Late Holocene climatic changes in Tierra del Fuego based on multiproxy analyses of peat deposits

Published in:
Quaternary Research

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date: 21. Oct. 2023
Late Holocene climatic changes in Tierra del Fuego based on multiproxy analyses of peat deposits

Dmitri Mauquoy, a,* Maarten Blaauw, b Bas van Geel, b Ana Borromei, c Mirta Quattrocchio, c Frank M. Chambers, d and Göran Possnert e

a Palaeobiology Program, Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala, Sweden
b Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
c Departamento de Geología, Universidad Nacional del Sur, San Juan 670 (8000), Bahía Blanca, Argentina
d Centre for Environmental Change and Quaternary Research, GEMRU, University of Gloucestershire, Cheltenham GL50 4AZ, UK
e Ångström Laboratory, Division of Ion Physics, S-75121 Uppsala, Sweden

Received 11 February 2003

Abstract

A ca. 1400-yr record from a raised bog in Isla Grande, Tierra del Fuego, Argentina, registers climate fluctuations, including a Medieval Warm Period, although evidence for the ‘Little Ice Age’ is less clear. Changes in temperature and/or precipitation were inferred from plant macrofossils, pollen, fungal spores, testate amebae, and peat humification. The chronology was established using a 14C wiggle-matching technique that provides improved age control for at least part of the record compared to other sites. These new data are presented and compared with other lines of evidence from the Southern and Northern Hemispheres. A period of low local water tables occurred in the bog between A.D. 960–1020, which may correspond to the Medieval Warm Period date range of A.D. 950–1045 generated from Northern Hemisphere tree-ring data. A period of cooler and/or wetter conditions was detected between ca. A.D. 1030 and 1100 and a later period of cooler/wetter conditions estimated at ca. cal A.D. 1800–1930, which may correspond to a cooling episode inferred from Law Dome, Antarctica.

Keywords: Climate change; Tierra del Fuego; Sphagnum mires; 14C wiggle-match dating; Medieval Warm Period; Little Ice Age

Introduction

Numerous paleoecological studies have described the late Quaternary climate and vegetation history of Tierra del Fuego and southern Patagonia (Ashworth et al., 1991; Borromei, 1995; Heusser, 1989, 1995, 1998; Markgraf, 1983, 1993; McCulloch and Davies, 2001; Pendall et al., 2001; Quattrocchio and Borromei, 1998; White et al., 1994), but to date the region lacks detailed plant macrofossil, testate amebae, and peat humification analyses (Barber et al., 1994; Charman et al., 1999; Mauquoy et al., 2002). Furthermore, no 14C wiggle-match chronologies (Blaauw et al., 2003; Kilian et al., 1995) are currently available to establish the precise timing of local vegetation and potential climate-induced changes spanning the last ca. 1300 yr. This dating technique simply relies on the nonlinear relationship between 14C age and calendar age to match the shape of a sequence of closely spaced 14C dates with the 14C calibration curve in order to improve precision. This paper addresses the chronological shortcoming identified in the review of Rabassa et al. (2000), in combination with new multiproxy analyses of peat deposits exposed in peat works in the Valle de Andorra, located ca. 10 km to the northeast of Ushuaia, Tierra del Fuego, Argentina (S 54° 45', W 68° 18', ca. 180 m asl, see Fig. 1).

Materials and methods

Peat monoliths of 1 m depth were collected from sections exposed in the peat works using metal boxes (50 \times 15 \times 10 cm). Intact raised peat bogs ca. 1.5 km to the northwest of the peat works were used for the collection of plant macrofossil type material and analyses of testate amebae from varying positions above local water tables (local water table depths spanned 0–101 cm, pH range 4.72–6.05). The
local vegetation cover is primarily composed of Marsippospernum grandiflorum, Carex curta, and Sphagnum magellanum, which grows from the highest hummock microforms (depth to local water tables of >60 cm) down to pool margins. Pool microforms are infrequent, but possess Sphagnum sect. Cuspidata and Tetroneum magellanicum which grows at the pool margins. Empetrum rubrum and Nothofagus antarctica appear to be restricted to microforms where local water tables are lower. Forests of Nothofagus pumilio surround the bogs in the Valle de Andorra. The mean annual temperature and precipitation is estimated at 6°C and 450–600 mm, respectively, and annual cloudiness surpasses 60% (values taken from Roig et al., 1996).

Macrofossil samples were collected at contiguous 1-cm sample intervals from the 1-m-long Valle de Andorra (AND1) peat core. These were boiled with 5% KOH and sieved (mesh diameter 100 µm). Macrofossils were identified using a binocular microscope (x10–50). Abundances of each peat component were expressed as percentage volume of the subsample (ca. 5 cm³). Microfossil samples of ca. 1 cm³ volume (precise volume estimated by immersion) were treated with KOH and acetolyzed (Fægri and Iversen, 1989).

To estimate microfossil concentrations Lycopodium spores were added to the sample (Stockmarr, 1971). Pollen and fungal microfossils were counted at 2-cm sample intervals (pollen sum of 200 to 500 grains per sample). Fungal microfossils are presented as percentages of 100 pollen grains (aquatics and cryptogams excluded).

Pollen identifications were made using modern reference material in the Universidad Nacional del Sur Palynology Laboratory and published descriptions and keys (Heusser, 1971; Markgraf and D’Antoni, 1978). The degree of peat humification of 100 contiguous samples was assessed using a modified version of the Bahnson colorimetric method (Blackford and Chambers, 1993). Testate amebae from a further 100 contiguous samples were analyzed following Hendon and Charman (1997). Counting was done until 150 testate amebae were recorded.

Thirteen samples of Sphagnum leaves and/or stems were radiocarbon dated using AMS (Kilian et al., 1995, 2000; Table 1). Only Sphagnum subfossils (leaves and stems) were selected from the macrofossil samples. Samples were cleaned to remove roots of Ericaceae and Cyperaceae and fungal mycelium, transferred to a petri dish containing...
deionized water and then pretreated for radiocarbon analysis (Speranza et al., 2000). A 14C offset was applied to these Southern Hemisphere samples although the exact value is the subject of continuing research (see Stuiver et al., 1998, for details). We subtracted 30 years from all radiocarbon measurements following the recommendations of Mook (1986).

The 14C ages of the samples from 68 to 86 cm (dates 3–12, Fig. 2) have been converted to calendar ages using 14C wiggle-match dating (van Geel and Mook, 1989), assuming a constant peat accumulation rate. The best fit (using maximum likelihood) and confidence intervals (using weighted least squares) were calculated for each date after the technique of Blaauw et al. (2003; Fig. 2). The basal date at 100 cm and upper samples at 50 and 32 cm were calibrated using CALIB 4.3, since an insufficient density with 30-year deviation (B.P.) was recorded in addition to an increase in local water table depths. Abundances of Type 811 spores increase.

Table 2

Macrofossil and fungal microfossil zonation for AND1

Zone AND1-a (100–85 cm)	Peat matrices are largely composed of Sphagnum magellanicum (72–93%), with relatively low amounts of Empetrum/Ericaceae roots (2–15%). Type 126 Hyphopodia of Gaveumannomyces sp. confirm the presence of Carex sp. (Pals et al., 1980)
Zone AND1-b (84–81 cm)	A decrease in S. magellanicum (67–58%) was recorded in addition to an increase in Empetrum/Ericaceae roots (25–30% of the peat matrices), indicating a reduction of local water table depths. Abundances of Type 811 spores increase.
Zone AND1-c (80–48 cm)	Percentages of S. magellanicum and detached Sphagnum stems increase (maximum values of 93 and 15% were recorded, respectively). Between 80 and 68 cm fungal Types 810 and 811 are almost absent. Elevated values of Type 810 ascospores occur between 57 and 53 cm. Increased charcoal occurs from 53 to 49 cm, indicating the occurrence of local fires.
Zone AND1-d (47–27 cm)	Fluctuations in local water table depths may have occurred, since there are clear oscillations in the percentages of identifiable Sphagnum and Empetrum/Ericaceae roots. Sequential increases in Types 812, 811, and 810 fungal microfossils occur.
Zone AND1-e (26–14 cm)	Increases in S. magellanicum and a reduction in Empetrum/Ericaceae roots suggest that an increase in mire surface wetness occurred. Type 810 ascospores decline.
Zone AND1-f (13–9 cm)	The lowest values of S. magellanicum and high values of Empetrum/Ericaceae roots and unidentifiable organic material (40 and 25%) indicate a marked decrease in mire surface wetness. The highest values of Type 5 conidia were recorded here, supporting the occurrence of dry conditions (van Geel, 1978).
Zone AND1-g (8–0 cm)	Mire surface wetness appears to have increased as high values of S. magellanicum recur. Fungal microfossils are very infrequent.

Zonation—optimal splitting by information content, PSIMPOLL 4.10. Features of zones.
roots are relatively high. The PCA ordination (Fig. 4) shows that the fungal microfossils (Types 5, 126, 810, 811, 813, and 814; see Fig. 5) occur with the plant macrofossils, indicative of dry conditions (Empetrum/Ericaceae roots and wood and unidentifiable organic material), since the angles between these vectors are relatively low. A clear separation between these components and *S. magellanicum* suggests the primary direction of variance of PCA axis 1 represents a wetness gradient of the mire surface (increasing numbers on the *x* axis indicate decreasing mire surface wetness). Furthermore, high PCA axis 1 values of the samples are associated with low transmission values (indicating high peat decomposition), high pollen concentrations of *Empetrum*/*Ericaceae* (*Empetrum* is a species which indicates low mire surface wetness; Heusser, 1989), and relatively high percentages of *Assulina muscorum* and *Corythion dubium* (Fig. 6, zonation details Table 3). The 15 surface samples confirm the relationship between relatively low, local, water tables and increased abundance of *A. muscorum* (Fig. 7). Three periods of high surface wetness occurred between ca. A.D. 890–950 (AND1-II), A.D. 1030–1100 (AND1-IV), and A.D. 1800–1930 (AND1-VI). Zones AND1-I, AND1-III, and AND1-VII (ca. A.D. 660–870, 960–1020, and 1940–1950, respectively) seemingly represent warmer and/or drier conditions.

Discussion

The paleoclimatic interpretations offered here should be applied cautiously, as only a single borehole was examined. Multiple cores from raised peat bogs have shown that it is not always possible to replicate changes in mire surface wetness (Mauquoy et al., 2002), and the possibility exists that the data register only local successional changes. The latter appears unlikely because changes in the peat stratigraphy could be followed over tens of meters in the 1-m-deep drainage ditches from which the samples were obtained. With the exception of the section dated by

Fig. 2. Numerical wiggle-match fit of 14C AMS dates 3–12. Thick lines show 1 standard deviation (σ) error envelope of INTCAL98 calibration curve (Stuiver et al., 1998). Vertical bars of 14C samples show 1-σ error bars; horizontal bars show deposition period of the samples. Projected on the calendar year axis are the WLS (weighted least squares, concave shapes) and MLH (maximum likelihood, convex shapes) probability distributions of selected dated levels. The vertical scale is arbitrary. Maximum values of WLS indicate 2-σ limits. The dated levels are placed on the calendar axis as proposed by the optimal MLH solution (after Blaauw et al., 2003).
Fig. 3. ANDI macrofossils and macroscopic charcoal particles. Volume abundances of all components are expressed as percentages with the exception of E. rubrum seeds and charcoal fragments, which are presented as the number (n) found in each ca. 5 cm³ subsample. Fungal microfossils are presented as percentages related to 100 pollen grains (aquatics and cryptogams excluded).
Evidence for the Medieval Warm Period

The evidence for drier conditions in zone AND1-III (ca. cal A.D. 1030–1100) indicating warming seems to correspond to the Medieval Warm Period (MWP, as defined in the Northern Hemisphere). This interval compares well to the date range of A.D. 950–1045 based on Northern Hemisphere extratropical tree-ring data (Esper et al., 2002). These dendrochronological data also suggest the MWP may have begun in the early A.D. 900s. The extent, timing, and nature of the Medieval Warm period are uncertain. According to Broecker (2001), evidence for a global Medieval Warm Period is circumstantial and because of the relative scarcity of Southern Hemisphere paleoclimatic data, Crowley and Lowery (2000) suggest the term Medieval Warm Period should be restricted to the Northern Hemisphere only. Our reconstruction for warm/dry conditions between ca. A.D. 960–1020 closely agrees with Northern Hemisphere tree-ring evidence for the MWP and shows that the MWP was possibly synchronous in both hemispheres, as suggested by Villalba (1994).

Evidence for Little Ice Age climatic deteriorations

Zone AND1-IV suggests cooler and/or wetter conditions between ca. A.D. 1030–1100, which may represent a Southern Hemisphere precursor to the Little Ice Age (LIA). Regional evidence for climatic deteriorations is suggested by advances of a lobe of the Bahia Pia glacier system in the Cordillera Darwin, Tierra del Fuego (Kuylenstierna et al., 1996), reaching one of its maximum positions between 940 and 675 B.P. (cal A.D. 980–1260 and cal A.D. 1220–1420 at 2σ, respectively). Our high-precision 14C chronology possibly refines this age range for the start of cooling in Tierra del Fuego. A temperature profile from Law Dome core (Dahl-Jensen et al., 1999) has minima at A.D. 1250 and 1790–1850, and the magnetic susceptibility record of the Antarctic Palmer Deep marine core (Domack et al., 2001) also indicates a possible LIA signal at ca. 700 B.P. (cal A.D. 1250). Our age range for the first cooling episode predates this (ca. cal A.D. 1030–1100), even with the maximum weighted least squares estimate for date 3 (A.D. 1156, Table 1). We do not have sufficiently good dating control in zone AND1-VI, but there is a possibility that the evidence for cooler and/or wetter conditions at ca. A.D. 1800–1930 (low concentrations of Empetrum/Ericaceae and PCA axis 1 scores) may correspond to a period of low temperatures (A.D. 1790–1850) identified by Dahl-Jensen et al. (1999) and to tree-ring evidence for cool summer temperatures in Tierra del Fuego at ca. A.D. 1850 and A.D. 1880 (Boninsegna et al., 1989).

The AND1 peat stratigraphy displays increased mire surface wetness between ca. A.D. 1030–1100 and ca. cal A.D. 1800–1930. However, the chronology for this period of cooler and/or wetter conditions is poor. Dating control for the peat stratigraphy postdating zone AND1-IV is also poor, but fluctuations in mire surface wetness recorded in zone AND1-V may correspond to another cooler/wetter period identified in the wider study region. For example, summer temperature reconstructions from tree-rings in northern Patagonia (ca. 1500 km to the north northwest of the Valle de Andorra) suggest a warm period occurred from A.D. 1080–1250, followed by a prolonged cold period from A.D. 1270 to A.D. 1660, possibly peaking around A.D. 1340 and 1640 (Villalba, 1990, 1994). This period does not appear to have been uniformly cold, since the tree-ring data suggest warming occurred between A.D.
Finally, warmer conditions were reconstructed between A.D. 1720 and 1790 (Villalba, 1990). An advance of the Soler Glacier in the North Patagonian Icefield has been dated using in situ tree remains to ca. A.D. 1222–1342 (Glasser et al., 2002), which supports the climatic reconstructions of Villalba. More records with greater numbers of 14C dates could serve to resolve the chronology of the evidence for climate change in Tierra del Fuego and establish if the LIA climatic deteriorations detected in the wider study region and the Northern Hemisphere (Luckman and Villalba, 2001) also occurred here.

Acknowledgments

This research was supported through a European Community Marie Curie Fellowship (Contract HPMF-CT-2000-01056). We thank Dr. Andrea Coronato, Laboratorio Geologia del Cuaternario CADIC-CONICET, Ushuaia, Argentina, for logistical support. We also thank Professor Keith Bennett, Palaeobiology Program, Department of Earth Sciences, Uppsala University, for advice and many discussions of dating, statistics, and the optimal use of psimpoll 4.10. Dr. André Aptroot, Utrecht, The Netherlands, kindly confirmed the identification of Byssothecium alpestris (Toth) Boise.

Appendix A. Descriptions of newly distinguished types in core AND1

A.1. Type 810 (Figs. 5: 2, 3a, 3b)

Ascospores (44–) 49–59 × 16–20 μm, three septate, inequilateral (one side almost straight or even concave),
slightly constricted at the septa. Each septum showing a ca. 0.5-μm-wide pore. Two-septate and four-septate spores also occur, but these are rare.

Fruit bodies globose, 150–200 μm in diameter (only broken fruit bodies were observed in pollen slides).

A.2. Type 811 (Fig. 5: 4)

Spores globose, 10–18 (–23) μm in diameter, with roughly textured walls. Often groups of clustered spores were found in the microfossil slides. The origin of Type 811 is unknown (fungus?), but it closely resembles Type 38 (van Geel, 1972), which occurs in NW European raised bog deposits. However, no conclusions could be drawn from the record of Type 38 in those deposits (van Geel, 1978).

A.3. Type 812 (Fig. 5: 5)

Fungal **conidia** or **chlamydospores** transversely (3–) 6–10 (–16) septate, (50–) 120–200 (–250) μm long and 5–8 μm wide, formed at the ends of septate ca 2.5-μm-wide hyphae.

A.4. Type 813 (Fig. 5: 6)

Ascospores one septate, 46–52 × 17–20 μm. Septum often no longer attached to the spore wall. Nonseptate spores were also observed.

A.5. Type 814 (Fig. 5: 7)

Fungal **conidia** or **chlamydospores** transversely three septate, (25–) 31–38 μm long and 13–17 μm wide.
Fig. 6. AND1 composite diagram. Pollen concentrations of *Empetrum/Ericaceae* expressed as grains cm$^{-3}$, Transmission, *A. muscorum* and *C. dubium* are percentages. PCA axis 1 sample scores from Fig. 4 plotted versus age/depth.

Fig. 7. Depth of water table plotted against the percentage (testate amebae sum of 150) of *A. muscorum* (black rectangles) from 15 sites on the intact peat bog surface (S 54°45' W 68°19'). Surface samples contained *S. magellanicum* only.
References

