RF Energy Extraction Using Wave Impedance Matching

Published in:
2021 51st European Microwave Conference (EuMC): Proceedings

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2022, IEEE.
This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:14. Sep. 2023
RF Energy Extraction Using Wave Impedance Matching

Sandhya Chandravanshi, Vincent Fusco, Neil Buchanan
Institute of Electronics, Communications & Information Technology (ECIT), Queen’s University of Belfast, Belfast, UK
S.CHRANAVSHI@qub.ac.uk, v.fusco@ecit.qub.ac.uk, n.buchanan@ecit.qub.ac.uk

Abstract — We present a simple approach that allows a dipole antenna to be mounted over an artificial magnetic conductor for the purpose of extracting RF energy. The method relies on the reactive component of wave impedance in order to remove the need for dipole to diode matching circuitry.

Keywords — AMC; Dipole antenna; Layered Structure; Rectenna; Wheeler Current Sheet.

I. INTRODUCTION

An equivalent circuit model is presented here which yields a simple design approach for scavenging electromagnetic energy without the need for dipole to diode matching circuitry. The proposed model is shown in Fig. 1, this consists of a three-layer structure. The first layer (Layer 1) represents the closely spaced dipole antenna array including rectifier components used for conversion of the RF input power to the usable dc power. A second-layer (Layer 2) contains of a sheet densely spaced periodic metallic patches, while the third and final layer is a conducting metal sheet separated by a dielectric material of relative permittivity ε_r. Layer 2 and Layer 3 form an Artificial Magnetic Conductor (AMC). The overall physical arrangement is akin to the Wheeler sheet [1], but here the purpose is to remove the need for intermediate matching between diode and dipole such that maximum energy can be extracted from a source placed in the quasi-near field of the system.

A conventional rectenna [2] is a combination of receiving antenna, rectifier circuit and a separate matching unit. In this paper we propose a different approach. Here we propose to use the quasi-near field property of a dipole array such that we exploit its reactive component in order to remove the need for extrinsic impedance matching.

II. DESIGN METHOD

First the wave impedance of a single dipole antenna is established for its near-field and far-field properties using CST microwave studio and benchmarked using 4NEC2. The electric field and magnetic field in the near-field and far-field are simulated and the obtained values of the real and imaginary parts of the wave impedance with distance in units of wavelength are plotted in Fig. 2 (a). Here, an individual Z-directed $\lambda/2$ dipole antenna (28 mm for 2.45 GHz operation, radius 2 mm) is located at the system origin, Fig. 2 (b). The return loss of this dipole antenna, Fig. 2 (e) is better than -10 dB in the frequency range 2.38 GHz to 2.72 GHz. We now consider an equivalent circuit model of the dipole antenna in order to represent its input impedance. The lumped equivalent circuit model reported previously [3, 4] is adopted here, Fig. 2 (c). The equations representing the equivalent components for the antenna are taken from [4] with the h/r ratio selected as 0.125$. This yields $C_1 = 0.13 \text{ pF}$, $C_2 = 0.028 \text{ pF}$, $L_1 = 0.027 \text{ μH}$ and $R_1 = 4.38 \text{ kΩ}$. The four-lumped element model can be reduced using circuit theory to a simpler two-element model, Fig. 2 (d). This results in $R_{di} = 68.868 \text{ Ω}$ and $L_{di} = j 47.0116 \text{ Ω}$.

III. RECTIFIER DIODE IMPEDANCE

The equivalent circuit of the Schottky diode used in this work, HSMS 2820 Avago Solutions, [5], is presented in Fig. 3 (a) as taken from its datasheet. The diode exhibits low junction capacitance and low value of forward voltage (0.34 mV), which ensures the efficient operation for a wide input RF power range. The Schottky diode is a nonlinear device whose impedance changes with the input RF power applied to it as well as its operating frequency. For a diode load resistance of 0.2 kΩ, its input impedance (Z_{diode}) can be obtained and its power contours plotted, Fig. 3 (b) for 2.45 GHz operation. The blue contours represent 20 dBm input power and red contours are represent 25 dBm input RF power available at the rectifier diode input port. In this work the chosen value of the rectifier diode impedance is $Z_{diode} = 65 – j45 \text{ Ω}$ at 25 dBm input RF power for the operating frequency of 2.45 GHz. This provides a close conjugate match to the dipole input impedance and yields a converted power of 22.7 dBm, [6, 7].
Fig. 2. (a) The Wave impedance of a λ/2 dipole antenna along boresight from the origin of the antenna. The design model of the dipole antenna; (b) the dipole antenna with \(h = 28 \text{ mm}, r = 2 \text{ mm} \); (c) four element equivalent circuit model of the dipole antenna; (d) resultant input impedance of the dipole antenna and; (e) return loss of the isolated dipole antenna.

A. Artificial Magnetic Conductor (AMC)

To finalise the physical arrangement while accommodating the intrinsic conjugate match of the diode impedance we next realise an AMC. The top layer of the AMC consists of a periodic uniform array of metallic patches with a gap of dimension \(g \) in between adjacent square metallic patches, as shown in Fig. 4 (a) and (b). The AMC equivalent circuit model is represented in Fig. 4 (c). The gap capacitance \(C_{\text{gap}} \) and inductance \(L_g \) can be approximated using \([8, 9]\) as:

\[
C_{\text{gap}} = \frac{12.0674h}{\log(2h/r)} - 0.7245 \text{ pF}
\]

\[
L_g = 0.2h \left[\frac{1.4813 \log(2h/r) - 0.6188}{1.0112} \right] \text{ μH}
\]

where \(a, g \) and \(w \) are shown in Fig. 4 (a), and \(\varepsilon_0 \) is the permittivity of the free space. Inductor \(L_d \) represents the metal backed dielectric slab of thickness \(H_{\text{sub}} \) and substrate permittivity \(\varepsilon_r \). From the transmission line model, we find:

\[
X_L = jZ_d \tan(\beta l)
\]

where \(\beta l \) is the electrical length, \(l \) is equal to the \(H_{\text{sub}} \), along with this the \(Z_{\text{in}} \) can be written as 120π \(\sqrt{\varepsilon_r/\varepsilon_0} \). Yielding \(C_{\text{gap}} = 2.144 \text{ pF}, L_g = 0.185 \text{ μH} \) and \(L_d = 1.26 \text{ nH} \).

The overall value of the input impedance \(Z_{\text{in}} \) can now be obtained, Fig. 5 (a). Here an additional 0.4pF capacitor is connected in between two tightly coupled antennas. This balances their mutual coupling capacitance value. \([10, 11]\).

Hence the input impedance \(Z_{\text{in}} \) can be represented as:

\[
Z_{\text{in}} = (Z_{\text{dipole}} + Z_{\text{diode}} + (Z_{\text{AMC}}/j\omega L_d)) + \frac{1}{j\omega C_{\text{coupling}}}
\]

In Eq. (4) \(Z_{\text{dipole}} \) represents the overall impedance of the dipole antenna incorporating mutual capacitance, \(Z_{\text{diode}} \) is the equivalent impedance of the Schottky diode used in this process. The final calculated value of the impedance \(Z_{\text{in}} \) for the geometry under consideration here is 134 + j8.50 Ω.

Now under the assumption that the wave is impinging normal to the plane of the designed structure, then for maximum transfer of energy from the incident wave to the diode load, the wave impedance shown in Fig. 2 (a) should be the complex conjugate of the impedance \(Z_{\text{in}} \). Under this condition the conjugate wave impedance 134 – j8.50 Ω is obtained at 0.16 λₒ distance.

B. Load Termination

Fig. 5 (b) and (c) shows the simulated input RF to dc power conversion power and efficiency as a function of diode load termination as observed at the circuit terminals of the rectenna. The highest value (darkest region) obtained from both plots is satisfied for 0.2 kΩ load value, where the peak RF to dc converted power is simulated as 345 mW for 30 dBm input RF power. The proposed structure can be extended using orthogonally connected dipole antennas in order to make it polarisation agnostic, the resultant structure is shown in Fig. 6, where interdigital capacitors remove the need for lumped capacitors. From Fig. 6 it can be seen that the dipoles representing ports BB’ and DD’ are in series to each other.

Table 1. Rectifier Diode Equivalent Circuit Values.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(R_s) (Ω)</th>
<th>(I_s) (nA)</th>
<th>(C_{\text{p0}}) (pF)</th>
<th>(n)</th>
<th>(V_{\text{br}}) (V)</th>
<th>(V_j) (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>6</td>
<td>22</td>
<td>0.7</td>
<td>1.08</td>
<td>15</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Where \(\beta l \) is the electrical length, \(l \) is equal to the \(H_{\text{sub}} \), along with this the \(Z_{\text{in}} \) can be written as 120π \(\sqrt{\varepsilon_r/\varepsilon_0} \). Yielding \(C_{\text{gap}} = 2.144 \text{ pF}, L_g = 0.185 \text{ μH} \) and \(L_d = 1.26 \text{ nH} \).

The overall value of the input impedance \(Z_{\text{in}} \) can now be obtained, Fig. 5 (a). Here an additional 0.4pF capacitor is connected in between two tightly coupled antennas. This balances their mutual coupling capacitance value. \([10, 11]\).

Hence the input impedance \(Z_{\text{in}} \) can be represented as:

\[
Z_{\text{in}} = (Z_{\text{dipole}} + Z_{\text{diode}} + (Z_{\text{AMC}}/j\omega L_d)) + \frac{1}{j\omega C_{\text{coupling}}}
\]

In Eq. (4) \(Z_{\text{dipole}} \) represents the overall impedance of the dipole antenna incorporating mutual capacitance, \(Z_{\text{diode}} \) is the equivalent impedance of the Schottky diode used in this process. The final calculated value of the impedance \(Z_{\text{in}} \) for the geometry under consideration here is 134 + j8.50 Ω.

Now under the assumption that the wave is impinging normal to the plane of the designed structure, then for maximum transfer of energy from the incident wave to the diode load, the wave impedance shown in Fig. 2 (a) should be the complex conjugate of the impedance \(Z_{\text{in}} \). Under this condition the conjugate wave impedance 134 – j8.50 Ω is obtained at 0.16 λₒ distance.

B. Load Termination

Fig. 5 (b) and (c) shows the simulated input RF to dc power conversion power and efficiency as a function of diode load termination as observed at the circuit terminals of the rectenna. The highest value (darkest region) obtained from both plots is satisfied for 0.2 kΩ load value, where the peak RF to dc converted power is simulated as 345 mW for 30 dBm input RF power. The proposed structure can be extended using orthogonally connected dipole antennas in order to make it polarisation agnostic, the resultant structure is shown in Fig. 6, where interdigital capacitors remove the need for lumped capacitors. From Fig. 6 it can be seen that the dipoles representing ports BB’ and DD’ are in series to each other.
This paper introduced a simple equivalent circuit method for the extraction of energy from a closely positioned wave source impinging upon a dipole-based Wheeler sheet. The approach given here dispenses with the need for external device matching circuitry as the dipole arrangement is intrinsically conjugate matched to wave impedance for a specific distance from the source.

ACKNOWLEDGMENT

The Authors would like to acknowledge the funding from EPSRC EP/S007954/1 “New Technologies for Efficient Wireless Power Transfer at Distance”.

REFERENCES