increase in PKB activity (Fig. 2B). Serum-stimulated PHF20 phosphorylation was markedly 

inhibited by the pretreatment of cells with LY294002 (a PI3K inhibitor; Fig. 2C). Treatment 

of immunoprecipitated PHF20 with lambda phosphatase resulted in a marked reduction in 

PHF20 phosphorylation (Fig. 2C). These data suggest that PHF20 is a downstream of PI3K 

signaling in vivo and is reversibly phosphorylated. The novel PHF20 phosphorylation sites 

were then mutated and transfected into HEK293 cells. Serum stimulation induced 

phosphorylation of wild type PHF20 in starved HEK293 cells (Fig. 2D). This effect was 

completely abolished by in the S291A mutant while little or no change was detected in the 

S265A mutant (Fig. 2D). The double alanine mutant also showed no phosphorylation, 

indicating that Ser291 is the responsible residue for PHF20 phosphorylation induced by 

serum, most likely mediated by PKB in vivo. In order to further confirm that PKB is 

responsible for PHF20 phosphorylation, active or inactive forms of PKB were employed. In 

starvation condition, phosphorylation of PHF20 was not detectable in HEK293 cells (Fig. 2E, 

first lane). However overexpression of wild type (WT) or active form (CA) of PKB were able 

to markedly induce PHF20 phosphorylation while inactive form of PKB filed to induce 

PHF20 phosphorylation in serum-starved HEK293 cells (Fig. 2E). In addition, PHF20 

phosphorylation was abolished during refeeding in the liver of PKBβ knockout mice 

compared to that of control mice (Figure 2F), strongly indicating that PHF20 is a 

physiological substrate for PKB in vivo. 

 

3.3. Overexpression of PHF20 promotes the destabilization of p53, leading to inhibition 

of p53 in response to DNA damage.  
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PKB regulates p53 stability via phosphorylation of Mdm2, a ubiquitin ligase that regulates 

p53 levels in the nucleus [31]. Twist-1 phosphorylation is also required for PKB-mediated 

down-regulation of p53 in DNA damage condition [19]. Treatment of HCT116 cells with 

DNA-damaging reagent doxorubicin induced p53 accumulation, with a concomitant increase 

in Ser473 phosphorylation of PKB (Fig. 3A), consistent with previous studies [20, 32]. 

Doxorubicin-induced p53 accumulation was markedly attenuated in PHF20 overexpressing 

cells (Fig. 3A top panel). PHF20 phosphorylation was also elevated under these conditions 

and similar results were also detected in HeLa cells (Fig. 3B). Overexpression of PHF20 

S291A mutant increased p53 accumulation in HCT116 cells following doxorubicin treatment 

(Fig. 3C). In contrast, no significant changes in p53 accumulation in S265A mutant-

expressed cells, suggesting that PHF20 phosphorylation on Ser291 is required for PKB-

mediated p53 destabilization in DNA damage process (Fig. 3C). To further evaluate the 

effects of PHF20 on p53 function, the transcriptional activity of p53 downstream targets such 

as p21 and Bax were monitored using luciferase reporter plasmids. Doxorubicin treatment 

enhanced the p53 mediated p21 transcriptional activity at 6 h and 12 h time-points, which 

then decreased at 24 h (Fig. 3D left panel). Overexpression of PHF20 led to inhibition of p53 

induced p21 transcriptional activity following doxorubicin treatment (Fig. 3D right panel). 

Similar results were obtained with a second p53 target, Bax (Fig. 3E). Overexpression of 

PHF20 S291A, but not S265A mutant recovered the p53 mediated p21 transcriptional activity 

(Fig. 3F). p53-driven Bax transcriptional activity was also regulated by PHF20 mutant in a 

similar manner (Fig. 3G). Taken together, these data suggest that PKB regulates p53 function 

by controlling PHF20 phosphorylation on S291 during DNA damage. 

 

3.4. Ser291 phosphorylation of PHF20 contributes to protection from UV-induced cell-

death.  
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Since PHF20 phosphorylation on Ser291 is required for PKB-mediated p53 destabilization in 

DNA damage process, the functional relevance of this process was evaluated by measuring 

the subG1 population of dead cells. Cell cycle analysis of PHF20 expressed cells revealed 

that the UV-induced subG1 population was markedly increased in PHF20 S291A mutant 

expressing cells compared to wild type (Fig. 4A; 17.9  1.1 % for WT, 22.5  1.3 % for 

S291A). Since DNA damage can induce cell death through p53-dependent or independent 

pathways [33, 34], the experiments were repeated in HCT116 cells lacking p53. Surprisingly 

these effects were absent in p53 (-/-) HCT116 cells (Fig. 4B), indicating that enhancement of 

doxorubicin-induced cell-death in S291A cells is a p53-dependent process. These results 

were further confirmed by irradiating the cell with UV and monitoring cell-death with 

propidium iodide (PI) and annexin V staining to distinguish the type of cell-death (ex; 

apoptosis and necrosis). FACS analysis with PI and annexin V staining showed that 

upregulation of subG1 population in S291A cells was due to elevation of apoptotic cells (PI 

positive and annexin V negative; Fig. 4C). This elevation of apoptotic cells in S291A-

expressed cells was abolished in p53 (-/-) cells (Fig. 4D), further confirming that p53 is 

required for the enhancement of UV-induced cell-death in PHF20 S291A cells.  

 

3.5. Overexpression of PHF20 correlates with Ser473 phosphorylation of PKB in human 

cancer.  

The expression level of PHF20 was examined in a range of human cancers. Immuno-

histochemical (IHC) analysis of tissue array with anti-PHF20 antibody revealed that the 

expression levels of PHF20 were markedly increased in different human cancers compared 

with normal tissue from cerebrum, colon, uterine cervix, ovary and esophagus (Fig. 5A). 

Remarkably, PHF20 was overexpressed in 14 out of 20 cerebrum cancer (70%), 11 out of  

15 uterine cervix cancer (75%) and 9 out of 18 colon cancer (50%). The same human cancers 
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were then stained with pPKB (Ser473) antibody to show the association of PKB activity with 

PHF20 (Fig. 5A and 5B). IHC analysis showed that PKB activation correlated highly with 

PHF20 overexpression, further supporting the phosphorylation of PHF20 by PKB as an 

important mediator of cancer development. 
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4. Discussion 

PHF20 has been identified as an immunologically recognized protein that may 

represent a novel candidate for cancer-specific immunotherapy [1-3]. Patients with malignant 

cancer may develop an autoimmune response as a consequence of generation of auto-

antibodies against various antigens, the clinical significance of which is not clear [35]. 

Initially, PHF20 was found to be an antigen causing a frequent immune response in the serum 

of 43 % of glioblastoma patients [1]. Our data now identify that PHF20 is phosphorylated by 

PKB on Ser291 in vivo, and this phosphorylation functions to modulate PHF20-mediated p53 

stability and cancer cell survivals. 

Abnormal activation of PKB signaling is involved in a variety of human cancer 

including glioblastoma, lung and thyroid cancer [36-38]. Recently, structural changes in 

PHF20 has been proposed to be a potent inducer of non-small-cell lung cancer (NSCLC) 

promotion [4]. Consensus sites for PKB phosphorylation in PHF20 were identified using 

bioinformatics (Ser265 and Ser291, Fig. 1A). Synthetic peptides containing these sites as 

well as recombinant PHF20 fusion proteins were phosphorylated by PKB in in vitro kinase 

assays (Fig. 1A-1D). Expression of FLAG-PHF20 in HEK293 cells also underwent 

phosphorylation in response to constitutively active PKB expression or growth factor 

stimulation (Fig. 2A, 2B, and 2E). This effect was abolished by mutation of the Ser291, but 

not the Ser265 residue to Ala in PHF20, suggesting that Ser291 is the bona fide site for PKB-

mediated phosphorylation of PHF20 in cells (Fig. 2D). A role for PKBβ in the 

phosphorylation of PHF20 was suggested by the observation that PHF20 phosphorylation 

was undetectable in liver extracts from PKBβ (-/-) mice compared to wild-type controls in 

response to feeding (Fig. 2F). 

Many downstream targets of PKB are implicated in cancer progression, including the 

ubiquitin ligase Mdm2 that targets p53, as well as Twist1, a transcription factor that is 
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involved in the DNA damage response in cancer [19, 31]. Given the previously identified role 

of PHF20 as an autoantigen in glioblastoma, phosphorylation of PHF20 by PKB may 

represent a novel regulatory mechanism in cancer. The dependence of PHF20 

phosphorylation on PKBβ isoform is consistent with recent data identifying PKB isoform 

specific substrates in different cells. For example, ankyrin repeat domain protein 2 (Ankrd2) 

has been identified as a PKBβ substrate involved in myogenic differentiation in response to 

oxidative stress [39]. The actin-bundling protein palladin is also regulated by both PKBα and 

PKBβ in a non-redundant manner, with PKBα phosphorylation of paladin regulating breast 

cancer cell migration, and PKBβ phosphorylation regulating paladin transcription and protein 

stability [40]. Our data suggests that PHF20 may be specifically phosphorylated by PKBβ in 

liver, and suggests an isoform-specific regulation by upstream PKB proteins.  

Our data demonstrated that PHF20 overexpression reduced the accumulation of p53 

in response to the DNA damaging agent doxorubicin (Fig. 3A, B). A key role for PKB in this 

process was highlighted by the observation that expression of PHF20 S291A mutant, which 

could not be phosphorylated by PKB, enhanced p53 accumulation in HCT116 cells compared 

to wild type (Fig. 3C). In addition, PKB-mediated PHF20 phosphorylation on Ser291 was 

required for p53-mediated transcriptional repression of downstream targets p21 and Bax (Fig. 

3D-3G). An accumulating body of data suggests that PKB plays an important role in 

regulating p53 function under DNA damage. Phosphorylation of the anti-apoptotic protein 

Twist-1 on Ser42 by PKB led to reduced p53 accumulation in response to DNA damage [19]. 

PKB mediated Mdm2 phosphorylation on Ser166 and Ser188 directly regulates p53 stability 

by stabilizing Mdm2 and increasing p53 targeting for proteosome-mediated ubiquitination 

[31]. PI3K/PKB signaling is critical for the inhibition of p53-dependent apoptosis [41]. 

Consistent with these results, UV-induced cell-death (monitored by sub-G1 population) was 

significantly enhanced in PHF20 S291A-expressed cells (Fig. 4A). Interestingly, this 
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enhancement of UV-induced cell death was absent in p53 (-/-) cells, clearly indicating that 

p53 function is essential for these effects of PHF20 on UV-mediated cell-death (Fig. 4). 

PHF20 S291A-mediated enhancement of UV-induced cell death appeared to be apoptotic and 

again was p53-dependent (Fig. 4D). What is the mechanism by which PHF20 regulates cell 

death in a p53-dependent manner? Recent evidence suggests that the key function of histone 

modifications is to signal for recruitment or activity of effector molecules to DNA [42]. A 

Tudor domain in PHF20 has been identified, with PHF20 shown to act as a methyllysine 

binding protein during histone acetyltransferase protein complex formation [43]. These data 

suggest that PHF20 may be involved in the formation of p53-dependent transcriptional 

complexes bound to histones in response to DNA damage in cancer cells. Our new data 

strengthens the links between PKB and p53, and suggest that a signaling pathway from 

PKBPHF20p53 may be involved in histone-mediated transcriptional regulation and cell 

death. 

PKB signaling pathway are frequently over-activated in human cancers either by 

changes in PKB isoform levels directly, or as a result of mutations in the PTEN lipid 

phosphatase, which result in increased activity of the kinase [13]. Levels of activated PKB 

were higher in malignant tumors from brain, colon and uterus (Fig. 5A). Consistently, PHF20 

levels were also elevated in the same tumor region, correlated well with pSer473 phospho-

antibody staining in tumor samples (Fig. 5B). These data suggest that upregulation of PHF20, 

possibly as a result of PKB phosphorylation may be a feature of cancer progression, with 

elevated levels of phospho-PHF20 inhibiting p53 mediated cell death, leading to enhanced 

cancer cell survival. Phospho-antibodies against Ser291 of PHF20 will be useful tools in 

monitoring the aggressiveness and progression of cancer in different tissues. Proof-of-

principle in this regard emerged from data using phospho-antibodies reactive to the PKB 

phosphorylation site of Twist (Ser42). Elevated levels of pSer42 Twist phosphorylation were 
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evident in human cancer, and were implicated in the regulation of p53-dependent cell 

survival [19]. Taken together, our data show that DNA-damage induced phosphorylation of 

PHF20 by PKB results in the destablization of p53, leading to inhibition of p53 target genes 

involved in cell survival. Therefore, cancer cells with high expression of PHF20 and elevated 

PKB activity could escape from p53-mediated cell cycle arrest and apoptosis, leading to 

tumour growth and metastasis (Fig. 5C). 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

19 

Acknowledgements 

We would like to thank the following people for providing essential reagents; Dr. Minho 

Shong (Chungnam National University, South Korea) and Dr. Gongda Xue (Friedrich 

Miescher Institute, Switzerland) for valuable reagents. We also thank Ms. Debby Hynx 

(Friedrich Miescher Institute, Switzerland) for performing and collecting the liver samples 

from PKBβ (-/-) mice. This work was supported by the National Research Foundation of 

Korea (NRF) grant funded by the Korea Government (MEST) (No. 2012-0005767, No. 

2012004714), by a grant from the National R&D Program for Cancer Control funded by 

Ministry of Health & Welfare, Republic of Korea. (No. 0720560) and by Chungnam National 

University Hospital Research Fund (2011). DPB is supported by funding from DEL Northern 

Ireland, Action Medical Research UK, BBSRC UK and Diabetes UK.
 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

20 

Figure legends 

Figure 1. Human PHF20 is phosphorylated by PKB in vitro (A) Schematic representation 

of the potential phosphorylation sites in human PHF20. The PKB phosphorylation sites of 

GSK3β (Ser9) and FOXO3 (Ser253 and Ser315) were shown together with the putative 

phosphorylation sites of PHF20 (Ser265 and Ser291). The consensus motif for PKB substrate 

is also indicated. (B) Recombinant PKBα was used for in vitro kinase assay with the 

indicated peptides as described under “Experimental Procedures.” The extent of 

phosphorylation of each peptide is expressed as a percentage relative to the Crosstide (GSK-

3β derived peptide; GRPRTSSFAEG). The phospho-acceptor is in boldface and residues 

mutated to Ala are underlined. The kinase activity is plotted as the average ± S.D. of 

duplicate assays in three independent experiments. (C) Domain deletion mutants of PHF20 

proteins (PHF20-a, -b, -c and -d) was produced and purified on glutathione-Sepharose beads 

from E. coli. In vitro kinase assay was performed with recombinant PKBαin the presence of 

γ[
32

P]-ATP. Kinase reactions were stopped and resolved by SDS–PAGE. Input of each GST-

PHF20 proteins was also detected (bottom) (D) GST-PHF20-b was used in in-vitro kinase 

assay with different amount of PKB (20ng, 50ng and 100ng). MBP was used as positive 

control for PKB kinase. These results are representative of three independent experiments. 

 

Figure 2. Insulin or serum-induced phosphorylation of PHF20 on Ser291 is mediated by 

PKBβ in vivo (A) Flag-PHF20 was transiently transfected in HEK293 cells and was 

immunoprecipitated with anti-Flag antibodies. Immunoprecipitated PHF20 or GST-PHF20-b 

was incubated with recombinant PKBα in vitro. Kinase reactions were analyzed by SDS-

PAGE. (B) Flag-PHF20 expressing HEK293 cells were starved for 24 h, followed by the 

stimulation with 100nM insulin for 15 min, or 20 % FBS for 1 h. After immunoprecipitation 

(IP) with anti-Flag antibody, phosphorylated PHF20 was detected with anti-phospho-Ser/Thr 
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PKB substrate antibody (top panel). Inputs are shown in the lower panels. The results are 

representative of three independent experiments. (C) Flag-PHF20 expressing HEK293 cells 

were pretreated with 50 µM LY294002 for 15 min followed by the stimulation of cells with 

20% serum for 1 h. One set of immunoprecipitates were incubated with -phosphatase (400U) 

for 30 min and analyzed with the corresponding antibodies. Similar results were obtained in 

three separate experiments. (D) HEK293 cells were transiently transfected with wild type, 

S265A, S291A or S265A/S291A PHF20 and serum-stimulated. After immunoprecipitation 

(IP) with anti-Flag antibody, levels of phosphorylated PHF20 were analysed (top panel). 

These results are representative of three independent experiments. (E) HEK293 cells were 

transiently transfected with wild type PHF20 together with wild type (WT), active (CA) or 

inactive (KD) PKB. After immunoprecipitation (IP), phosphorylated forms of PHF20 were 

detected (top panel). The results are representative of three independent experiments. (F) 

Immunoblot of hepatic PHF20 levels in PKBβ (-/-) mice and wild-type mice fasted for 6 h, or 

fasted for 6 h and then refed for 2 h (n=4-7). After immunoprecipitation (IP) with anti-PHF20 

antibody, phosphorylated PHF20 was detected using anti-pSer/Thr antibody (top panel).   

 

Figure 3. Ser291 Phosphorylation of PHF20 is important for the destabilization of p53 

and the downregulation of p53 targets in DNA damage condition. (A) HCT116 or (B) 

HeLa cells were transiently transfected with pENTR-Flag-PHF20 for 24h, were treated with 

5µM doxorubicin for the indicated time. Changes in the levels of p53, PHF20 and PKB were 

monitored with the indicated antibody (top panel). Phosphorylation of PHF20 and PKB 

Ser473 were also monitored (bottom panel). (C) Wild type (WT) or mutants (S265A and 

S291A) of PHF20 were expressed in HCT116 cells. Cells were treated with 5µM doxorubicin 

for the indicated time. Changes in protein levels and phosphorylation were monitored. The 

results are representative of three independent experiments. (D, E) HCT116 cells were 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

22 

cotransfected with p21
waf

- or Bax-luciferase reporter plasmids, with empty vector or Flag-

PHF20. Twenty four hours post-transfection, cells were treated with 5µM doxorubicin for the 

indicated time and luciferase reporter activity was measured. The results are mean ± S.D. of 

three independent experiments. (F, G) HCT116 cells were co-transfected with p21
waf

- or Bax-

luciferase reporter plasmid and PHF20 wild type or mutants. Cells were treated with 5µM 

doxorubicin for the indicated time. Then luciferase reporter activity was measured. The 

results are mean ± S.D. of three independent experiments. *, p <0.1, **, p<0.05, ***, P<0.01. 

 

Figure 4. Ser291 phosphorylation of PHF20 protects HCT116 cells from UV-induced 

cell-death in a p53 dependent manner (A) HCT116 p53 (+/+) cells or (B) HCT116 p53 (-/-) 

cells were transiently transfected with PHF20 wild type (WT) or non-phosphorylatable 

mutant (S291A). Twenty four hours posttransfection, cells were treated with UV (50mj) and 

analyzed by flow cytometry. Results are representative of three independent experiments (top 

panel). Each population of cells in the cell cycle (subG1, G1, S, G2-M phase) was plotted as 

mean ± S.D. of three independent experiments (bottom pnael). *, p <0.1, **, p<0.05, ***, 

P<0.01. (C) HCT116 p53 (+/+) cells or (D) HCT116 p53 (-/-) cells were transiently 

transfected with PHF20 wild type (WT) or non-phosphorylatable mutant (S291A). The cells 

were labeled with annexin V and propidium iodide (PI) to distinguish the type of cell death. 

The population of apoptotic cell (PI positive and annexin V negative) was calculated. These 

results are representative of three independent experiments (top panel). The results were 

plotted as mean percentage cell death ± S.D. of three independent experiments (bottom panel). 

*, p <0.1, **, p<0.05, ***, P<0.01. 

 

Figure 5. PHF20 expression and phospho-PKB Ser473 levels in human malignancy (A) 

Human multiple tissue arrays were analyzed by immunohistochemistry (IHC) for PHF20 and 
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phospho-PKB Ser473 staining. Images show representative cores from cerebrum, colon and 

uterine cervix. Scale bars, 100 µm. (B) Various tissues samples were analyzed by IHC with 

PHF20 and phospho-PKB (Ser473) antibody. The results were calculated as positive 

percentage of total sample numbers counted. Only patient samples present in both tumor 

arrays and stained with two antibodies were used for the analysis. (C) Schematic illustration 

of the working model for the action of PKB/PHF20 in cancer. DNA-damage induced 

phosphorylation of PHF20 by PKB results in the destablization of p53, leading to inhibit p53 

target gene, p21 and Bax. Therefore, cancer cells with high expression of PHF20 with the 

elevated PKB activity may escape from p53-mediated cell cycle arrest and apoptosis. 
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Highlights 

 PHD finger protein 20 (PHF20) is a firstly identified in glioma patients.  

 PKB can directly phosphorylate PHF20 on Ser291 in vitro and in vivo.  

 PHF20 phosphorylation by PKB led to an inhibition of p53 induction following UV 

treatment 

 Expression of PHF20 and PKB activity is correlated in various human cancer tissues.  

 PHF20 is a novel substrate for PKB and could be an important target for glioma 

patients. 


