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Abstract  

The formation of ATP
1
 breakdown products in chicken M. pectoralis major post-slaughter is reported. 

The concentrations of metabolites were followed in chicken breast throughout the carcass processing 

post-slaughter and during chilled storage. The concentration of glucose remains similar throughout the 

period while that of glucose-6-phosphate decreases linearly. Glucose and glucose-6-phosphate 

concentration were inversely related to the pHu of the breast meat throughout chilled storage. Rapid 

post-mortem glycolysis and high pHu values suggest the occurrence of stress at and pre-slaughter. 

While ATP, ADP and AMP were rapidly broken down, the concentration of IMP rose rapidly and 

remained high. Concentrations of inosine, ribose and hypoxanthine increased gradually post-slaughter 

but an initial increase in ribose phosphate was not sustained. Most of the potential ribose present in 

chicken meat, believed to be important for flavor formation, remains bound in the form of inosine and 

IMP. There is evidence that additional breakdown pathways for ribose and ribose-5-phosphate may 

deplete the concentrations of these precursors. 

Keywords: Ribose; Glucose; Nucleotides; Chicken; Post-slaughter; Chilled storage. 

 

                                                 

1
 ATP: adenosine 5’-triphosphate; ADP: adenosine 5’-diphosphate; AMP: adenosine 

5’-monophosphate; IMP: inosine 5’-monophosphate 
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1. Introduction 

Post-mortem changes that occur in the conversion of muscle to meat not only alter some of its 

biochemical and physical properties but also play an important role in improving its acceptability as 

food (Pearson, 1987). The nature of these changes and their consequences for meat have been 

reviewed (Greaser, 1986; Pearson, 1987). Many of the biochemical pathways involved during 

slaughter and the post-mortem aging period in skeletal muscles were elucidated some years ago and 

result in the formation of sugars (Lilyblade & Peterson, 1962), organic acids (Bodwell, Pearson, & 

Spooner, 1965), peptides and free amino acids (Parrish, et al., 1969), and metabolites of adenosine 

nucleotides (Dannert & Pearson, 1967; Davidek & Khan, 1967). These chemical modifications in the 

ageing meat result in a pool of taste compounds and flavor precursors; these latter react during 

cooking to form the volatile components of flavour. Recently, a new hypothesis has been proposed 

by Ouali et al., (2006) suggesting the existence of an early phase, named “apoptosis”, prior to 

traditional steps involved in the conversion of muscle to meat.   

The role of IMP for the generation of meat odor and flavor has been demonstrated both in model 

systems and sensory studies (Farmer, Hagan, & Paraskevas, 1996; Mottram, 1994). Ribose-5-

phosphate also causes important changes in beef odor, while glucose and glucose-6-phosphate cause 

much smaller effects (Farmer, Hagan, & Paraskevas, 1998; Mottram, 1998). The addition of small 

quantities of ribose to raw beef and chicken has been shown to increase the quantities of key odor 

compounds, as well as meaty and roasted notes, especially in chicken (Aliani & Farmer, 2005b; 

Farmer, et al., 1996). In fact, ribose has been identified as a key flavor precursor of cooked chicken 

meat and as little as 2-4 fold addition to raw chicken prior to cooking increased desirable odor and 

flavor of cooked chicken (Aliani & Farmer, 2005b). It seems likely that ribose plays a greater role in 

the formation of flavour in chicken than in the red meats due to the proportionately lower 

concentrations of six carbon sugars in chicken (Farmer, Kennedy, & Hagan, 2009). 

Glucose and glucose-6-phosphate are formed by the glycogenolysis and glycolysis pathways, 

respectively, while IMP, ribose and ribose-5-phosphate have been reported to derive from the ATP 

breakdown pathway (Lee & Newbold, 1963). The progress of these pathways was the subject of 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

4 

biochemical investigations in the 1960s (Davidek & Khan, 1967; De Fremery, 1966; Terasaki, 

Kajikawa, Fujita, & Ishi, 1965). However, these studies did not investigate the changes in 

concentrations of sugars such as ribose and ribose phosphate, or how these pathways may contribute 

to the availability of flavor precursors in the raw meat. More recent studies have determined a range 

of sugars in beef during ageing (Koutsidis, et al., 2008).  

The work described in this paper aims to investigate how time post-slaughter (both during 

processing and shelf-life) affects the formation of ribose and other potential metabolites of ATP in 

raw meat. This knowledge will increase understanding of the time post-slaughter and storage 

conditions needed to reach the maximum concentration of flavor precursors for development of 

desirable cooked chicken flavor. 

 

2. Materials and methods  

2.1. Chemicals 

 D-ribose-5-phosphate disodium salt, D-glucose-6-phosphate disodium salt hydrate, alpha-D-

lactose monohydrate, alpha-L-rhamnose, D-ribose, D-glucose, D-fructose, D-mannose, D-fructose-

6-phosphate disodium salt dehydrate, D-mannose-6-phosphate disodium salt hydrate, D-ribulose, D-

ribulose-5-phosphate disodium salt, D-xylulose, D-xylulose-5-phosphate sodium salt, adenosine 5´-

triphosphate (ATP), adenosine 5´-diphosphate (ADP), adenosine 5´-monophosphate (AMP), inosine 

5´-monophosphate disodium salt (IMP), hypoxanthine (Hx), inosine, purine, cytidine and 

tetrazolium blue (3,3´-(3,3´-dimethoxy(1,1´-biphenyl)-4,4´-diyl)-bis(2,5-diphenyl-2H-tetrazolium)-

dichloride) were purchased from  Sigma-Aldrich Ltd. (Poole, UK). Alkaline phosphatase (EC 

3.1.3.1)  from bovine intestinal mucosa, Dowex 50WX4 resin (strongly acidic cation, 200-400 dry 

mesh), Dowex WGR-2 resin (weakly basic anion, 20-50 mesh), Dowex Marathon WBA resin 

(weakly basic anion, 25-50 wet mesh), hexamethyldisilazane, chlorotrimethylsilane,  cyclohexane 

and dimethyl sulphoxide were also purchased from Sigma-Aldrich Ltd. Analytical-grade chloroform 

and methanol (high-performance liquid chromatography (HPLC) grade) were from Lab-Scan Ltd. 

(Dublin, Ireland), perchloric acid from May & Baker Ltd. (Dagenham, UK) and HPLC grade ethanol 
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and acetonitrile from Fisher Scientific UK Ltd. (Loughborough UK). Potassium hydroxide, 

potassium dihydrogen orthophosphate, potassium tartrate, glycine, magnesium chloride 6-hydrate, 

sodium acetate trihydrate, sodium carbonate, sodium hydroxide, hydrochloric acid were also from 

Fisher Scientific UK Ltd. All water used in the processes was from an Elgastat Option 4 water 

purification unit (Elga Ltd., High Wycombe, UK).  

2.2. Chicken meat 

Whole chilled chickens were provided by one commercial poultry supplier and, within an 

experiment, were from the same batch and farm. They were a standard Ross 308 genotype and were 

reared, slaughtered and processed under commercial conditions. A brief outline of the processing 

procedure is shown in Figure 1.  Two experiments were designed to investigate the effect of time 

and temperature on the formation of ATP-related compounds in chicken breast post-slaughter. 

Experiment 1 was designed primarily to study the changes in ATP related compounds as the breast 

muscle went in to rigor, whilst Experiment 2 studied the changes in metabolites post rigor. For 

Experiment 2 the chickens were supplied overwrapped as roasting chickens for the retail market. 

These two experiments were conducted on different occasions with Experiment 1 conducted in 

summer and Experiment 2 in winter. 

[Figure 1] 

2.2.1. Experiment 1. Post-slaughter period (15-120 minutes post-slaughter).  

Chickens were slaughtered using electrical stunning and exsanguination, plucked and eviscerated 

using the standard commercial process (Figure 1). The birds were hanged from their legs on a 

moving chain and all steps were conducted automatically within a plant with temperature control as 

shown in Figure 1. The air temperature was 15 
o
C for 13 minutes, 7-8 

o
C “pre chill” for 30 minutes 

and 1-2 
o
C “chill” for 2 hours.  A total of 18 chickens were sampled, six at each of three different 

stages (A, B and C, Figure 1), at approximately 7, 25 and 115 minutes post-slaughter. Chicken 

carcasses were brought to an in-plant laboratory within three minutes, and samples taken and frozen 

within the following five minutes. This gave sample freezing times post-slaughter of ca. 15, 33 and 

123 minutes. One breast muscle (M. pectoralis major) was removed, a strip of chicken muscle was 
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cut (1 cm wide) from the closest edge to the keel bone and divided into approximately 3 g portions. 

Duplicate samples were immediately placed in plastic clipper-bags (Somerville Packing, Lisburn, 

Northern Ireland), sealed and placed in a polystyrene insulated box and covered with dry ice at -65 

°C. Samples were held at dry ice temperature until return to the Agri-Food and Biosciences Institute 

(approximately 40 minutes after the last sample was collected) where they were transferred to 

storage at -80 °C until use.  

2.2.2. Experiment 2. Chilled storage (28-200 hours post-slaughter).  

Six individual standard chickens were sampled at “stage C” (after chilling) and transferred from the 

poultry plant to the laboratory (approximately 40 minutes) in a container filled with ice (0 °C). They 

were then held at 4 ± 1 °C until the end of the experiment (200 hours), which was selected to be 

similar in time to the end of commercial shelf life, ca. 8 days. Samples of breast meat were taken at 

4, 28, 55, 100, 150 and 200 hours post-slaughter. At each of these sampling times, samples (each of 

3g) were taken with a scalpel from one breast from each chicken, avoiding cut surfaces from 

previous sampling dates. A small preliminary study had indicated that the most variation in 

concentrations of sugars occurred in the anterior and posterior portions of the breast, whereas 

samples from the central portion had generally similar concentrations of sugars. Therefore, samples 

were taken from the mid portion as show in Figure 2. A systematic sampling design, using a grid of 

12 sampling sites A to L (Figure 2), was used to avoid bias due to any differences between sampling 

sites; sampling sites A to L were balanced across chickens and sampling date.  

The pH was recorded on the excised site of the chicken breast at each sampling time, using a 

LanceFET probe with stainless steel tip (Sentron, The Netherlands). At each sampling, the cling film 

overwrap and skin were folded back to expose the breast meat and then used to cover the muscle 

until the next sampling time. Samples were vacuum packed and kept at -80 °C until needed for 

analysis. Ultimate pH (pHu) was taken as the mean value of the pH determinations at 4-55h post-

slaughter, as there was no change over this period. 

[Figure 2]  

2.3. Methods of analysis 
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2.3.1. Quantification of reducing and phosphorylated sugars in raw chicken  

In Experiment 1, the reducing and phosphorylated sugars were extracted using ethanol/water, 

followed by analysis by post-column derivitization HPLC, with an enzymatic reaction to convert 

phosphate sugars to their parent sugars (Aliani & Farmer, 2002). The ribonucleotide related 

compounds were acid extracted and analysed as described by Aliani and Farmer (2005a). 

In Experiment 2, a perchloric acid extraction method modified from Aliani and Farmer (2005a) 

was used and sugars, sugar phosphates and ribonucleotide related compounds were analysed in the 

resultant sample extract.  The method was amended between the two experiments to facilitate a 

common extraction procedure for sugars and nucleotides. This enabled one extract to be used for all 

these analytes, economising on chemicals and time. Each sample (3g) of raw chicken was placed in a 

50-ml centrifuge tube (Apex, Alpha Laboratories, Eastleigh, UK), and 0.5ml aliquots of rhamnose 

20mM and cytidine 10mM  added as internal standards for sugar and ribonucleotide related analyses, 

respectively. The samples were homogenized (Ika Ultra-Turrax T25, Werke, Germany) with 6ml of 

perchloric acid (0.6M) and deionised water (1.0ml) for 2 min at full speed (Ika Ultra-Turrax T25, 

Werke, Germany) and centrifuged at 3000g for 15 min at 4 °C (Mistral 3000i MSE, UK). The 

supernatant solution was retained and neutralized with potassium hydroxide (~0.8ml of 4M), 

centrifuged again at 3000g for 15min before removing the precipitated potassium perchlorate salt by 

filtration through a Whatman No. 54 filter paper. The aqueous filtrate was stored at 4 °C, if analysed 

within the next 24h, or at -80 °C for later analysis. An aliquot (3ml) of the sample extract (ca. 9ml) 

was resin treated to remove any interfering compounds before glucose and ribose sugars were 

analysed as described previously (Aliani & Farmer, 2005a), except that the Dowex Anion WGR-2 

resin was replaced by Marathon WBA ion exchange resin. The analysis of phosphorylated sugars by 

enzymatic treatment was conducted on a second aliquot (1.5ml) of sample extract (Aliani & Farmer, 

2002) except that the glycine buffer (50mM, containing MgCl2 0.5mM) was replaced with sodium 

carbonate buffer (50mM, containing MgCl2 0.5mM) at pH 9.3 to enhance peak separation. The sugar 

analyses for Experiment 2 were carried out using a Dionex HPLC system (model DX500; Dionex 

Corp., Surrey, UK) equipped with a CarboPac PA1 anion-exchange analytical column (Dionex P/N 
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35391; 250 X 4 mm i.d.) preceded by a similar guard column (Dionex P/N 43096; 4 X 50 mm), an 

AS50 autosampler, a GS50 gradient pump equipped and an ED50 pulsed electrochemical detector. 

The ED50 pulsed electrochemical detector was equipped with a gold electrode and an Ag/AgCl 

reference electrode. The wave form parameters used were as follows: (wave form = 0.00 Sec: 0.05 

mV, 0.20 Sec: integration = begin, 0.40 Sec: integration = end, 0.41 Sec: 0.06 mV, 0.60 Sec: 0.06 

mV, 0.61 Sec: - 0.15 mV, 1 Sec: - 0.15 mV). The system was controlled by a HPLC Chromoleon 

software (Windows version, 6.30). The two eluents, I: deionized water prepared using a water 

purification unit (Elgastat option 4, Elga Labwater, UK) and II: 200 mM NaOH in deionized water 

were prepared as specified by Dionex Ltd (20). The elution program for separation of sugars was: 0-

15 mins, I (10%): II (90%), 0.7 ml min
-1

. The injection volume was 25 µL. 

Standard solutions of glucose, ribose and rhamnose were analysed separately and as spiked 

additions to the extract to help confirm the identity of the sugars analyzed. In addition, the recovery 

of each sugar from the raw chicken meat was determined by analyzing five portions (3g) of 

homogenized chicken muscle both with and without spikes containing ribose (1mg), glucose 

(1.6mg), ribose-5-phosphate (0.5mg disodium salt) and glucose-6-phosphate (0.6mg disodium salt) 

in 0.25ml of water.   

2.3.2. Confirmation of identity of reducing and phosphorylated sugars  

Identification of sugars and sugar phosphates was further confirmed by GC-MS with sample 

aliquots being lyophilized and derivatised using the method developed by Leblanc & Ball (1977). 

They were analysed using a Hewlett Packard 6890 gas chromatograph linked to a 5973A mass 

selective detector controlled by Chemstation software. Samples (1µl) were injected onto a Varian 

CP-SIL 19CB capillary column (25m x 0.25mm x 0.2µm) or Agilent HP-Ultra (12m x 0.2mm x 

0.33µm) employing a split ratio of 10:1. The injector port was maintained at 250 °C, the transfer line 

at 270 °C. The oven temperature was held at 100°C for 1 minute and then ramped at 10 °C min
-1

 to 

279 °C and held at that temperature for 11 minutes. Identification was confirmed by comparison of 

the retention time and mass spectrum with the authentic compounds (Sigma-Aldrich, Poole, UK). 

2.3.3. Quantification of ribonucleotides and related compounds 
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Post-slaughter samples from the two experiments were subjected to analysis for ATP-related 

substances. ATP, ADP, AMP, IMP, inosine and hypoxanthine were extracted using the acid 

extraction method described earlier. The sample extracts (2ml) were analysed by reverse phase 

HPLC using a Thermo-Separations HPLC system. For Experiment 1, a Prodigy ODS-3 HPLC 

column (5µm particle size, 100 Å pore size, 150 x 4.6 mm i.d.; Phenomenex, Manchester, UK) was 

used with a Prodigy ODS-3 guard column (3 µm particle size, 100 Å pore size, 30 mm x 4.6 mm 

i.d.) also from Phenomenex  and  the elution with methanol/water (60:40) and aqueous KH2PO4 

(0.02 M, pH 5.5) using gradient elution and UV detection at 254 nm, as described previously (Aliani 

& Farmer, 2005a). For Experiment 2, a HyPurity Aquastar column (5µm particle size, 190 Å pore 

size, 150 X 4.6mm i.d.; Thermo Electron Corporation, Manchester UK) connected to a Phenomenex 

Securityguard guard column with a C18 3X4mm ID cartridge was used. An injection of sample 

extract (20µl) was eluted with an isocratic mobile phase KH2PO4 (50mM) prepared with HPLC 

grade water, pH adjusted to 2.5 by dropwise addition of hydrochloric acid (0.5M) and filtered using 

0.2 µm cellulose nitrate membrane filters (Whatman) prior to use. The flow rate was 1 ml min
-1

 with 

a total run time of 30 minutes and UV detection at 254 nm.  

The identity of each of the ribonucleotides and related compounds was confirmed by comparison 

with standard solutions of ATP, ADP, AMP, IMP, inosine, hypoxanthine and cytidine, both analysed 

individually and as spiked additions to the extracts, using both HPLC columns referred to above.  

2.3.4. Measurement of pH and temperature post-slaughter 

Further information on the pH and internal temperatures of chickens taken from the same 

processing line at different times post-slaughter was obtained on a separate occasion. The pH and 

temperature measurements were conducted at the thickest part of the chicken breast (approx. one 

third down its length from the anterior end), using a LanceFET probe with stainless steel tip 

(Sentron, The Netherlands) inserted 10 mm into the muscle. Measurements were made on separate 

groups of six individual chickens sampled from the production line at six time-points between 2 and 

115 minutes post-slaughter.    

2.4. Statistical Analyses.  
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Analysis of variance was used to determine whether there were significant differences between 

time points and whether these relationships were linear in the case of Experiment 1. For Experiment 

2, where more time points were available, the same analysis was used to determine if the relationship 

was linear or quadratic. All analyses were carried out using the statistical package GenStat (version 

11). Correlations between metabolite concentrations and pHu were conducted using a simple 

Pearson’s correlation.  

 

3. Results  

The recoveries for sugars and sugar phosphates differed between the methods used for 

Experiment 1 and 2. The method used for Experiment 1 gave average recoveries of 93, 90, 64 and 

93% for glucose, ribose, glucose-6-phosphate and ribose-5-phosphate, respectively. The 

reproducibility is illustrated by the coefficients of variation (n=6) for these compounds, which were 

5, 1, 10 and 4%, respectively. The method used for Experiment 2 gave recovery levels of 114, 109, 

107 and 113% for the same compounds respectively. The coefficient of variation (n=5) was 3% for 

both glucose and ribose and 39 and 36% respectively for glucose-6-phosphate and ribose-5-

phosphate. Thus, the method used in Experiment 2 gave an improved recovery for glucose-6-

phosphate but the repeatability for phosphorylated sugars was less good than for Experiment 1. The 

methods for ribonucleotides and related compounds were the same for both Experiments and the 

recoveries were 87, 104, 94, 75, 63 and 99% for IMP, inosine, hypoxanthine, ATP, ADP and AMP, 

respectively. Coefficients of variation (n=5) for these compounds were 14, 4, 14, 8, 21 and 3%, 

respectively. The results presented for these analyses are corrected for recoveries and are, therefore, 

comparable. 

Table 1 (Experiment 1) provides information on the extent of breakdown of ATP and its 

metabolites post-slaughter up to and including chilling. These results show that there are relatively 

few statistically significant changes in metabolites prior to chilling. Only hypoxanthine and ribose 

showed significant increases with time. IMP is the most abundant metabolite but remains relatively 
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constant in concentration, possibly because its rate of formation and breakdown remain balanced 

during this early period post-slaughter.  

[Table 1] 

Table 2 (Experiment 2) follows the breakdown of ATP metabolites throughout the potential fresh 

shelf-life of six chickens, held at refrigeration temperatures from 4 to 200 hours. Many more 

statistically significant changes in metabolites were observed in Experiment 2 than Experiment 1 

(Table 2), with loss of early metabolites and formation of the later ones. Only the concentration of 

glucose was unaffected by chilled storage. The changes in glucose and glucose phosphate, then ATP 

and its breakdown products, will be discussed in turn. The pH of the breast meat from these 

chickens, recorded at each of the times when analysed are also shown in Table 2.  

[Table 2] 

 

4. Discussion 

There were consistent differences between the data from the two experiments (Table 1 and 2). In 

general, the variation observed between individual chickens was much greater in Experiment 1 than 

Experiment 2, which partly explains the fewer significant differences in Experiment 1. This 

variability was probably due to the sampling of chickens from the processing line at a time of rapidly 

changing biochemistry, before glycolysis was complete or rigor mortis had occurred. The sum of all 

the base-containing compounds, (ATP, ADP, AMP, IMP, inosine and Hx) remains steady for each 

experiment but differs considerably between the two. For Experiment 2, the average value for this 

sum was 8.6 µmole g
-1

 wet weight, with small variability between the six chickens (3.5%), which is 

only 60% of that detected in Experiment 1 (14.3  µmole g
-1,

 Coefficient of Variation = 14%). 

Elucidation of whether this difference is due to a change in commercial practice (e.g. genotype, 

production or processing) between the two experiments would require further study.  

4.1. Glucose, glucose phosphate and pH.  

The analytical method used for the quantification of sugar phosphates, involving the use of 

alkaline phosphatase (EC 3.1.3.1) to break them down to the parent sugars for analysis by HPLC, 
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precluded the identification of individual isomers of sugar phosphates. Identification of the glucose 

phosphate as glucose-6-phosphate was confirmed by GC-MS.  

Glucose and glucose-6-phosphate were present at an early stage post-slaughter and remained at 

similar concentrations throughout processing (Experiment 1, Table 1). After chilling (Experiment 2, 

Table 2), although the concentration of glucose initially remains similar, declining after 55 hours, the 

concentration of glucose-6-phosphate decreases substantially. In both cases, these changes represent 

significant linear (P<0.001) and quadratic (P<0.05) relationships. These experiments were designed 

to follow the detailed breakdown of ATP metabolites and the formation of flavour precursors in a 

small number of chickens, rather than to sample the retail chicken population as a whole.  Few other 

studies have reported the effect of time post-slaughter on glucose and glucose-6-phosphate 

concentrations in poultry post-slaughter; van Hoof (1979) showed a rise or fall in glucose, depending 

on pre-slaughter handling. The results in Table 1 and 2 agree with those reported for glucose-6-

phosphate in beef (Koutsidis, et al., 2008), for which a slight fall was observed, but disagree with 

those for glucose in beef which show a steady increase post-slaughter. Unlike in beef, measurable 

quantities of mannose, fructose or their phosphates were not detected.  

In Experiment 2 there was considerable variation in pH between individual chickens at each time 

point sampled, generally ranging from around 6.0 to 6.4 (Table 2). Plotting glucose and glucose-6-

phosphate concentration against the pHu of the breast meat shows that these sugars are higher at 

decreased pHu values at most time points (Table 3). This trend is illustrated in Figure 3 for 4h and 

200h post-slaughter. A similar trend was observed at all times of chilled storage, albeit not 

significantly (P<0.10) at 150h post-slaughter, and also for these sugars individually and summed 

(Table 3). While such simple correlations must be treated with caution, and the number of birds does 

not justify more rigorous statistical analysis, there does appear to be a consistent trend. A similar 

effect has been observed elsewhere with more than 100 chickens (Farmer et al., unpublished data). 

This finding is also consistent with the work reported by Immonen and Puolanne (2000) who 

showed a non-linear relationship between pHu and residual carbohydrate (glycogen + glucose) in 

beef. Under post-mortem anaerobic conditions in meat, the glycolysis pathway converts glucose and 
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glucose-6-phosphate to lactic acid to give decreased pH. In other species’ meats, a high pHu can be 

caused by an insufficient supply of glycogen for this reaction to go to completion, perhaps due to 

stress prior to slaughter. The high pHu in Experiment 2 indicates that there has been considerable 

glycogen depletion prior to slaughter, thus limiting pH decline. Muscle glucose and glucose-6-

phosphate reflects the balance between production from glycogen post-mortem and conversion to 

lactate as glycolysis proceeds, and also any influences of stress on carbohydrate mobilization pre-

slaughter.  Van Hoof et al. (1979) noted lower levels of glucose in turkey breast muscle in those 

birds that were held at the slaughter plant for 24 h after arrival than in those birds slaughtered 

without transportation. The pHu reported by van Hoof et al. (1979) ranges from around 6.1 to 6.4, 

and over this range there was an indication of an inverse relationship between glucose and pHu, 

similar to that reported in Experiment 2 (Figure 3). Campbell (1984) also noted an inverse 

relationship between pHu and glucose + glucose-6-phosphate in porcine longissimus dorsi muscle 

with a normal pHu (5.6). Daly et al. (1999) observed lower residual glucose in bovine longissimus 

thoracicus that had lower glycogen levels at slaughter in animals of normal pHu (5.6-5.7) and 

proposed that this relationship is caused by the activity of the debranching enzyme (α-1,6-

glucosidase).  

[Table 3] 

[Figure 3] 

The average pH at 28h was 6.30 (SD = 0.13) (Table 2); the pH always exceeded 6.0 and for some 

chickens was as high as 6.4. These values are higher than those (average pHu 6.03) reported for 

breast muscle by Yla-Ajos et al. (2007), and also higher than those in most of the reports detailed in 

the same study, which reported pHu ranges from 5.6-5.8 up to 6.1-6.2. The pH of the breast muscle 

(Table 2) did not show a consistent fall with time post-mortem, in contrast with the results of 

Tomaszewska-Gras et al. (2011) who reported a fall in pH from 6.3 at to 5.4 by 24h post-slaughter, 

rising again slightly after 72h post-slaughter. Berge et al., (1997) showed that the pHu of emu meat 

was ca. 6.0 in birds that experienced 10 hours transport without food immediately prior to slaughter 

but 5.5 in unstressed birds. This relatively high pH and absence of pH fall observed (Table 2) is also 
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consistent with a low glycolytic potential and the occurrence of stress pre-slaughter. The effect of 

this on the eating quality of the meat would justify further study. 

4.2. ATP, ADP, AMP.  

ATP was present during the early post-slaughter period (Table 1), but its concentration showed a 

non-significant downward trend with time, dropping from 2.4 µmole g
-1

 wet weight (1.3 mg g
-1

) at 

ca. 15 minutes post-slaughter to 1.3 µmole g
-1

 at ca 123 minutes post-slaughter. Changes in ADP and 

AMP during these early stages post-slaughter were not statistically significant, probably due to the 

fact that the differences due to time post-slaughter were not great compared with the considerable 

natural variation between individual chickens, with ATP concentrations at ca. 15 minutes ranging 

from 0.9 to 4.5 µmole g
-1,

 and the fact that separate groups of six chickens were taken for analysis at 

the three time points. De Fremery (1960) reported the “initial” ATP content of chicken muscle to be 

4.8 mg g
-1 

fresh tissue (9.5 µmoles g
-1

), while Santé et al. (2000) reports falling concentrations of 5-6 

µmoles g
-1

 in turkey muscle at 3 and 20- mins post-slaughter, with lower ATP levels in birds stunned 

at 600 Hz compared to 50Hz. The ATP levels reported (Sante, et al., 2000)  are approximately 3-5 

times higher than the values
 
we obtained at ca. 15 minutes post-slaughter (Table 1).  

In Experiment 2, one set of six chickens were followed throughout the chill period. At 4 hours 

post-slaughter (Table 2), AMP was predominant amongst the adenosine nucleotides, with 0.8 µmole 

g
-1

 compared to 0.3 µmole g
-1

 for both ATP and ADP. During chilled storage from 4 to 200 hours, 

the concentrations of all three compounds decreased further. The significance of the quadratic 

relationship reflected the fact that the concentrations of all three compounds decreased initially and 

then became steady after 55 or 100 hours. The low concentration of ATP is in accord with the 

expected disappearance of ATP at onset of rigor mortis, occurring at ca. 6 hours post-mortem in 

chilled chicken muscle (Schreurs, 2000). Observation of the data for individual chickens (not shown) 

shows considerable variation for ATP but good agreement for ADP and AMP.  

4.3. Inosine 5’-monophosphate (IMP), inosine and hypoxanthine.  

IMP was the most abundant ATP breakdown product in both Experiments, up until 100h post-

slaughter, when inosine became more abundant (Figure 4). This agrees with the findings of Lee and 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

15 

Newbold (1963), who also reported that IMP is the predominant nucleotide of muscle in rigor mortis 

at one day  post-slaughter.  A considerable amount of IMP (7.8 µmole g
-1

 wet weight) was present 

after only 10 mins post-slaughter (Table 1), indicating a high activity at this early stage post-

slaughter for the deamination of AMP by ‘adenylate aminohydrolase’ (EC 3.5.4.6), relative to IMP 

breakdown. This compares with less than 2 µmole g
-1

 reported in turkey muscle at 2 and 20 mins 

post-slaughter (Sante, et al., 2000). The levels of ATP and IMP in the current study are similar to 

those reported by van Hoof  (1979) for birds manually slaughtered. The concentrations of inosine at 

4 h in Experiment 2 (Table 2) are slightly higher than in turkey breast muscle manually slaughtered 

(van Hoof, 1979), while the levels of hypoxanthine at 4 h are approximately a factor of 3 x lower 

than those quoted by the same author for turkey breast muscle. These differences between our study 

and published literature on turkey breast muscle may reflect species differences and/or the effect of 

stress both pre-slaughter and at slaughter on the rate of post-mortem glycolysis. 

[Figure 4] 

The low concentrations for ATP and high levels of IMP at 10 mins post-slaughter, reported in 

Table 1, suggest an accelerated rate of post-mortem metabolism.  This is supported by the results of 

Santé et al. (2000) which, although on turkeys rather than chickens, showed that a lower ratio of 

ATP to IMP was associated with a faster rate of post-mortem glycolysis (as evidenced by pH 

decline), arising from a high frequency stunning regime. The low ATP/IMP ratios coupled with the 

lower ATP levels in both Experiments 1 and 2 (Tables 1 and 2), compared to data for similar time 

points reported by Santé et al. (2000), indicate that post-mortem glycolysis was extremely rapid in 

the current studies. These results therefore indicate that the birds used in the current study underwent 

a very rapid post-mortem glycolysis that may have resulted from a combination of stress at slaughter 

and stunning systems that induced wing flapping at slaughter. In addition, the high pHu values, 

particularly in Experiment 2, indicate considerable pre-slaughter stress resulting in depletion of 

carbohydrate stores pre-slaughter. The first of these studies was conducted in summer while the 

second was in winter; however, in Northern Ireland inclement weather conditions during transport 

could contribute to pre-slaughter stress at any season.  
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The chickens used for Experiment 2 had lower concentrations of IMP than Experiment 1, in line 

with the 60 % lower concentration of total nucleotides and related compounds. During chilled 

storage at 4°C, IMP concentration fell from 5.3 to 2.7 µmole g
-1 

wet weight between 4 and 150h 

post-slaughter. Terasaki et al. (1965) reported similar concentrations of IMP (210-270 mg 100 g
-1

 

wet weight = 5.4–6.9 µmole g
-1

) at 8 hours post-mortem, using a similar extraction method with ion 

exchange chromatography. Their data also showed a decrease in concentration to half the initial 

value after 4-6 days.  

The presence of inosine, even at 10 minutes post-slaughter (Table 1), indicated that the breakdown 

of IMP into inosine and phosphate commenced at an early stage. Statistical analysis did not show 

any significant differences for inosine at 10, 20 and 115 minutes post-slaughter. However, during 

extended chilled storage (Table 2), inosine increased with time. These results agree with those 

reported by Terasaki et al. (1965) who found similar concentrations of inosine in chicken breast meat 

held at 4 ºC: 1 µmole g
-1

 wet weight after 24 hours increasing to 4 µmole g
-1

 after 48 hours.  

Hypoxanthine was present at low concentrations at early stages post-slaughter (Table 1) but 

increased steadily and linearly throughout post-slaughter chilled storage (Table 2) from 0.1 to 2.3 

µmoles g
-1

 at 200h post-slaughter (Figures 4(a), 5). These results are in agreement with those 

reported by other researchers.  Davidek et al. (1967) reported the presence of hypoxanthine only in 

poultry meat aged for more than 41 hours. However, its apparent absence at earlier stages was 

probably due to the higher detection thresholds arising from the use of paper chromatography. Park 

et al., (1982) have determined hypoxanthine in chicken samples immediately after their purchase 

from a local market and after 7 days storage at 4 ºC. They reported 0.9 ± 0.2 µmoles g
-1

 for 

hypoxanthine in control and 2.1 ± 0.8 after 7 days storage (> 150 hours post-slaughter).  

[Figure 5] 

A plot of the formation and decline of base-containing metabolites (Figure 4) shows that, the rate 

of decline of IMP is steady to 150 hours and that the rate of formation of hypoxanthine is steady 

throughout. Inosine, in contrast, shows a non-linear relationship with time, consistent with the 
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balance between formation and breakdown pathways shifting towards the latter with time. These 

relationships were also observed for the individual chickens (not shown).     

4.4. Ribose and ribose-5-phosphate.  

As for glucose-6-phosphate, the enzymatic quantitative method employed here did not distinguish 

between different phosphate forms of ribose. The use of GC-MS confirmed that the ribose phosphate 

detected was ribose-5-phosphate and also identified ribulose, ribulose 5-phosphate, xylulose and 

xylulose 5-phosphate in trace amounts. 

Ribose was present at very low concentrations at early stages post-slaughter (Experiment 1, Table 

1) with formation commencing between 33 and 123 minutes post-mortem. In Experiment 2, ribose 

increased markedly and linearly with time during chilled storage up to 200 hours post-slaughter 

(Table 2), with a 20-fold increase between 4 and 200 hours. In contrast, ribose phosphate was 

present at low concentrations in most chickens during the early stages post-slaughter. It peaked at 28 

- 55 hours and then decreased during chilled storage.  

It is necessary to consider whether, after 8 days refrigerated storage, microbial activity may have 

been the cause of a loss of ribose and ribose phosphate. However, if such an effect were dominant, 

an exponential growth in microflora would be expected to give a concomitant change in these 

compounds and other sugars and this was not observed. Nor was there any evidence of spoilage in 

terms of odour or appearance.   

As ribose has proved to be an important limiting factor for the formation of chicken flavor (Aliani 

& Farmer, 2005b), it was of particular interest to trace its formation in chicken meat and its 

evolution with time throughout the post-slaughter and chilled storage period. While previous authors 

have followed these pathways via the formation of hypoxanthine (Lee & Newbold, 1963), none have 

determined ribose and ribose phosphate.  

One major source of ribose in chicken is believed to be inosine monophosphate (IMP) originating 

from ATP (D.S. Mottram & Madruga, 1994). Figure 6 shows the possible degradation of IMP by 

three different pathways as proposed by Lee and Newbold (1963). They suggest that IMP may be 

dephosphorylated to give inosine (pathway i), which itself might break down to ribose and 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

18 

hypoxanthine (ii) or ribose-1-phosphate and hypoxanthine (iii) or IMP might be degraded directly to 

ribose-5-phosphate and hypoxanthine (iv). The evidence presented in Tables 1 and 2 is only partly 

consistent with this model.  IMP decreases, inosine remains roughly steady and ribose and 

hypoxanthine accumulate, as predicted (Lee & Newbold, 1963). However, it is evident from Table 2 

and Figure 5 that the accumulation of hypoxanthine is greater and more rapid than that of ribose. 

This suggests either that hypoxanthine is also formed by a different pathway to route (ii) or that 

ribose breaks down further. The likely pathways for forming hypoxanthine would be routes (iii) and 

(iv) which should also give ribose-1-phosphate or ribose-5-phosphate (Figure 6), both of which 

would be measured as ribose phosphate in this study. Table 2 and Figure 5 show that ribose 

phosphate is present at greater quantities than hypoxanthine at 4h and 28h post-slaughter but 

declines later during chilled storage. These elevated early levels of ribose phosphate suggest that 

there is an additional route of formation of ribose phosphate at early times post-slaughter not 

explained by the Lee and Newbold model (Figure 6). Koutsidis et al. (2008) suggest that ribose-5-

phosphate is dephosphorylated to release ribose and this may explain part but not all of the decline 

and rise in these compounds. Thus, these results suggest that while both ribose and ribose phosphate 

are probably formed by the breakdown of IMP, both compounds react further. This is further 

supported by the gradual loss of total ribose-containing metabolites over time in chilled storage from 

9.0 to 7.2 µmole g
-1

 wet weight from 4 to 200 hours post-slaughter, while total nucleotides remains 

stable (Table 2, Figure 4(a, b)). It is possible that these additional reactions of formation and 

breakdown of sugars may be related to the pentose phosphate pathway or reactions with protein and 

this is the subject of further research. A detailed kinetic study with more sampling times would 

further elucidate the relationships between these post-slaughter metabolic pathways.  

[Figure 6] 

These results demonstrate that large quantities of IMP and inosine present in chicken post-

slaughter were not converted into ribose (Tables 1,2, Figure 4(b)). A maximum of 5-6% of the 

potential ribose was present as ribose (at 200 hours) or ribose phosphate (28 hours). Chicken meat is 

usually purchased and consumed between 28 and 100 hours post-slaughter and, at this time, the 
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potential ribose is largely present as IMP. To optimise the release of ribose from this pathway, and 

make it available as a precursor of flavour formation, it will be necessary to better understand the 

enzymatic systems governing the breakdown of IMP and inosine. Further research on this subject 

will be reported separately. 
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Table 1: Effect of time post-slaughter on the concentration of ribonucleotides and sugars (µmole g
-1

 wet weight) in breast meat from six chickens 

(Experiment 1) 

 Time post-slaughter ANOVA 

Metabolite
a
 Stage A

b Stage B Stage C SEM Sig 

Time_h 
Sig  

Lin 

ATP 2.42 1.78 1.33 0.394 NS NS 

ADP 1.01 0.67 0.80 0.167 NS NS 

AMP 0.98 0.58 0.83 0.258 NS NS 

IMP 7.78 9.52 8.29 0.788 NS NS 

Inosine 2.30 2.52 1.55 0.385 NS NS 

Hypoxanthine 0.14 0.10 0.29 0.055 NS P<0.05 

Ribose 0.01 nd
c
 0.14 0.007 P<0.001 P<0.001 

Ribose phosphate 0.07 0.04 0.09 0.015 NS NS 

Glucose 1.05 1.94 1.93 0.392 NS NS 

Glucose phosphate 0.35 0.36 0.33 0.130 NS NS 

Total ribose-containing 

metabolites
d
 

14.6 15.1 13.0 0.762 NS NS 

Total base-containing 

metabolites
e
 

14.6 15.2 13.1 0.754 NS NS 

a: ATP: adenosine triphosphate; ADP: adenosine diphosphate; AMP: adenosine monophosphate; IMP: inosine monophosphate  

b: Stage A, B and C of processing as illustrated in Figure 1 

c: nd = not detected at 0.012 µg or 0.08 nmoles in 20 µL injection, which corresponds to  0.01 µmoles g
-1

 wet weight raw chicken meat; statistical 

significance is the same whether conducted using zero or 0.01 µmoles g
-1

 for this value.  If this value is omitted, the difference between ribose 

concentrations at Stage A and C remains significant (P<0.001). 

d: Total ribose (µmole g
-1

 wet weight) included in ATP, ADP, AMP, IMP, inosine, ribose and ribose phosphate  
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e: Total nucleotides and related compounds (µmole g
-1

 wet weight) = ATP, ADP, AMP, IMP, inosine and Hx 
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Table 2: Effect of time of chilled storage on concentrations of ribonucleotides and sugars (µmole g
-1

 wet weight) in breast muscle from six 

chickens (Experiment 2) 

 Time chilled storage post-slaughter (hours) ANOVA 

Metabolite
a
 4 28 55 100 150 200 SEM

b
 Sig 

Time_h 

Sig  

Lin 

Sig 

Quad 

ATP 0.27 0.29 0.15 0.15 0.10 0.12 0.022 P<0.001 P<0.001 P<0.01 

ADP 0.29 0.20 0.17 0.17 0.16 0.16 0.005 P<0.001 P<0.001 P<0.001 

AMP 0.78 0.28 0.33 0.27 0.29 0.30 0.019 P<0.001 P<0.001 P<0.001 

IMP 5.31 4.88 4.21 3.49 2.82 2.72 0.120 P<0.001 P<0.001 P<0.001 

Inosine 2.03 2.35 2.79 3.16 3.21 3.29 0.121 P<0.001 P<0.001 P<0.001 

Hypoxanthine 0.14 0.40 0.75 1.26 1.76 2.27 0.093 P<0.001 P<0.001 NS 

Ribose 0.02 0.09 0.18 0.28 0.34 0.38 0.016 P<0.001 P<0.001 P<0.001 

Ribose phosphate
c
 0.32 0.44 0.37 0.30 0.26 0.28 0.028 P<0.001 P<0.001 NS 

Glucose 0.83 0.97 1.04 0.87 0.73 0.61 0.064 P<0.01 P<0.001 P<0.05 

Glucose phosphate
c
 0.73 0.61 0.52 0.39 0.22 0.39 0.072 P<0.001 P<0.001 P<0.05 

pH 6.19 6.30 6.25 6.28 6.28 6.33 0.024 P<0.05 P<0.01 NS 

Total ribose-

containing 

metabolites
d
 

9.03 8.53 8.19 7.82 7.17 7.25 0.159 P<0.001 P<0.001 P<0.05 

Total base-

containing 

metabolites
e
 

8.84 8.40 8.39 8.50 8.33 8.86 0.138 P<0.05 NS P<0.01 
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a: ATP: adenosine 5’-triphosphate; ADP: adenosine 5’-diphosphate; AMP: adenosine 5’-monophosphate; IMP: inosine 5’-monophosphate 

b: SEM: Standard error of means 

c: Ribose and glucose phosphates here include all phosphates, though additional analyses showed that glucose-6-phosphate and ribose-5-phosphate 

were the by far the most abundant isomers 

d: Total ribose (µmole g
-1

 wet weight) included in ATP, ADP, AMP, IMP, inosine, ribose and ribose phosphate  

e: Total nucleotides and related compounds (µmole g
-1

 wet weight) = ATP, ADP, AMP, IMP, inosine and Hx 
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Table 3. Pearson’s correlation between glucose and glucose-6-phosphate concentrations and pHu, at different times during chilled storage 

(Experiment 2) 

Time post-

slaughter 

GLU GLU GP GP GLU+GP GLU*GP 

 R Sig
$
 R Sig R Sig 

4h -0.957 ** -0.908 * -0.936 ** 

28h -0.850 * -0.917 ** -0.894 * 

55h -0.812 * -0.835 * -0.838 * 

100h -0.862 * -0.836 * -0.850 * 

150h -0.778 NS
#
 -0.730 ns

#
 -0.764 ns

#
 

200h -0.916 * -0.945 ** -0.930 ** 

$   From table of critical values for Pearson’s product moment correlation coefficients, two tailed test, df = 4; *, ** = P<0.05, P<0.01 

#   NS, not significant, P> 0.05 < 0.10 
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List of figures. 

Figure 1 Summary of poultry slaughtering and processing line showing sampling times for 

Experiment 1. 

Figure 2. Diagram showing sampling pattern for chicken breast meat samples. Samples (ca 3g) were 

taken from areas A to L from six chickens according to a random sampling pattern, without using cut 

surfaces left by a previous sample. 

Figure 3. Effect of pHu on glucose (GLU) and glucose-6-phosphate (G6P) concentration at (a) 4h and 

(b) 200h. 

Figure 4. Effect of time of chilled storage (4 to 200 hours post-slaughter) on the concentrations of 

metabolites in Experiment 2: (a) base-containing metabolites and (b) ribose containing metabolites. 

TBCM, TRCM = total base-containing and ribose–containing metabolites, respectively. 

Figure 5. Changes in concentrations of hypoxanthine (Hx), ribose and ribose-5-phosphate (RP) during 

chilled storage (Experiment 2). 

Figure 6: The possible degradation of IMP by different pathways in bovine skeletal muscle from Lee 

and Newbold (1963). 
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Figure 1  
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Figure 2.  
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Figure 3.  
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(b)  200h
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Figure 4.  
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Figure 5.  
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Figure 6:  


