
Analysis of Area-Efficiency vs. Unrolling for eSTREAM Hardware
Portfolio Stream Ciphers

Alharbi, F., Hameed, M. K., Chowdhury, A., Khalid, A., Chattopadhyay, A., & Javed, I. T. (2020). Analysis of
Area-Efficiency vs. Unrolling for eSTREAM Hardware Portfolio Stream Ciphers. Electronics (Switzerland), 9(11),
Article 1935. https://doi.org/10.3390/electronics9111935

Published in:
Electronics (Switzerland)

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2020 the authors.
This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:03. Jun. 2024

https://doi.org/10.3390/electronics9111935
https://pure.qub.ac.uk/en/publications/56703c66-7121-4b39-8913-d7d6dddf67da

electronics

Article

Analysis of Area-Efficiency vs. Unrolling for
eSTREAM Hardware Portfolio Stream Ciphers

Fares Alharbi 1, Muhammad Khurram Hameed 2, Anusha Chowdhury 3, Ayesha Khalid 4,
Anupam Chattopadhyay 5 and Ibrahim Tariq Javed 6,*

1 Computer Science Department, Shaqra University, Shaqra 15526, Saudi Arabia; faalhrbi@su.edu.sa
2 Computer Science Department, Bahria University, Islamabad 44000, Pakistan;

01-247182-22@student.bahria.edu.pk
3 Department of Computer Science and Engineering, Indian Institute of Technology, Kanpur 208016, India;

anushac28@gmail.com
4 School of Electronics, Electrical Engineering and Computer Science, Queens University,

Belfast BT7 1NN, UK; a.khalid@qub.ac.uk
5 School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave,

Singapore 639798, Singapore; anupam@ntu.edu.sg
6 Lero-The Irish Software Research Centre, University of Limerick, V94 T9PX Limerick, Ireland
* Correspondence: Ibrahimtariq.javed@lero.ie

Received: 22 October 2020; Accepted: 12 November 2020; Published: 17 November 2020 ����������
�������

Abstract: The demand for low resource devices has increased rapidly due to the advancements in
Internet-of-things applications. These devices operate in environments that have limited resources.
To ensure security, stream ciphers are implemented on hardware due to their speed and simplicity.
Amongst different stream ciphers, the eSTREAM ciphers stand due to their frugal implementations.
This work probes the effect of unrolling on the efficiency of eSTREAM ciphers, including Trivium,
Grain (Grain 80 and Grain 128) and MICKEY (MICKEY 2.0 and MICKEY-128 2.0). It addresses the
question of optimal unrolling for designing high-performance stream ciphers. The increase in the area
consumption is also bench-marked. The analysis is conducted to identify efficient design principles
for ciphers. We experimentally show that the resulting performance after unrolling may disagree
with the theoretical prediction when the effects of technology library are considered. We report
pre-layout synthesis results on 65 and 130 nm ASIC technology as well as synthesis results for Xilinx
FPGA platform in support of our claim. Based on our findings, cipher design and implementation
suggestions are proposed to aid hardware designers. Furthermore, we explore why and where
area-efficiency for these ciphers saturate.

Keywords: cryptography; stream cipher; eSTREAM; trivium; grain; MICKEY; ASIC; FPGA; unrolling;
area efficiency

1. Introduction

The rise of the Internet-of-things applications has increased the demand for low resource devices.
To ensure security it is essential to protect the data generated from these devices. The devices operate
in environments where resources such as energy, memory, computational power and space are very
limited. Achieving high levels of security in limited resources is a challenge. While implementing a
cipher on the hardware it is essential to enhance throughput and minimize the area consumption while
ensuring security [1]. In cryptography, symmetric ciphers are usually used to encrypt data between
two parties. Symmetric ciphers can either be block or stream ciphers. In block ciphers, the message
is encrypted into fixed-size blocks whereas in stream ciphers the message is encrypted digit by digit
using a pseudo-random key bitstream. On resource constraint hardware stream ciphers are usually

Electronics 2020, 9, 1935; doi:10.3390/electronics9111935 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
http://dx.doi.org/10.3390/electronics9111935
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/11/1935?type=check_update&version=2

Electronics 2020, 9, 1935 2 of 17

preferred due to their speed and simplicity [2]. eSTREAM [3] was an EU-ECRYPT project that allowed
submissions of stream cipher proposals. In the four years amongst 34 proposals, 7 were included in
the portfolio, 4 in software profile and 3 in the hardware profile. The hardware portfolio comprised
of Grain (Now Grain Family: Grain-128AEAD [4], Grain-128a [5], Grain-128 [6], and Grain v.1 [7]
ciphers for constrained computing environments) MICKEY [8] and Trivium [9] stream cipher proposals.
These ciphers are considered hardware-efficient due to their low cost and high performance [10–12].
Although the security of Trivium was criticized in [13], most importantly they are considered to
be secure as there are no successful cryptanalytic attacks till date on Trivium [14], MICKEY [15],
and Grain [16]).

As the world is getting closer to the paradigm of pervasive computing, high-performance security
for all the increased information exchange is becoming more and more challenging. This need for better
performance fuels and justifies academic and industrial efforts in the direction of the design of high
performance embedded Application Specific ICs (ASICs) dedicated to a certain cryptographic function.
Physical constraints are important while designing ciphers for various computing environments.
For efficient hardware implementations, loop unrolling is a micro-architectural configuration that
replicates the main module of an iterative process by multiple modules to execute these rounds in one
clock cycle, the duplication number is called the unrolling factor. As a direct consequence of unrolling,
higher throughput performance is expected, along with an increase in the circuit area and the critical
path of the design. In addition to achieving hardware efficiency, unrolling comes with an added benefit
for cryptography cores. The unrolled hardware implementations are less vulnerable to side-channel
analysis (SCA) attacks since they execute multiple rounds in every clock cycle and hence require a
stronger hypothesis for cryptanalysis on multiple values due to deeper diffusion of the secret state [17].

In this paper, we analyze various possible design points in the area-performance curve for
VLSI designs of stream ciphers for unrolling factors beyond what the conventional design permits.
For block ciphers, the unrolling simply duplicates the round hardware and the area increase is
predictable. Whereas for stream ciphers, the numbers are much more interesting since we are only
replicating the boolean logic until a certain factor. Hence stream cipher unroll can promise a lightweight
solution to performance boost via unrolling. With this motivation, we took up the three hardware
portfolio eSTREAM ciphers for HDL implementation, along with their modified versions. In this
paper, we perform unrolling by a range of factors (L = 1 implies no unrolling, L = k implies full
unrolling having loop trip count k). Starting from the synthesizable Verilog HDL and verification,
we took up synthesis on various ASIC technology libraries and FPGA platform. The aim is to analyze
and benchmark resource utilization, throughput performance and area efficiency due to unrolling
optimization in these ciphers. Consequently, a series of interesting results were encountered that are
novel and unconventional.

The paper is organized as follows: Section 2 provides the existing work related to the performance
analysis of hardware stream ciphers. In Section 3, the specifications and design parameters are
discussed for Trivium, Grain and MICKEY ciphers. In Section 4, the unrolled hardware implementation
is presented. Section 5 states various aspects of imprecise modeling of the effects of unrolling whereas
Section 6 guides designers how area-efficiency grows and saturates. Finally, Section 7 concludes
the paper.

2. Related Work

In cryptography, the block ciphers require huge gate footprint and memory for implementation.
For this reason, they are not implemented over resource-constrained devices. On the other hand,
stream ciphers can be used in resource-constraint environments due to their simplicity and throughput.
After the widely used stream ciphers were proven to be insecure the eSTREAM project was developed
by the European Network of Excellence in Cryptology [18] to create more efficient and robust stream
cipher algorithms. There were three rounds where seven algorithms were finalized. In hardware
portfolio three algorithms were selected including Grain [7], Mickey [8] and Trivium [9]. Grain family

Electronics 2020, 9, 1935 3 of 17

is proposed to tackle the security issues in old stream cipher algorithms. Mickey 2.0 is designed
to ensure security in resource constraint hardware. Whereas Trivium is designed to provide high
performance in terms of speed and low gate count.

We discuss some relevant works to the aforementioned stream ciphers. In [1], authors discuss
the efficiency of stream ciphers Trivium, Grain and Mickey. A comparison of these lightweight
stream ciphers with block ciphers is presented. Block ciphers consume a large footprint of Gate
Equivalents (GE) when compared to stream ciphers. For instance, the traditional Advanced Encryption
Standard consumes about 2400–3500 GE whereas the lightweight stream ciphers take approximately
2000 GE. The performance of these stream cipher algorithms is further analysed in [19] by conducting
simulations using Java programming language. The work suggested the adoption of Grain, Mickey and
Trivium for resource-constrained hardware. Profile 2 eSTREAM is adopted in [20] using five leading
Phase 2 candidates which are implemented in Spartan 3 Xilinx family and ASIC technology. This work
is compared with old stream cipher algorithms based on hardware efficiency criteria. In the Grain,
five parallelization factors: 1, 2, 4, 8, 16 are used in the basic architecture with 122 slices under
193 MHz the frequency. In contrast, the implementation of 16× parallel architecture shows a maximum
throughput of 2480 with 6.97 Mbps/slice. In the Trivium, seven parallelization factors are used in the
basic architecture with 188 slices under 201 MHz the frequency. While in 64× parallel architecture
implementation, the maximum throughput 12,160 with 31.34 Mbps/slice is reached.

In the work [21], six different stream cipher algorithms are implemented for comparison
using the Xilinx Spartan XC3S700A-4FG484 device. The metrics used to compare algorithms are
throughput-to-area ratio and consumed area. In Grain v1, 318 slices are used under 177 MHz the
frequency with 0.558 Mbps/slice throughput-to-area while in Mickey 2.0, 98 slices are used under
250 MHz the frequency with 2.55 Mbps/slice throughput-to-area. For the Trivium implementation,
149 slices are used under 326 MHz the frequency with 2.18 Mbps/slice throughput-to-area. However,
the consumption of area resources was high in Grain v1 and Trivium. A new FPGA implementation
approach is proposed in the work in [22]. In this paper, authors implement Mickey 2.0, Trivium and
Grain v1 with two stream ciphers: Lizard and Plantlet using Xilinx’s Spartan7 serial and Verilog
hardware. In their findings, Trivium has the highest frequency with maximum 416 Mbps, while the
Mickey 2.0 has the second-highest frequency with 384 Mbps both in basic versions. In the serial
version, Trivium has the smallest consumption of area which is 133 slides, while the Grain v1 has the
second smallest which is 26 slices. Trivium achieved the maximum throughput-area ratio which is
165.5 Mbps/Slice in the parallel version.

In the existing literature, the performance of hardware stream ciphers is computed and analyzed
in terms of throughput, area efficiency and security. As far as we know to the best of our knowledge,
there exists no work that probes the effect of loop unrolling on hardware efficiency for stream ciphers
(Grain, Mickey and Trivium). Loop pipelining and loop unrolling are two methods that can improve the
hardware performance by introducing parallelism in loop iterations. In loop pipelining, the concept of
pipelining is introduced to allow the operations to be implemented concurrently. However, pipelining
increases the complexity and cost of the hardware. On the other hand, loop unrolling introduces
multiple copies of the loop body to adjust the loop iteration counter. For stream ciphers, unrolling
can be a promising lightweight solution to boost the performance. Therefore, we show the effect
of unrolling on the efficiency of estream hardware ciphers. The optimal unrolling for designing
high-performance stream ciphers are discussed. The results can be used by hardware designers to
identify design principles to achieve better performance in stream ciphers.

3. Trivium, Grain and MICKEY Specifications

In this section, we present the parameters of Grain-80, Grain-128, MICKEY 2.0, MICKEY-128 2.0
and Trivium stream ciphers. These ciphers have two phases for initialization namely, key/IV setup,
randomization, followed by the key-stream generation [23]. The specifications are summarized in
Table 1 and are discussed in the following subsections.

Electronics 2020, 9, 1935 4 of 17

Table 1. Cipher Specifications.

Cipher Key Size IV Size Key/IV Setup Randomization Initialization Internal State
(Bits) (Bits) (Cycles) (Cycles) (Cycles) (Bits)

Trivium 80 80 288 1152 1440 288
Grain-80 80 64 160 160 320 160
Grain-128 128 96 256 256 512 256
MICKEY 80 <=80 160 100 260 211
MICKEY-128 128 <=128 256 160 414 332

3.1. Grain

The Grain [24] family of stream ciphers are designed for hardware environments where resources
such as power and memory are limited, for instance, radio-frequency identification (RFID). The Grain
family has 80-bit and 128-bit variants having linear feedback shift register (LFSR), nonlinear feedback
shift register (NFSR) and a nonlinear output function (NFSR). The LFSR introduces the minimum
period for the key-stream whereas NFSR produces non-linearity to the cipher. The sate of NFSR is
balanced by masking the output of LFSR with the input to the NFSR. The LFSR is represented as
St = st + st+1,, st+79 whereas NFSR is represented by Bt = bt, bt+1,, bt+79. The function H(Bt, St) is
the output key-stream bit represented by zt.

3.1.1. Grain-80 Design Parameters

The keysize of Grain-80 [7] is 80 bits whereas the initialization vector (IV) is of 64 bits. The key
and IV is loaded to shift registers bi = ki , 0 ≥ i ≤ 79, si = IVi , 0 ≥ i ≤ 63 where the remaining bits are
set as 1. The cipher is then clocked 160 times to produce the key-stream bits. The updated function of
the LFSR and NFSR are defined in Equations (1) and (2), respectively.

st+80 = st+62 ⊕ st+51 ⊕ st+38 ⊕ st+23 ⊕ st+13 ⊕ st. (1)

bt+80 = st ⊕ bt+62 ⊕ bt+60 ⊕ bt+52 ⊕ bt+45 ⊕ bt+37 ⊕ bt+33 ⊕ bt+28 ⊕ bt+21 ⊕ bt+14 ⊕ bt+9 ⊕ bt ⊕ bt+63bt+60

⊕bt+37bt+33 ⊕ bt+15bt+9 ⊕ bt+60bt+52bt+45 ⊕ bt+33bt+28bt+21 ⊕ bt+63bt+45bt+28bt+9 ⊕ bt+60bt+52bt+37bt+33⊕
bt+63bt+60bt+21bt+15 ⊕ bt+63bt+60bt+52bt+45bt+37 ⊕ bt+33bt+28bt+21bt+15bt+9 ⊕ bt+52bt+45bt+37bt+33bt+28bt+21.

(2)

The Boolean function h(x) is defined as:

h(x) = h(x0, x1, ..., x4) = x1 ⊕ x4 ⊕ x0x3 ⊕ x2x3 ⊕ x3x4 ⊕ x0x1x2 ⊕ x0x2x3 ⊕ x0x2x4 ⊕ x1x2x4 ⊕ x2x3x4 (3)

where the variables x0, x1, x2, x3 and x4 correspond to st+3, st+25, st+46, st+64 and bt+63, respectively.
The output function H(Bt, St) is given by

zt = H(Bt, St) =
⊕
j∈A

bt+j ⊕ h(st+3, st+25, st+46, st+64, bt+63). (4)

where A = {1, 2, 4, 10, 31, 43, 56}.

3.1.2. Grain-128 Design Parameters

Grain-128 [25] has a keysize of 128 bits, whereas size of the IV is specified to be 96 bits.
Th initialization is done using bi = ki , 0 ≥ i ≤ 127, si = IVi , 0 ≥ i ≤ 95 and loaded to NFSR and
LFSR. The updated functions of LFSR and NFSR are provided by Equations (5) and (6), respectively.

st+128 = st ⊕ st+7 ⊕ st+38 ⊕ st+70 ⊕ st+81 ⊕ st+96. (5)

Electronics 2020, 9, 1935 5 of 17

(6)bt+128 = st ⊕ bt ⊕ bt+26 ⊕ bt+56 ⊕ bt+91 ⊕ bt+96 ⊕ bt+3bt+67 ⊕ bt+11bt+13

⊕ bt+17bt+18 ⊕ bt+27bt+59 ⊕ bt+40bt+48 ⊕ bt+61bt+65 ⊕ bt+68bt+84.

The Boolean function h(x) is defined as:

h(x) = h(x0, x1, ..., x8) = x0x1 ⊕ x2x3 ⊕ x4x5 ⊕ x6x7 ⊕ x0x4x8. (7)

where the variables x0, x1, x2, x3, x4, x5, x6, x7 and x8 correspond to bt+12, st+8, st+13, st+20, bt+95, st+42,
st+60, st+79 and st+95, respectively. The output function H(Bt, St) is defined as

zt = H(Bt, St) =
⊕
j∈A

bt+j ⊕ h(x)⊕ st+93. (8)

where A = {2, 15, 36, 45, 64, 73, 89}.

3.2. Mickey 2.0

Mickey [26] stands for Mutual Irregular Clocking KEY-stream generator is a family of stream
ciphers that are implemented on resource constrained hardware. The aim of Mickey is to provide
high level of security while having low complexity over hardware implementation. There are
two variants of Mickey 2.0, MICKEY-80 and and MICKEY-128 having 80 bit and 128 bit key,
respectively. There are two registers R and S represented by (r0, . . . , r99) and (r0, . . . , r99), respectively.
The registers have two modes of clocking CLOCKR and CLOCKS. Clocking of shift registers introduces
pseudorandomness. Four control variables are used to update the contents of R and S in a non-linear
manner. The hardware-oriented form of the two clock modes are presented as follows:

CLOCKR:
r0 ⇐ (r0 · CR)⊕ r99 ⊕ IR (9)

ri∈[1....99] ⇐
{

ri−1 ⊕ (ri · CR)⊕ r99 ⊕ IR if i ∈ RTAPS

ri−1 ⊕ (ri · CR) if i /∈ RATPS
(10)

CLOCKS:
s0 ⇐ s99 ⊕ IS (11)

si∈[i.....98] ⇐ si−1 ⊕ ((si ⊕ COMP0i) · (si+1 ⊕ COMP1i))⊕ FBi · (s99 ⊕ IS) (12)

s99 ⇐ s98 ⊕ ((s99 ⊕ IS) · CS (13)

3.3. Trivium

Trivium [27] is designed to have high speed, low gate count and reasonable implementation
efficiency. Trivium consists of three shift registers of different lengths. In each round a bit is shifted
to three shift registers creating internal state denoted by S = (s1...., s93, s94,, s177, s178,, s288).
The structure of the internal state of Trivium is presented in [9]. Trivium generate 264 bits of
key stream from 80 bit key and 80 bit IV. The key and IV are uploaded to the shift registers and
updates 1152 times to generate key streams. The pseudo-code of the key stream is presented
as follows:

for i = 1 to N do
t1 ← s66 + s93

t2 ← s162 + s177

t3 ← s243 + s288

zi ← t1 + t2 + t3

t1 ← t1 + s91.s92 + s171

t2 ← t2 + s175.s176 + s264

Electronics 2020, 9, 1935 6 of 17

t3 ← t3 + s286.s287 + s69

(s1, s2, ..., s93)← (t3, s1, ..., s92)
(s94, s95, ..., s177)← (t1, s94, ..., s176)
(s178, s279, ..., s288)← (t2, s178, ..., s287)

end for

4. Implementation

4.1. Unrolled Hardware Implementations

This section discusses the unrolling methodology for the three stream ciphers at hand.
Since MICKEY is based on Jump Registers, its unrolling is different from that of Trivium and Grain
which are based on feedback shift registers (FSRs). We take MICKEY 2.0 and Grain-80 as a test example.
To study the effects of unrolling on implementation, we started from a basic design implementation of
the cipher using VHDL and attempted unrolling. For all the designs, the natural interface resulting out
of unrolling is used to avoid performance imbalance. For example, the basic Trivium design consists of
two 1-bit pins for clock and reset, two 80-bit pins for Key and IV, one 1-bit output pin for a valid signal
(indicating beginning of key-stream generation) and one 1-bit output pin carrying the key. For Trivium,
we purposefully unrolled beyond the state update function (till 128) to study the effect on throughput
and area performance.

4.2. Design Synthesis Setup

Synthesis is carried out using Synopsys Design Compiler Version H-2013.03-SP1, with compile_ultra
option. The synthesis is driven by throughput maximization with the max_area constraint set to 0.
The frequency is scaled up until there is a failure to meet the clock constraint. The area is reported
using equivalent NAND gates. All CMOS synthesis reported has been performed targeting either

• Faraday UMC 65 nm SP/RVT Low-K process technology library. Best case condition with 1.1 V,
−40 ◦C parameters are assumed.

• Faraday UMC 130 nm high speed FSG process technology library. Typical case condition with
1.2 V, 25 ◦C parameters are assumed.

4.3. Unrolling MICKEY 2.0

Figure 1 shows the architecture of MICKEY 2.0, with no unrolling (generating 1 bit/cycle of
key-stream). R and S are so called Jump Registers. The registers jump to new values using jump bit
(cbr, cbs). Hence unlike the conventional LFSRs, the entire R and S may be updated after a clock cycle
as each bit depends on its neighboring bits for update.

Figure 1. MICKEY 2.0 architecture with no unrolling.

Electronics 2020, 9, 1935 7 of 17

For n-× unrolling we update the registers ahead n times. Since we wish to obtain n simultaneous
output bits, we look-ahead for n− 1 more rounds of feedback and control bits to generate n− 1 more
key-stream bits on the same clock edge. Theoretically, n ≥ 1, we experimented for n = 2, 3, 4, 8. Figure 2
shows the 2× unrolled implementation hardware for MICKEY 2.0 with critical path highlighted. R1 and
S1 are temporary buffers for holding the next iteration states of R and S, respectively.

Figure 2. MICKEY 2.0 (2×) architecture (unrolled twice).

Algorithm 1 discusses a generic n-× unrolling methodology for MICKEY 2.0. For every increment
in the unroll factor, future values of cbr, cbs, fbr, fbs, ibr, ibs are generated and the original R and S
registers are updated. Every iteration of loop indexed with j in Algorithm 1, delivers a batch of n-bits
of key-stream and executes till the key-stream generated bitlength l is exhausted. The inner loop
indexed with i, produces one bit of key-stream. MICKEY 128 2.0 unrolling has been explained by [28],
however beyond 2 times unrolling was not explored due to lowering of area efficiency. Moreover,
the calculation of future control and feedback bits depended on the clocking of only a few particular
bits of R and S (skipping the entire register update), which does not hold true for MICKEY 2.0.

Algorithm 1: MICKEY 2.0 n-× parallelization algorithm
Input: State R0 and S0 after Preclock stage
Input: Unrolling factor n, key-stream bits l
Output: n-key-stream bit per clock
Return first keybit as R0[0]⊕S0[0];
Set ibr0, ibs0 as 0.
for j=1 to d l

n e step 1 do
for i=0 till ≤ (n− 1) step 1 do

Calculate cbri, cbsi, f bri, f bsi for Ri, Si as per CLOCK_KG.
Call CLOCK_R(Ri , 0, cbri) and let Ri+1 be the state of Ri after clocking.
Call CLOCK_S(Si , 0, cbri) and let Si+1 be the state of Si after clocking.
Return Ri+1[0]⊕ Si+1[0] as next keybit;

Unrolled Design Synthesis for MICKEY

Table 2 reports the synthesis results for synthesizing MICKEY 2.0 unrolled versions at the
highest possible operating frequency for 65 nm CMOS. Deviating from the conventional wisdom
suggesting unrolling always improves design efficiency, we see a contradiction. For 2-× unrolling,
the Throughput Per Area Ratio (TPAR) is highest and drops for higher unrolling values. For each
unrolled implementation, the critical path of the design varies. Consequently a different Boolean gate
implementation is modeled based on the synthesis tool. Synthesis tools heuristics are hard to model,
however we try to answer this in the next section.

Electronics 2020, 9, 1935 8 of 17

Table 2. MICKEY 2.0 synthesis results for highest frequency (65 nm).

Unrolling Area Frequency Bits/Cycle Throughput Throughput/Area
(Gates) (GHz) (Gbps) (Kbps/Gates)

1 4069 1.0 1 1.0 246
2 5360 1.0 2 2.0 373
3 8498 1.0 3 3.0 353
4 13,224 1.0 4 4.0 302
8 13,375 0.5 8 4.0 299

MICKEY 128 2.0 has a larger key size and internal state in comparison. Table 3 gives the synthesis
results for synthesizing MICKEY 128 2.0 unrolled versions at the highest possible operating frequency
for 65 nm CMOS. Unlike MICKEY 2.0, the TPAR for MICKEY 128 2.0 shows are rising trend with
the unroll factor. Hence when we go from rolled MICKEY to 2× unrolled MICKEY, we find that the
throughput exactly doubles, whereas the area, though it increases, is less than double. Tables 4 and 5
gives the FPGA synthesis results for MICKEY 2.0 and MICKEY 128 2.0 respectively.

Table 3. MICKEY-128 2.0 synthesis results for highest frequency (65 nm).

Unrolling Area Frequency Bits/Cycle Throughput Throughput/Area
(Gates) (GHz) (Gbps) (Kbps/Gates)

1 93 1.0 1 1.0 258
2 97 1.0 2 2.0 334
3 102 1.0 3 3.0 375
4 116 1.0 4 4.0 399
8 119 1.0 8 8.0 442

Table 4. MICKEY 2.0 synthesis results (Xilinx Spartan6, device XC6SLX45).

Unrolling
Area (in Slices) Frequency Throughput Throughput/Area

Registers LUTs Total (MHz) (Mbps) (Mbps/Slice)

1 225 672 225 370 370 1.64
2 226 805 226 370 740 3.27
3 227 1043 227 370 1110 4.89
4 228 1301 228 370 1480 6.49
8 232 2091 228 370 2960 12.98

Table 5. MICKEY-128 2.0 synthesis results (Xilinx Spartan6, device XC6SLX45).

Unrolling
Area (in Slices) Frequency Throughput Throughput/Area

Registers LUTs Total (MHz) (Mbps) (Mbps/Slice)

1 360 410 317 370 370 1.17
2 531 461 368 370 740 2.01
3 700 629 536 370 1110 2.07
4 868 796 703 370 1480 2.11
8 1545 1469 1376 370 2960 2.15

4.4. Unrolling Grain-80/128

For Grain-80, parts of LFSR and NFSR (bit 65 til 79) do not contribute to the calculation of the
next state of these registers as referred in Figure 3. Consequently, the combinational logic functions
(f (x), g(x), h(x)) can be carefully replicated L times for an L times look ahead or unrolling; Grain 80 ×1,
×2,×4,×8 and×16 can be implemented by calculating L functions set fL(x), gL(x), hL(x) instead of one
function set f (x), g(x), h(x) whereas L = 2, 4, 8, 16. For Grain-80, L can be taken as any factor of 160 up to
16 (where 160 is the state size for Grain-80, ref. Table 1). Figure 4 exhibits the doubling of combinational

Electronics 2020, 9, 1935 9 of 17

logic for an unrolled (×2) version of Grain80. Unrolling beyond 16 needs duplication of LFSR and
NFSR registers too other than the combinational logic functions. Consequently, no improvement is
observed in area efficiency. For Grain-128 too, parts of LFSR and NFSR (bit 96 til 127) do not contribute
to next state calculation. Consequently, unrolling up to Grain-128 × 32 can be calculated (L can be any
factor of 256 up to 32). Beyond L = 32, no area efficiency gain is achieved, hence for Grain-80/128 we
discuss the unrolling results till L = 16/32, respectively.

Figure 3. Grain-80 architecture with no unrolling.

Figure 4. Grain (2×) architecture (unrolled twice).

4.4.1. Unrolled Design Synthesis for Grain-80/128

Tables 6 and 7 report the synthesis results for synthesizing Grain-80 and Grain-128 unrolled
versions at the highest possible operating frequency for 65 nm CMOS. The results show an
improvement in the TPAR design efficiency as the unrolling factor is increased. Consequently,
Grain-80× 16 and Grain-80× 32 are the most efficient unrolled versions of Grain-80 and Grain-128,
respectively. A similar trend of improvement in area efficiency can be seen for FPGA synthesis results
as can be seen in Tables 8 and 9 for Grain-80 and Grain-128, respectively.

Electronics 2020, 9, 1935 10 of 17

Table 6. Grain-80 synthesis results (65 nm).

Unrolling Area Frequency Bits/Cycle Throughput Throughput/Area Initialization Latency
(GE) (GHz) (Gbps) (Mbps/GE) (Cycles)

1 1175.25 1 1 1 0.85 161
2 1281.50 1 2 2 1.56 81
4 1497.50 1 4 4 2.67 41
8 1955.25 1 8 8 4.09 21
16 3047.75 1 16 16 5.25 11

Table 7. Grain-128 synthesis results (65 nm).

Unrolling Area Frequency Bits/Cycle Throughput Throughput/Area Initialization Latency
(Gates) (GHz) (Gbps) (Mbps/Gates) (Cycles)

1 1690.00 1 1 1 0.59 257
2 1790.50 1 2 2 1.12 129
4 2007.75 1 4 4 1.99 65
8 2451.25 1 8 8 3.26 33

16 3341.75 1 16 16 4.79 21
32 5392.25 1 32 32 5.93 5

Table 8. Grain-80 synthesis results (Xilinx Virtex7, device XC7vx330t).

Unrolling Freq (MHz) Latency Slice Reg. Slice LUTs Throughput
(Mbps)

Throughput
/Slice Reg

Throughput
/Slice LUT

1 696.42 161 133 142 696.42 5.24 4.90
2 618.77 81 139 158 1392.85 10.02 8.81
4 618.77 41 151 190 2785.71 18.44 14.66
8 606.87 21 175 261 5571.42 31.84 21.35

16 595.09 11 223 403 11,142.83 49.97 27.65
32 595.09 11 456 812 19,043.07 41.76 23.45

Table 9. Grain-128 synthesis results (Xilinx Virtex7, device XC7vx330t).

Unrolling Freq (MHz) Latency Slice Reg. Slice LUTs Throughput
(Mbps)

Throughput
/Slice Reg

Throughput
/Slice LUT

1 768.76 257 198 206 768.76 3.88 3.73
2 768.76 129 204 219 1537.52 7.54 7.02
4 765.46 65 216 245 3061.85 14.17 12.49
8 760.17 33 240 297 6081.34 25.34 20.48
16 754.95 21 288 401 12,079.12 41.94 30.12
32 751.94 5 384 609 24,061.95 62.66 39.51
64 751.94 5 768 1218 48,123.90 62.01 39.31

4.4.2. Unrolled Design Synthesis for Trivium

For trivium, we skip the unrolling methodology details since it follows similar idea as that of
Grain and discuss the results directly. Tables 10 and 11 benchmark the highest possible throughput
performance against area resource utilization for 65 nm and 130 nm technology libraries, respectively.

Table 12 reports the synthesis results achieved with FPGA technology. As the target board, Xilinx
Spartan6, device XC6SLX45 is used. Xilinx ISE synthesis tool version 14.3 is used with “balanced” as
the design goal. For all the designs, a conservative clock frequency of 100 MHz was selected, which
could be achieved after placement and routing. For the unrolling factor of 64, the design could not be
fit in the I/O bounds of the device.

Electronics 2020, 9, 1935 11 of 17

Table 10. Trivium synthesis results (65 nm).

Unrolling Area Frequency Bits/Cycle Throughput Throughput/Area Initialization Latency
(Gates) (GHz) (Gbps) (Gbps/KGates) (Cycles)

1 2426 6.69 1 6.69 2.76 1152
4 2433 6.28 4 25.12 10.32 288
8 2479 4.79 8 38.32 15.46 144

16 2676 2.96 16 47.36 17.69 72
32 3116 2.87 32 91.84 29.47 36
64 4023 2.89 64 184.96 45.98 18
72 4279 2.49 72 179.28 41.89 16
96 4879 1.78 96 170.88 35.02 12

128 5694 0.53 128 67.64 11.88 9

Table 11. Trivium synthesis results (130 nm).

Unrolling Area Frequency Bits/Cycle Throughput Throughput/Area Initialization Latency
(Gates) (GHz) (Gbps) (Gbps/KGates) (Cycles)

1 2332 2.19 1 2.19 0.94 1152
4 2469 2.08 4 8.32 3.37 288
8 2652 2.0 8 16.0 6.03 144

16 2788 1.41 16 22.56 8.09 72
32 3339 1.23 32 39.36 11.79 36
64 4383 1.21 64 77.44 17.67 18
72 4711 1.09 72 78.48 16.66 16
96 5521 0.73 96 70.08 12.69 12

128 7116 0.59 128 75.52 10.61 9

Table 12. Trivium synthesis results (Xilinx Spartan6, device XC6SLX45).

Unrolling
Area (in Slices) (% Utilization) Frequency Throughput Throughput/Area

Registers LUTs Total (MHz) (Mbps) (Mbps/Slice)

1 575 (1%) 370 (1%) 510 (7%) 100 100 0.19
4 555 (1%) 379 (1%) 506 (7%) 100 400 0.79
8 586 (1%) 399 (1%) 511 (7%) 100 800 1.56

16 620 (1%) 436 (1%) 530 (7%) 100 1600 3.02
32 621 (1%) 503 (1%) 533 (7%) 100 3200 6.00

For predicting the efficiency improvement, corresponding to the unrolling factor, a popular
approach is to count the number of Boolean functions required in the unrolled implementation.
Thenceforth, the gate count is derived by approximating each Boolean function with an equivalent
number of NAND gates. This is also presented in the Trivium specification [9] and reproduced here
(Table 13) for convenience of reading. Evidently, this approach is naive and cannot capture the effects of
technology reliably. This is reflected in the experimental results presented in the Tables 10–12. For each
unrolling factor, we compute the predicted throughput/area by assuming a doubling of throughput.

Table 13. Theoretical Prediction of the Effect of Unrolling on Trivium [9].

Unrolling 1× 4× 8× 16× 32× 64×
Flip-Flops: 288 288 288 288 288 288
AND gates: 3 12 24 48 96 192
XOR gates: 11 44 88 176 352 704

NAND gate count: 3488 3584 3712 3968 4480 5504

Throughput/Area: 0.28 1.11 2.15 4.03 7.14 11.63

Electronics 2020, 9, 1935 12 of 17

In order to compare, how the theoretical prediction of the area-efficiency matches with the practical
results, we scaled the area-efficiency of the original model in each case to a value of 1 and computed
the relative area-efficiency increase for all the following points using the formula E f f (A)rel = E f f (A)i+1

E f f (A)i
,

where i indicates an element in the set of unrolling factors. The resulting graph is shown in the Figure 5.
The dotted line indicates a relative increase of 1. As long as the unrolling provides a relative increase
more than 1, it is justified for an area-efficient design.

Figure 5. Relative increase in throughput/area vs. unrolling factor: Trivium.

It can be observed from the Figure 5 that, the predicted gain in area-efficiency matches well with
the FPGA target technology. Whereas, for ASIC technology library, there are deviations from the
prediction. On a finer study, it turns out that the theoretical prediction is too optimistic compared to
the ASIC technology library and too pessimistic compared to the FPGA technology library. In the
following, we attempt to explain (some of) the hidden factors that contribute to the mismatch between
a theoretical model and practical results. It is worth noting that the unrolling factor of 64 provides
the highest area-efficiency, it is not significantly different from the unrolling factor of 72 for ASIC
technologies. It is, therefore, advisable to explore unrolling beyond the state update function.

5. Imprecise Modelling of the Effects of Unrolling

5.1. Effect of Cell Selection

Each technology library comes with a rich set of logic gates for allowing an efficient
implementation. Depending on the user-driven synthesis constraints, a particular cell from the
library is selected for implementing a Boolean logic. This choice is driven, internally, by synthesis
heuristics, and therefore, hard to model. However, once the design is mapped to a complete gate-level
implementation, it is possible to reason, why a particular selection is chosen. We provide a simple
example from 130 nm technology library, when we move from the basic Trivium implementation to a
quadruple-unrolled version.

For the basic Trivium implementation, only one read output from each of the state registers is
needed. For unrolled versions, the number of outputs for several registers increases. This leads to a
selection of different FlipFlop (F/F), as shown in the Figure 6. The upper part of the figure contains a

Electronics 2020, 9, 1935 13 of 17

snapshot of the original Trivium implementation and the lower part shows the quadruple-unrolled
version of the same. The corresponding F/F with one and two outputs are also shown. In this example,
four storages, s89, s90, s91 and s92 require at least two outputs. The dual-output F/F incurs more delay
and area. For the design with 64 unrolling factor, there still remains a few states with single output,
e.g., s192. On the other hand, there are storages with as many as five outputs, e.g., s225.

Figure 6. Effect of cell selection: multiple output.

5.2. Effect of Increased Driving Load

A logic circuit is characterized to have a drive strength of n× if it is able to drive an output
capacitive load of n · C with the same rise and fall delays as compared to a reference inverter driving
a load capacitance of C. The same logic implementation in a technology library often has many
implementation variations depending on the output capacitive load. This allows the synthesis tool
(or physical designer) to select a small-area implementation for non-critical path as well as to adopt
multiple threshold voltages for cells with low drive strength when low-power design is targeted.
The output load depends on load capacitance the following logic cell as well as on the number
of fanouts. For higher output loads, bigger cells need to be selected from the technology library,
which incurs higher delay overheads. This effect becomes prominent with increasing unrolling factors,
due to sharing of combinational logic and increased fanouts of the storage cells.

5.3. Effect of Interconnect and Buffer Insertion

In submicron process technologies, the effect of interconnect delay is more dominant compared to
the logic/transistor delay. This problem is aggravated in designs with long interconnect wires. To the
first order, interconnect delay is proportional to the square of the interconnect length. To address this
issue, buffers are inserted in a wire, effectively generating multiple wire segments and obtaining a
linear delay increase with increasing wire length [29]. Buffers are also inserted to address increasing
fanout load. While a pre-layout synthesis result does not accurately model the effect of buffer insertion,
yet this is reflected in the experimental results since, the synthesis is run in topographical mode. In this
mode, a virtual layout of the design is created for accurate net delay and capacitance prediction.
The effect of buffer insertion is observed in the reported critical path for designs with more unrolling.

Electronics 2020, 9, 1935 14 of 17

Other than these factors of imprecise modeling, the difference in ASIC vs. FPGA technology also
contributes to it. Yet another factor is the design constraints and synthesis options, that can lead to
hugely varying results even if the synthesis is targeted for the same device.

6. Growth and Saturation of Area-Efficiency: Lessons for Designer

The demand of physical constraints play an important role in designing ciphers today, as the
security concerns become ubiquitous ranging from packet encryption in large-scale servers to security
protocols in ultralight wireless sensor nodes. The prime intention behind design unrolling is to
increase the area-efficiency. Consider a cryptographic accelerator with area A and a throughput
performance of T. By simply deploying two independent accelerators, one doubles the area to 2A
and hopes to get a throughput of 2T. However, this throughput improvement is not unconditional.
In particular, it is assumed that the two accelerators will be provided with independent message
streams, essentially requiring more ports to the system. Even under the ideal condition, where both
area and throughput doubles, the area-efficiency of the overall system remains T

A . A design, which can
be unrolled, allows to increase area-efficiency beyond the basic design. This is a key optimization
technique for area-constrained cipher implementations.

6.1. Growth of Area-Efficiency

The area-efficiency stops growing around the unrolling factor. This is observed to be between
64 and 72 for Trivium. However, and more importantly, this observation is valid only when
we do a throughput-driven synthesis. On the other hand, if we set a low frequency constraint
(e.g., for low-power applications) then, unrolling beyond the state update function is easily justifiable.
An experiment is performed for the Trivium implementation with 130 nm technology. For both the
factors of 64 and 128, the design was synthesized with a target clock of 500 MHz. The resulting
area-efficiency, in terms of Gbps/KGates, are 7.41 and 10.05 for 64 and 128-unrolled designs,
respectively. In other words, the area-efficiency keeps growing beyond the conventional highest
unroll factor of 64 for some synthesis constraints and some target technologies. To allow unrolling
beyond the state update function, the cipher needs to have a “simple” update function. For example,
unrolling beyond the state update failed to increase the area-efficiency when studied in the case of
SNOW 3G, ZUC and RC4 [30].

6.2. Saturation of Area-Efficiency

Even before the area-efficiency growth stops at a certain point, the value saturates, i.e., one obtains
less return in throughput improvement for a given area increase. This can be quantified by considering
a primitive model with combinational logic (C), storage area (S), total area (A = C + S) and
throughput (T). For an unroll factor of n, the resulting area is An = S + n · C and the new throughput
Tn is n · T. Hence, the area-efficiency for an unroll factor of n is Tn

An
= T

C+ S
n

. Therefore, the growth of

area-efficiency compared to the basic model is

E f f (A)rel =
C
S + 1
C
S + 1

n
(14)

Equation (14) clearly shows that unrolling leads to a growing area-efficiency proportional to n
when C

S → 0. So, the area proportion of combinational logic in the overall cipher should be as low
as possible. This effect is illustrated in Figure 7, where different curves for absolute area-efficiency
corresponds to different C

S values, ranging from 10% to 50%. For a lower value of C
S , the growth is

sharper and saturates late, at high unroll factor.

Electronics 2020, 9, 1935 15 of 17

Figure 7. Area-efficiency vs. unrolling factor for different C
S .

7. Conclusions

In this paper, we benchmark Trivium, Grain and MICKEY VLSI performance with various unroll
factors on 65 nm, 130 nm CMOS technology and Xilinx FPGA. The theory-vs-practical results for
unrolling are presented. The unroll factors beyond conventional maximum limits is extended to get
higher area efficiency. For Trivium, we compared the deviation of throughput efficiency against the
theoretical prediction and explained some factors for the mismatch. The reason and cutoff points
for the area-efficiency saturation due to unrolling is explored. We outlined how area-efficiency
varies with unrolling for MICKEY, Grain and Trivium. A direct along with n-way parallelized
designs is implemented to illustrate the feasibility of maintaining the high-throughput, low-resource
and high-security qualities of the cipher. Efficiency of a design is estimated by calculating ratio of
throughput to area. The results presented in this paper can be used by cryptographers to choose the
most efficient design. As our future work, we intend to extend this work in two major directions:
First, extend the unrolling design methodology to support other prominent stream ciphers and
benchmark its effect in terms of exploring critical design points in the area vs. throughput design
space. Secondly, support for the countermeasures against the side channel analysis attacks. Moreover,
we also intend to explore the affect of loop pipelining on stream ciphers performance.

Author Contributions: Individual contributions of authors are as follows: methodology, M.K.H., A.C.
(Anusha Chowdhury) and A.C. (Anupam Chattopadhyay); validation, M.K.H. and A.K.; resources, A.C.
(Anupam Chattopadhyay) and F.A.; writing—review and editing, I.T.J., F.A. and A.K.; supervision, F.A. and I.T.J.;
project administration, F.A.; funding acquisition; F.A. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by Shaqra University, Shaqra 15526, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2020, 9, 1935 16 of 17

References

1. Philip, M.A. A survey on lightweight ciphers for IoT devices. In Proceedings of the 2017 International
Conference on Technological Advancements in Power and Energy (TAP Energy), Kollam, India,
21–23 December 2017; pp. 1–4.

2. Jiao, L.; Hao, Y.; Feng, D. Stream cipher designs: A review. Sci. China Inf. Sci. 2020, 63, 1–25. [CrossRef]
3. Robshaw, M.; Billet, O. New sTream Cipher Designs: The eSTREAM Finalists; Springer: Berlin/Heidelberg,

Germany, 2008; Volume 4986.
4. Hell, M.; Johansson, T.; Meier, W.; Sönnerup, J.; Yoshida, H. An AEAD variant of the grain stream cipher.

In International Conference on Codes, Cryptology, and Information Security; Springer: Cham, Switzerland, 2019;
pp. 55–71.

5. Agren, M.; Hell, M.; Johansson, T.; Meier, W. Grain-128a: A new version of Grain-128 with optional
authentication. Int. J. Wirel. Mob. Comput. 2011, 5, 48–59. [CrossRef]

6. Hell, M.; Johansson, T.; Maximov, A.; Meier, W. A stream cipher proposal: Grain-128. In Proceedings of the
2006 IEEE International Symposium on Information Theory, Seattle, WA, USA, 9–14 July 2006; pp. 1614–1618.

7. Hell, M.; Johansson, T.; Meier, W. Grain: A stream cipher for constrained environments. Int. J. Wirel.
Mob. Comput. 2007, 2, 86–93. [CrossRef]

8. Babbage, S.; Dodd, M. The MICKEY stream ciphers. In New Stream Cipher Designs; Springer: Berlin/Heidelberg,
Germany, 2008; pp. 191–209.

9. De Canniere, C.; Preneel, B. Trivium specifications. In eSTREAM, ECRYPT Stream Cipher Project; Citeseer:
New York, NY, USA, 2005.

10. Hwang, D.; Chaney, M.; Karanam, S.; Ton, N.; Gaj, K. Comparison of FPGA-targeted hardware
implementations of eSTREAM stream cipher candidates. In Proceedings of the ECRYPT State of the
Art of Stream Ciphers, Lausanne, Switzerland, 13–14 February 2008; pp. 151–162.

11. Good, T.; Chelton, W.; Benaissa, M. Review of stream cipher candidates from a low resource hardware
perspective. In Proceedings of the SASC 2006 Stream Ciphers Revisit, Leuven, Belgium, 2–3 February 2006;
pp. 163–173.

12. Banik, S.; Mikhalev, V.; Armknecht, F.; Isobe, T.; Meier, W.; Bogdanov, A.; Watanabe, Y.; Regazzoni, F.
Towards low energy stream ciphers. IACR Trans. Symmetric Cryptol. 2018, 2018, 1–19. [CrossRef]

13. Potestad-Ordóñez, F.E.; Jiménez-Fernández, C.J.; Valencia-Barrero, M. Experimental and timing analysis
comparison of FPGA trivium implementations and their vulnerability to clock fault injection. In Proceedings
of the 2016 Conference on Design of Circuits and Integrated Systems (DCIS), Granada, Spain,
23–25 November 2016; pp. 1–6.

14. Knellwolf, S.; Meier, W.; Naya-Plasencia, M. Conditional differential cryptanalysis of trivium and KATAN.
In International Workshop on Selected Areas in Cryptography; Springer: Berlin/Heidelberg, Germany, 2011;
pp. 200–212.

15. Ding, L.; Guan, J. Cryptanalysis of MICKEY family of stream ciphers. Secur. Commun. Netw. 2013, 6, 936–941.
[CrossRef]

16. Hridya, P.; Jose, J. Cryptanalysis of the Grain Family of Ciphers: A Review. In Proceedings of the 2019
International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 4–6 April 2019;
pp. 0892–0897.

17. Bhasin, S.; Guilley, S.; Sauvage, L.; Danger, J.L. Unrolling cryptographic circuits: A simple countermeasure
against side-channel attacks. In Cryptographers’ Track at the RSA Conference; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 195–207.

18. eSTREAM. ECRYPT Stream Cipher Project. 2009. Available online: https://www.ecrypt.eu.org/stream/
(accessed on 15 October 2020).

19. Kuznetsov, A.; Frolenko, V.; Eremin, E.; Zavgorodnia, O. Research of cross-platform stream symmetric
ciphers implementation. In Proceedings of the 2018 IEEE 9th International Conference on Dependable
Systems, Services and Technologies (DESSERT), Kiev, Ukraine, 24–27 May 2018; pp. 300–305.

20. Gaj, K.; Southern, G.; Bachimanchi, R. Comparison of hardware performance of selected Phase II
eSTREAM candidates. In Proceedings of the State Art Stream Ciphers Workshop (SASC), Bochum, Germany,
31 January–1 February 2007.

http://dx.doi.org/10.1007/s11432-018-9929-x
http://dx.doi.org/10.1504/IJWMC.2011.044106
http://dx.doi.org/10.1504/IJWMC.2007.013798
http://dx.doi.org/10.46586/tosc.v2018.i2.1-19
http://dx.doi.org/10.1002/sec.637
https://www.ecrypt.eu.org/stream/

Electronics 2020, 9, 1935 17 of 17

21. Kitsos, P.; Sklavos, N.; Provelengios, G.; Skodras, A.N. FPGA-based performance analysis of stream ciphers
ZUC, Snow3g, Grain V1, Mickey V2, Trivium and E0. Microprocess. Microsyst. 2013, 37, 235–245. [CrossRef]

22. Li, B.; Liu, M.; Lin, D. FPGA implementations of Grain v1, Mickey 2.0, Trivium, Lizard and Plantlet.
Microprocess. Microsyst. 2020, 78, 103210. [CrossRef]

23. Galanis, M.D.; Kitsos, P.; Kostopoulos, G.; Sklavos, N.; Koufopavlou, O.; Goutis, C.E. Comparison of the
hardware architectures and FPGA implementations of stream ciphers. In Proceedings of the 2004 11th
IEEE International Conference on Electronics, Circuits and Systems, Tel Aviv, Israel, 15 December 2004;
pp. 571–574.

24. Hell, M.; Johansson, T.; Maximov, A.; Meier, W. The Grain Family of Stream Ciphers. In New Stream Cipher
Designs: The eSTREAM Finalists; Robshaw, M.; Billet, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2008;
pp. 179–190. [CrossRef]

25. Hell, M. Grain-128 AEAD-A Lightweight AEAD sTream Cipher Cover Sheet. Available online: https:
//csrc.nist.gov/projects/lightweight-cryptography (accessed on 5 October 2020).

26. Babbage, S.; Dodd, M. The stream cipher MICKEY 2.0. In ECRYPT Stream Cipher; Springer: Berlin/Heidelberg,
Germany, 2006; pp. 191–209.

27. De Cannière, C.; Preneel, B. Trivium. In New Stream Cipher Designs: The eSTREAM Finalists; Robshaw, M.,
Billet, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 244–266. [CrossRef]

28. Stefan, D.; Mitchell, C. On the parallelization of the MICKEY-128 2.0 stream cipher. In Proceedings of the
ECRYPT State of the Art of Stream Ciphers, Lausanne, Switzerland, 13–14 February 2008; pp. 175–185.

29. Cong, J.; He, L.; Koh, C.; Madden, P. Interconnect Optimization for High Performance VLSI Design. Integr. J.
1996, 21, 1–94.

30. Gupta, S.S.; Chattopadhyay, A.; Khalid, A. Designing integrated accelerator for stream ciphers with structural
similarities. Cryptogr. Commun. 2013, 5, 19–47. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.micpro.2012.09.007
http://dx.doi.org/10.1016/j.micpro.2020.103210
http://dx.doi.org/10.1007/978-3-540-68351-314
 https://csrc.nist.gov/projects/lightweight-cryptography
 https://csrc.nist.gov/projects/lightweight-cryptography
http://dx.doi.org/10.1007/978-3-540-68351-318
http://dx.doi.org/10.1007/s12095-012-0074-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Trivium, Grain and MICKEY Specifications
	Grain
	Grain-80 Design Parameters
	Grain-128 Design Parameters

	Mickey 2.0
	Trivium

	Implementation
	Unrolled Hardware Implementations
	Design Synthesis Setup
	Unrolling MICKEY 2.0
	Unrolling Grain-80/128
	Unrolled Design Synthesis for Grain-80/128
	Unrolled Design Synthesis for Trivium

	Imprecise Modelling of the Effects of Unrolling
	Effect of Cell Selection
	Effect of Increased Driving Load
	Effect of Interconnect and Buffer Insertion

	Growth and Saturation of Area-Efficiency: Lessons for Designer
	Growth of Area-Efficiency
	Saturation of Area-Efficiency

	Conclusions
	References

