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ABSTRACT 18 

The success of helminth parasites is partly related to their ability to modulate host immune 19 

responses towards an anti-inflammatory/regulatory phenotype. This ability resides with the 20 

molecules contained in the secretome of various helminths that have been shown to interact with 21 

host immune cells and influence their function. Consequently, there exists a unique opportunity 22 

to exploit these molecules for the prophylactic and therapeutic treatment of human pro- and auto-23 

inflammatory disorders (for example septic shock, transplant rejection and autoimmune disease). 24 

In this review, we describe the mechanisms used by the trematode parasite, Fasciola hepatica, to 25 

modulate the immune responses of its host and discuss the potent immune-modulatory effects of 26 

three individual molecules within the secretome; namely cathepsin L1, peroxiredoxin and 27 

helminth defence molecule. With a focus on the requirements from industry, we discuss the 28 

strategies by which these molecules may be clinically developed to control human immune 29 

responses in a way that is conducive to the prevention of immune-mediated diseases.  30 

 31 

Keywords: Fasciola hepatica, Cysteine protease, Peroxiredoxin, Helminth defence molecule, 32 
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 35 

1. Introduction 36 

Over millennia of co-evolution (Jackson et al., 2009), helminth parasites have developed 37 

unique and effective mechanisms by which to regulate the immune responses of their mammalian 38 

hosts to create an environment favouring parasite survival and longevity (Wilson et al., 2007; Allen 39 

and Maizels, 2011). The requirement for the host to overcome this parasite-induced immune 40 

regulation has resulted in compensatory adjustments to interleukin genes, which have ultimately 41 

allowed the parasite to be tolerated while concomitantly minimising tissue damage for the host. One 42 

outcome of these immunological adaptations is that exposure to helminth parasites is a requirement 43 

to establish and maintain normal immunological balance in humans (Barnes et al., 2005; Moller et 44 

al., 2007; Fumagalli et al., 2009; Maizels, 2009). In populations where parasitic infections are no 45 

longer endemic this fine-tuning of immunological responses has likely become disrupted, leading to 46 

inappropriate immune responsiveness, and consequently the development of auto-inflammatory 47 

diseases such as Crohn’s disease, multiple sclerosis (MS), rheumatoid arthritis, and type 1 diabetes 48 

(T1D) (Bilbo et al., 2011; Rook, 2012). This premise is corroborated by epidemiological evidence 49 

demonstrating an association between a decreased incidence of helminth infections and an increased 50 

incidence of auto-inflammatory diseases in developed countries (Correale and Farez, 2007; Gale, 51 

2002; Fleming and Cook, 2006; Zaccone et al., 2006). Studies using murine models (Cooke et al., 52 

1999; La Flamme et al., 2003; Walsh et al., 2009; Melon et al., 2010) and human clinical trials 53 

using helminth infections (Summers et al., 2005a,b) provide additional support for the therapeutic 54 

potential of helminth infection. Consequently, the investigation of helminth infection, or worm 55 

therapy, as a treatment for auto-inflammatory disorders is a rapidly expanding field of research. 56 

The merits of using helminth infection as a means of controlling auto-inflammatory 57 

responses in patients has been extensively discussed (Bilbo et al., 2011; Rook, 2012; Pritchard, 58 

2011, 2012). However, the use of live parasites as a therapy is problematic because infection is 59 

associated with detrimental physiological side effects, as some tissue damage is still incurred. 60 



  

Additionally, there is a lack of immunological specificity associated with active infection, which 61 

induces a multitude of effects that compromise normal immunity (for example elicitation of the 62 

immunological responses required for effective vaccination) (McSorley and Maizels, 2012). 63 

Consequently, it is more judicious to identify the specific immune-modulatory molecules produced 64 

by helminth parasites and to characterise their precise mechanisms of action. The therapeutic use of 65 

the specific immune-modulatory molecules, either singly or in combination, would permit a more 66 

targeted and selective level of treatment control, thereby increasing therapeutic efficacy and safety.  67 

Many studies have focused on characterising the molecules secreted by helminths since 68 

these are expected to interact locally and systemically with host immune cells. Advances in mass 69 

spectrometry-based proteomics have facilitated the detailed characterisation of helminth 70 

secretomes, and, when integrated with interrogation of transcriptome datasets, this approach has 71 

revealed that helminths secrete a wide array of proteins. Additionally, helminths produce non-72 

protein molecules such as phosphorylcholine, glycans and lipids, which can also exert profound 73 

immune-modulatory effects. Given the diverse composition of secretomes between helminth 74 

species, the challenge now is to identify the specific molecules that possess immune-modulatory 75 

characteristics and hence offer therapeutic potential. This discovery process, and subsequent 76 

translation into a clinical therapy, requires a strategic multi-faceted approach that elucidates not 77 

only the molecular biology and biochemistry of the parasite-derived molecules but also their effects 78 

on the phenotype and function of specific immune cells, and on the collective immunological 79 

responses generated.  80 

2. Fasciola hepatica: a judicious choice in the search for novel immune modulators 81 

Our laboratory has studied the immunological interaction between the trematode parasite, 82 

Fasciola hepatica, and its mammalian hosts for over 25 years. This helminth parasite has an 83 

extensive host range, including humans, cattle, sheep, buffalo, goats, rats, mice, and rabbits (Garcia 84 

et al., 2007). Interestingly, F. hepatica can infect, and complete its life cycle, in mammalian hosts to 85 

which the helminth has only been exposed in the last few centuries due to the export of infected 86 



  

cattle from Europe; for example, capybara, alpaca and llama in South America and kangaroos in 87 

Australia (Robinson and Dalton, 2009). It follows that the parasite has not only acquired efficient 88 

mechanisms of infection and tissue invasion, but has also developed effective immune-modulatory 89 

ability that allows long-term residency in varied mammalian hosts. 90 

All mammalian hosts of F. hepatica become infected by ingestion of vegetation containing 91 

encysted dormant larvae. Infective juveniles emerge in the duodenum, rapidly traverse the intestinal 92 

wall, and enter the peritoneal cavity where they break through the liver capsule. Following a period 93 

of consistent burrowing, feeding and growth within the liver parenchyma, they move to their final 94 

destination within the bile ducts where they mature and produce eggs (Andrews, 1999). Thus, 95 

during their migration and development, parasites encounter different host tissues and 96 

macromolecules and are confronted with dynamic physiological microenvironments (differing in 97 

conditions such as pH and oxygen availability) and host immune responses (both humoral and 98 

cellular). Despite all of these obstacles, F. hepatica can live for extended periods in its host (for 99 

example, up to 20 years in sheep) (Andrews, 1999).  100 

Fasciola hepatica induces Thelper (Th2, anti-inflammatory) immune responses in its host, 101 

as do many other helminths. In contrast to gastrointestinal nematodes, however, where immune 102 

expulsion is generally mediated by host Th2 responses, the Th2 responses induced by F. hepatica 103 

parasites are not protective. Expulsion can be induced by vaccination, but this is dependent upon the 104 

generation of strong Th1 responses (Mulcahy et al., 1998, 1999; Golden et al., 2010). We have 105 

shown that during the acute phase of infection in mice, F. hepatica polarizes immune responses by 106 

(i) suppressing the production of Th1-associated cytokines, and (ii) inducing a potent parasite-107 

antigen specific Th2 immune response (Brady et al., 1999; Donnelly et al., 2005). This modulation 108 

of host immune responses occurs within just a few hours of the parasite penetrating the intestinal 109 

wall. Peritoneal macrophages display characteristic markers of regulatory/M2 macrophage 110 

phenotype (for example Arg-1 and PD-L1 expression and secretion of IL-10 and TGFβ) within 24 111 

hours of infection and are hyporesponsive to Th1-associated activation (Donnelly et al., 2005, 2008 112 



  

and unpublished). As infection enters the chronic phase in mice (21 days p.i.), the frequency of IL-113 

10-secreting CD4
+ 

regulatory T-cells (Tregs) increases significantly and results in the suppression 114 

of parasite-specific Th2 responses (Walsh et al., 2009). Administration of adult F. hepatica 115 

excretory/secretory products (FhES) to mice, like natural infection, inhibits the development of host 116 

Th1 responses and induces parasite-specific Th2 type immune responses in vivo (O’Neill et al., 117 

2001; Donnelly et al., 2005, 2008, 2010), but does not directly activate Tregs (S. Donnelly and B.A. 118 

O’Brien, unpublished data). 119 

Although immunological studies performed using domesticated animals are fewer and less 120 

extensive, as compared with those using murine models, these studies show that infection with F. 121 

hepatica induces potent and highly polarized Th2 responses. Cattle infected with the parasite show 122 

an almost complete absence of the Th1-associated antibody isotype, IgG2, and high levels of the 123 

Th2-associated antibody, IgG1, (Clery et al., 1996). Peripheral blood mononuclear cells (PBMCs) 124 

isolated from cattle and sheep, 4 weeks after experimental infections, fail to secrete IFNγ in 125 

response to parasite antigens (Clery et al., 1996; Brown et al., 1994), but do secrete elevated levels 126 

of IL-4 in vitro in response to stimulation with parasite antigens (Flynn et al., 2008; Donnelly and 127 

Dalton unpublished). The magnitude of these Th2 responses correlates positively with parasite 128 

burden (Clery et al., 1996), suggesting that F. hepatica is not only actively suppressing the 129 

production of host protective Th1 immune responses, but is also inducing robust Th2 responses. As 130 

infection progresses towards chronicity (12 weeks p.i.), continued IgG1 production is one of the 131 

few remaining features indicating persistence of a Th2 response (Flynn et al., 2008), and regulatory 132 

responses begin to predominate. At this stage, lymphocytes isolated from cattle and sheep show 133 

reduced secretion of IL-4, but an increase in parasite driven IL-10 and TGFβ production (Flynn et 134 

al., 2008; Donnelly and Dalton unpublished).   135 

 136 

3. Consequences of F. hepatica immune modulation 137 



  

A bystander consequence of F. hepatica infection is the suppression of immune responses 138 

directed against concurrent or secondary bacterial infections. For example, mice co-infected with F. 139 

hepatica and Bordetella pertussis (causative agent of whooping cough) exhibited a significant 140 

reduction in bacterial-specific Th1 responses and a consequential inability to eliminate the microbe. 141 

In addition, F. hepatica-infected mice displayed a reduced Th1 response to immunization with a 142 

bacterial whole cell whooping cough vaccine (Brady et al., 1999).  143 

In cattle, infection with F. hepatica confers susceptibility to infection with Salmonella 144 

dublin due to the inhibition of Th1 immune responses (Aitken at al., 1979). Experimentally, 145 

PBMCs isolated from animals co-infected with F. hepatica and Mycobacteria bovis secreted 146 

reduced levels of IFNγ in response to stimulation with mycobacterial antigens, compared with 147 

PBMCs from animals infected with M. bovis only (Flynn et al., 2009). Importantly, this suppression 148 

of Th1 immune responses by F. hepatica not only affects immune responses to other infections but 149 

also significantly compromises the predictive capacity of diagnostic tests for bovine tuberculosis 150 

(BTB; Flynn et al., 2007) which are reliant on the production of M. bovis-specific IFNγ from whole 151 

blood cells. A recent epidemiological study involving 3,026 herd of cattle in England and Wales 152 

confirmed that, in the field, a significant negative association exists between exposure to F. 153 

hepatica and diagnosis of BTB, with an approximate under-ascertainment of one-third (Claridge et 154 

al., 2012).    155 

While F. hepatica infection exerts a negative impact upon the host’s ability to mount 156 

effective Th1 immune responses, the potent immune-modulatory properties of F. hepatica may be 157 

exploited to suppress the detrimental Th1 immune responses that precipitate auto-inflammatory 158 

disease. Recent studies demonstrated that infection of mice with F. hepatica attenuated the clinical 159 

symptoms of murine experimental autoimmune encephalomyelitis (EAE), a model for human MS. 160 

Protection against neuronal tissue degradation was associated with TGFβ-mediated suppression of 161 

autoantigen-specific IFNγ and IL-17 production, and thus destructive pro-inflammatory responses 162 

were attenuated (Walsh et al., 2009).  163 



  

Our laboratory has shown that systemic suppression of host Th1 responses in mice can also 164 

be induced by the administration of FhES. A single i.v. injection of FhES (100 µg) was sufficient to 165 

prevent the activation of antigen-specific Th1 cells in response to immunization with a whole cell B. 166 

pertussis vaccine (O’Neill et al., 2001). Most recently, we have shown that i.p. delivery of FhES 167 

over a short time course (6 x 10 µg injections on alternate days) was sufficient to prevent the 168 

development of T1D in non-obese diabetic (NOD) mice (Fig. 1). In these experiments, the 169 

incidence of disease in female NOD mice treated with FhES approximated only 15%, with an 170 

average of 85% (over three separate trials) of mice remaining normoglycaemic up to 30 weeks of 171 

age. By contrast, approximately 82% of mice treated with vehicle control (PBS) developed diabetes 172 

by 20 weeks of age. FhES-induced prevention of T1D was associated with a reduction in the level 173 

of autoantigen (insulin)-specific Th1 immune responses (unpublished data). 174 

 175 

4. Identification of the specific immune modulators in the F. hepatica secretome 176 

Given our observations that FhES exerted analogous immune-modulatory effects to those 177 

seen during infection with Fasciola hepatica, it represents a valuable source of parasite-secreted 178 

immune modulators that can be mined to isolate novel therapeutic agents. To this end, our approach 179 

was to first reduce the FhES into fractions that were then assessed for their ability to mimic the 180 

immune-modulatory activity of infection in vivo; namely the inhibition and promotion of Th1 and 181 

Th2 immune responses, respectively. Analysis of the FhES by gel permeation chromatography 182 

identified two distinct major fractions, termed PI (approximately 200 kDa) and PII (20-60 kDa) 183 

(Donnelly et al., 2008). Intraperitoneal delivery of PI to mice caused the induction of regulatory/M2 184 

macrophages and the development of antigen-specific Th2 responses. While PII did not induce Th2 185 

responses, T cells isolated from the spleen of mice injected with this fraction showed reduced 186 

secretion of Th1 cytokines in response to antigen stimulation, thereby indicating inhibition of Th1 187 

immune responses (Donnelly et al., 2008). To identify the specific Th2-inducing proteins within PI, 188 

the fraction was separated by one-dimensional gel electrophoresis. Peptides were subjected to in-gel 189 



  

digestion with trypsin and analysed by mass spectrometry (M.W. Robinson, unpublished data; Fig. 190 

2). This analysis revealed that PI primarily contained the antioxidant, peroxiredoxin (FhPrx), and a 191 

second more abundant protein with a molecular mass of <10 kDa, which due to its structural 192 

homology with host defence peptides, notably human CAP18/LL-37, we termed F. hepatica 193 

helminth defence molecule-1 (FhHDM-1) (Robinson et al., 2011). Molecular and biochemical 194 

analysis revealed that the Th1-inhibiting PII fraction consisted of cathepsin L cysteine proteases 195 

(FhCL) (Smith et al., 1993). Subsequent proteomics studies showed that a family of cathepsin L 196 

cysteine proteases are highly represented in FhES, comprising 80% of the total protein secreted 197 

(Robinson et al., 2009). 198 

  199 

5. Mechanisms of immune modulation by secreted F. hepatica proteins 200 

On the basis of the data described above, we have selected FhPrx and FhHDM-1 (from the 201 

PI fraction) and FhCL1 (from the PII fraction) as candidate molecules possessing immune-202 

therapeutic potential. Significantly, homologues of all three of these molecules exist in the 203 

secretions of related trematodes that are major pathogens of humans, including the liver flukes, 204 

Clonorchis sinensis and Opisthorchis viverrini, the lung fluke, Paragonimus westermani, and the 205 

blood flukes, Schistosoma mansoni and Schistosoma japonicum (Donnelly et al., 2008; Robinson et 206 

al., 2011). Elucidating the mechanisms of action of FhPrx, FhHDM-1 and FhCL1 will be an 207 

important step in the translation to therapeutic applications.  208 

 209 

5.1. Peroxiredoxin (FhPrx) 210 

Within their vertebrate hosts, helminth parasites are exposed to reactive oxygen species 211 

(ROS) that are released from immune effector cells such as eosinophils, macrophages and 212 

neutrophils. Accordingly, helminths utilise an array of antioxidants for protection against oxidative 213 

stress. Fasciola hepatica expresses high levels of superoxide dismutase, which reduces superoxide 214 



  

to hydrogen peroxide (H2O2) and Prx, which prevents the accumulation of H2O2 (Barrett, 1980; 215 

Callahan et al., 1988; McGonigle et al., 1995, 1998). 216 

Immunocytochemical analyses have revealed that FhPrx is located in the gut epithelium of 217 

Fasciola worms (J.P. Dalton, unpublished data) and proteomic studies have shown that, despite 218 

lacking a predicted N-terminal signal peptide, FhPrx is secreted by F. hepatica (Robinson et al., 219 

2009). FhPrx is produced throughout the lifecycle of F. hepatica, with expression levels during the 220 

parasite’s development being positively correlated with exposure to host generated ROS. For 221 

example, the highest level of FhPrx protein expression occurs during the infective stage of the 222 

parasite’s life cycle as it traverses the intestine of the host (Robinson et al., 2009). Tissue invasion 223 

and penetration is a vulnerable time in the parasite’s lifecycle during which the parasite must 224 

circumvent vigorous host immune responses that are mounted in response to the tissue damage 225 

incurred.  226 

The function of FhPrx is not limited to antioxidant effects, as we have shown experimentally 227 

that this molecule skews the phenotype of macrophages towards a regulatory/M2 phenotype. 228 

Intraperitoneal delivery of a functional recombinant FhPrx to BALB/c mice (3 x 5 µg injections on 229 

alternate days) induced the activation of regulatory/M2 macrophages, as verified by the expression 230 

of the markers, Ym1 and Arg1 (Donnelly et al., 2005). A similar result was observed when FhPrx 231 

was administered to IL-4- or IL-13-deficient mice, suggesting that FhPrx modulated the 232 

macrophage phenotype independently of these Th2-signalling cytokines (Donnelly et al., 2008). 233 

Recombinant FhPrx induced the expression of Ym1 by peritoneal macrophages in vitro, which 234 

validated that FhPrx directly interacted with, and modulated the phenotype of, macrophage 235 

populations. This immune modulatory effect was not dependent upon the antioxidant activity of 236 

FhPrx since an inactive recombinant variant of FhPrx also induced the expression of Ym1 and Arg1 237 

in macrophages, both in vivo and in vitro (Donnelly et al., 2008).  238 

Collectively, this data suggests that FhPrx-mediated activation of macrophages likely 239 

involves direct interaction of a conserved FhPrx structural motif with a receptor that is yet to be 240 



  

identified. A recent report showed that a malarial Prx (Furuta et al., 2008) and extracellular 241 

mammalian Prx molecules, originating from damaged tissues, interact with toll-like receptor (TLR) 242 

4 (Riddell et al., 2010). Furthermore, it was reported that the binding of mammalian Prx was 243 

dependent upon a conserved region of the protein (located between amino acid residues 70 and 90) 244 

(Shichita et al., 2012). Therefore, it is likely possible to design peptide derivatives of FhPrx that 245 

exert potent immune-modulatory effects. 246 

A deviation towards M2 macrophage polarisation modulates disease progression in auto-247 

inflammatory diseases. For example, the adoptive transfer of M2 macrophages into pre-diabetic 248 

NOD mice, in which the initiation and perpetuation phases of auto-reactive T cell responses have 249 

occurred, significantly reduced the incidence of T1D (Parsa et al., 2012). Furthermore, in a model 250 

of human MS (rodent EAE), the administration of M2 macrophages to rats, after the induction of 251 

clinical symptoms, suppressed the progression of disease by preventing relapse of paralysis (Mikita 252 

et al., 2011). While the mechanisms of protection afforded by the regulatory/M2 macrophage 253 

populations in these studies were not fully elucidated, we have shown that FhPrx-induced 254 

regulatory/M2 macrophages promote Th2 cell differentiation and suppress Th1 cell development in 255 

vitro (Donnelly et al., 2008). Furthermore, the adoptive transfer of FhPrx-activated M2 256 

macrophages to naive murine recipients results in the polarisation of T cells towards a Th2 257 

phenotype in response to stimulation with anti-CD3 (S. Donnelly, unpublished data). Collectively, 258 

these observations illustrate that the generation of regulatory/M2 macrophage populations is both 259 

necessary and sufficient to suppress pathogenic Th1 immune responses and suggest that the 260 

delivery of FhPrx, or perhaps the adoptive transfer of FhPrx-treated macrophages, has the potential 261 

to deviate the Th1/Th17 immune responses that precipitate auto-inflammatory disease.  262 

  263 

5.2. Cathelicidin-like helminth defence molecule 264 

Cathelicidin peptides represent an evolutionarily conserved component of innate immunity 265 

(Boman, 1995). For many years it was believed that these molecules acted solely as antimicrobial 266 



  

peptides, however studies have revealed that the cathelicidin peptides interact with host cells to 267 

induce a multitude of effects not directly related to microbial killing (Scott and Hancock, 2000; 268 

Yang et al., 2001a, 2001b, 2002). New functions attributed to these peptides include the modulation 269 

of physiological processes, such as the activation of wound healing, angiogenesis and cartilage 270 

remodelling (Frasca et al., 2012). Therefore, the cathelicidin peptides represent potent effector 271 

molecules, not only in the generation of innate defences against bacteria, but also in the regulation 272 

of immune cell activation and migration and, accordingly, play a putative role in the pathogenesis 273 

of auto-inflammatory disease.  274 

Due to their overall lack of primary sequence homology, cathelicidins are broadly classified 275 

according to their secondary structure, namely a linear amphipathic α-helical peptide (Hazlett and 276 

Wu, 2010). Using this classification, we noted that the FhHDM-1, the 8 kDa protein secreted by F. 277 

hepatica, could be classified as a cathelicidin, as circular dichroism spectroscopy studies indicated 278 

that both native and recombinant FhHDM-1 have a high propensity to adopt an α-helical structure, 279 

in both the presence and absence of helix-stabilising agents, and under both neutral and acidic pH 280 

conditions (Robinson et al., 2011).  281 

The most widely studied cathelicidin is the human peptide, LL-37. This peptide is secreted 282 

as an inactive precursor protein, known as CAP18, which undergoes cleavage by endogenous 283 

proteases to release the bioactive 37-residue peptide, LL-37 (Agerberth et al., 1995; Gudmundsson 284 

et al., 1996). Residues 13–34 of LL-37 form an amphipathic helix that anchors the peptide to 285 

phospholipid membranes, via interaction with its hydrophobic face (Agerberth et al., 1995; Porcelli 286 

et al., 2008), and this confers antimicrobial activity (Giuliani et al., 2010). In addition, the 287 

amphipathic helix of LL-37 facilitates binding to bacterial endotoxin, thereby blocking its 288 

interaction with TLR4 and preventing the induction of pro-inflammatory immune responses 289 

(Nagaoka et al., 2001). Similarly, following secretion, FhHDM-1 can be proteolytically cleaved by 290 

parasite cathepsin L protease to release a C-terminal peptide fragment (Robinson et al., 2011). This 291 

34-residue peptide (FhHDM-1 p2) contains a 21-residue amphipathic helix, which structurally 292 



  

resembles the bioactive LL-37 peptide. Furthermore and analogous to the actions of LL-37, 293 

FhHDM-1 p2 binds Escherichia coli endotoxin in a concentration-dependent manner to prevent the 294 

classical/M1 activation of macrophages (Robinson et al., 2011). 295 

Examination of gene expression profiles in newly excysted juvenile worms, migratory 296 

immature worms and mature adult parasites revealed that FhHDM-1 was constitutively expressed 297 

during all three life-cycle stages of F. hepatica (Robinson et al., 2011). The migration of parasites 298 

across the intestinal wall disrupts the epithelial barrier, and consequently facilitates the movement 299 

of luminal antigens (bacteria and their toxins) into the circulation (McDermott et al., 2003; Farid et 300 

al., 2008). Despite this translocation of enteric microbes, fatal septicaemia, in the presence of 301 

helminth infection, is not a common occurrence (Onguru et al., 2011). We proposed that the active 302 

secretion of FhHDM-1 by the parasite throughout its existence in the mammalian host ensures that 303 

the presence of potentially lethal bacterial lipopolysaccharide (LPS), from either intestinal flora or 304 

microbial co-infections, is neutralised, such that LPS-mediated activation of macrophages is 305 

avoided. Consequently, excessive inflammatory responses, that would precipitate septic shock, are 306 

avoided and the survival of the host, and therefore the parasite, are ensured. 307 

The amphipathic helix is a structural motif that commonly mediates binding to cell 308 

membrane surfaces (Cornell et al., 2006). Indeed, LL-37 has been shown to interact with lipid rafts 309 

on the cell surface of CHO-K1 cells (Sandgren et al., 2004). Our recent studies showed that 310 

FhHDM-1 binds to macrophage plasma membrane lipid rafts, via selective interaction with 311 

phospholipids and/or cholesterol, before being endocytosed and localising to endolysosomal 312 

structures (Robinson et al., 2012). Active lysosomal cathepsin L, but not cathepsin S, processed 313 

FhHDM-1 releasing a C-terminal peptide containing the conserved amphipathic helix. This peptide 314 

inhibited the activity of vacuolar ATPase, thus preventing the acidification of endolysosomes. The 315 

resultant alkaline environment impeded the functional activity of lysosomal proteases, which 316 

optimally operate at low pH, and therefore prevented the processing of endocytosed proteins 317 

(Robinson et al., 2012). Accordingly, macrophages exposed to FhHDM-1 are unable to produce 318 



  

antigenic peptides for loading onto major histocompatibility complex (MHC)II molecules for 319 

presentation to T cells. By this mechanism, FhHDM-1 effectively modulates macrophage function 320 

to prevent antigen-specific adaptive immune responses. Elucidation of this mechanism of immune-321 

modulation opens up significant avenues for the prevention of the priming events (i.e. MHC 322 

presentation of (auto)antigen) that would generate cytotoxic T cells to break tolerance and 323 

precipitate auto-inflammatory disease. FhHDM-1 could also be of therapeutic benefit in situations 324 

in which the inhibition of vATPase or lysosomal acidification would halt the progress of 325 

pathologies such as cancer and osteoarthritis (Fais et al., 2007; Kartner et al., 2010).  326 

 327 

5.3. Cathepsin L cysteine proteases (FhCL) 328 

Cathepsin L cysteine peptidases are major components of the FhES during all life cycle 329 

stages of F. hepatica in the mammalian host (Tort et al., 1999). These enzymes are stored as 330 

inactive zymogens (pro-enzymes) within secretory vesicles of the gastrodermal epithelial cells and 331 

are subsequently secreted into the lumen of the parasite gut in large quantities, before being released 332 

externally into the host tissues (Dalton and Heffernan, 1989; Collins et al., 2004). The secreted 333 

cysteine peptidases degrade host interstitial matrix proteins such as collagen, laminin and 334 

fibronectin, and primarily function to acquire nutrients for the parasite by degrading host proteins 335 

into peptides (Berasain et al., 1997; Robinson et al., 2008). Given that these biological activities are 336 

central to survival of the parasite, it is not surprising that enzyme activity, ascribable to the papain 337 

family of cysteine proteases, has been identified as a major component of the secretions of most 338 

helminth parasites of humans, livestock and companion animals (Tort et al., 1999; Sajiid and 339 

McKerrow, 2002). 340 

Protease activity is also a central biochemical property of many allergenic molecules such as 341 

the cysteine protease of the house dust mite, Der p1, the food allergens, actinidin, bromelain and 342 

papain, and the major grass-derived allergens (Chua et al., 1998; Grobe et al., 1999; Mills et al., 343 

2004). The induction of Th2 and IgE responses associated with allergic responses has been shown 344 



  

to be dependent upon the enzymatic activity of these molecules (Matsumura et al., 2012). 345 

Accordingly, innate immune cells have evolved to respond directly to protease activity (Cocks et 346 

al., 2000; Gottar et al., 2006). For example, activation of the protease-activated receptor (PAR)-2 on 347 

airway epithelial cells, induced by environmental fungi proteases, results in the production and 348 

secretion of thymic stromal lymphopoietin (TSLP), which subsequently activates dendritic cells 349 

(DCs) to mediate Th2 immune responses (Kouzaki et al., 2009). Papain stimulates the production of 350 

ROS in DCs and epithelial cells, which orchestrate the development of Th2 immune responses by 351 

inducing the formation of oxidized lipids that trigger TLR4-TIR-domain-containing adapter-352 

inducing interferon-β (TRIF)-mediated induction of TSLP by epithelial cells (Tang et al., 2010). 353 

Despite the structural and biochemical similarities between the helminth proteases, and other 354 

members of the papain-like cysteine peptidase clan, delivery of native FhCL1, or a functional 355 

recombinant FhCL1 protein, to mice does not induce an antigen-specific Th2 response (O’Neill et 356 

al., 2001). Instead, mice receiving either of these proteases exhibit a reduced ability to mount Th1 357 

or Th17 immune responses, following bacterial infection or exposure to a whole cell bacterial 358 

vaccine (Brady et al., 1999; our unpublished data). Our data indicate that, unlike the major papain-359 

like allergens, the role of FhCL1 is not to activate Th2 immune responses, but rather to prevent the 360 

differentiation of host protective pro-inflammatory Th1 and Th17 cells. 361 

In fact, FhCL1 modulates the function of both macrophages and DCs, and thus influences 362 

the nature of developing antigen-specific adaptive immune responses. The secretion of IL-12 and 363 

IL-23 from DCs is required to promote the differentiation of Th1 and Th17 cells, respectively. 364 

However, FhCL1-treated DCs are unable to secrete IL-23 and are therefore compromised in their 365 

ability to induce antigen-specific Th17 cells (Dowling et al., 2010). Similar to the effect on DCs, 366 

FhCL1 prevented the secretion of Th1-associated cytokines from macrophages in response to TLR 367 

ligands, via degradation of endosomal TLR-3 and thus inactivation of MyD88-independent TRIF-368 

dependent TLR signalling pathway (Donnelly et al., 2010). The modulation of innate immune 369 

responses by FhCL1 in vivo was sufficient to protect mice from the lethal effects of bacterial 370 



  

endotoxin by preventing the release of the inflammatory mediators, nitric oxide, IL-6, TNF and IL-371 

12, from macrophages (Donnelly et al., 2010; Fig. 2). By inhibiting these activation pathways in 372 

innate immune cells, FhCL1 prevented the generation of host protective immune responses. An 373 

additional consequence of TLR-3 cleavage by FhCL1 might be the promotion of Th2 immune 374 

responses induced by other parasite molecules (for example FhPrx or FhHDM-1) or by components 375 

of host tissue. For example, TLR3-deficient mice have a propensity to develop IL-4 dominant Th2 376 

immune responses accompanied by an increase in numbers of regulatory/M2 macrophages, in 377 

response to both viral and parasitic infection (Joshi et al., 2008; Abston et al., 2012).  378 

Collectively, our data to date suggest that the mechanism of action of FhCL1 is to re-379 

establish tissue homeostasis by dampening the production of pro-inflammatory mediators and 380 

facilitating the development of Th2 immune responses, which is strongly associated with wound 381 

healing and tissue repair. In the context of auto-inflammatory diseases this scenario is of significant 382 

benefit as such disorders are generally mediated by pro-inflammatory Th1/Th17 immune responses.  383 

 384 

6. Translation of F. hepatica-derived immune therapies from bench to bedside 385 

After identification of an immune modulating helminth molecule, the next step most 386 

commonly taken by academic researchers is to test it prophylactically and/or therapeutically in a 387 

range of murine models of disease (reviewed in Harnett and Harnett, 2010). However, with an 388 

interest in reducing the rate of attrition at the earliest possible stage of development, we have found 389 

that the pharmaceutical industry is equally, if not more, interested in testing potential helminth-390 

derived therapeutic proteins on human cells. This type of analysis raises the preclinical value of a 391 

molecule by demonstrating the translatability of the immune-modulatory effect from murine to 392 

human cells and exposing potential adverse side effects (such as platelet aggregation and 393 

haemolysis), and issues of stability in physiological conditions (for example half-life in plasma). 394 

Thus we are now investigating the in vitro pharmacology of our F. hepatica-derived immune-395 

modulatory molecules using primary human cells, as well as testing those in various available 396 



  

animal models of disease. In addition, we are assessing the immunogenicity and global immune 397 

suppressive effects of helminth-derived molecules to further de-risk the development of these 398 

molecules for clinical use. 399 

 400 
6.1. Avoiding immunogenicity 401 

Quantifying antibody titres in response to exposure to putative immune-modulatory 402 

molecules is now a regulatory requirement for the development of therapeutic proteins, and post-403 

marketing surveillance of immunogenicity is an industry requirement (Stas and Lasters, 2009). 404 

Large molecules carry increased immunogenic potential and therefore carry a higher risk of 405 

inducing unwanted immune responses during treatment. However, some highly immunogenic drugs 406 

have proved to be commercially successful, including Humira and the existing versions of Factor 407 

VIII (West et al., 2008; Pisal et al., 2012). In cases such as these, where a potential therapeutic drug 408 

has a unique mode of action, or is more potent than existing therapies, it will likely progress to 409 

further development. Considering the absence of effective treatments for chronic auto-inflammatory 410 

disease that do not carry adverse side-effects (such as toxicity or global immune suppression), 411 

helminth-derived therapeutic proteins offer an attractive therapeutic avenue for novel drug 412 

development. 413 

Pre-clinical immunogenicity studies can be facilitated using in vitro and in silico testing. In 414 

silico molecular modelling can predict the binding potential of peptides to different MHC class II 415 

molecules or T cell receptors (TcRs), allowing the determination of the contribution of individual 416 

amino acids to peptide binding, which will inform the design of ‘deimmunised’ sequence variants in 417 

which peptide epitopes are mutated to disrupt MHC and/or TcR binding. Combining this 418 

technology with in vitro analysis of CD4
+
 T cell activation will allow the prediction of clinical 419 

potential of specific helminth-derived molecules (De Groot et al., 2008). 420 

Of the immune-modulatory molecules derived from F. hepatica, FhCL1 may not represent a 421 

favourable candidate because it is a highly immunogenic 25 kDa protein (O’Neill et al., 1998), 422 

which cannot be reduced to a smaller moiety since its immune-modulatory effect on the function of 423 



  

innate cells depends upon its proteolytic activity. By contrast, our studies indicate that employing 424 

only a portion of the protein that interacts with innate cell receptors can reduce the immunogenicity 425 

of FhPrx. FhHDM-1 is a small molecule (8 kDa) and active peptides derived from FhHDM-1 are 426 

only 29-37 residues in length and hence it is inherently low-risk according to its immunogenicity 427 

potential. We have found that the administration of FhHDM-1 to mice (on alternate days for a total 428 

of six i.p. injections) does not induce memory T cell responses or FhHDM-1-specific antibodies (S. 429 

Donnelly, unpublished data). 430 

  431 

6.2. Avoiding global immune suppression 432 

Infections with helminth parasites can induce systemic modulation of host immune 433 

responses. Fasciola hepatica compromises Th1 responses in the host and interferes with immunity 434 

to concurrent infections with pathogenic bacteria and vaccination (Aitken et al., 1979; Brady et al., 435 

1999; O’Neill et al., 2001; Claridge et al., 2012). The suppression of host immune responses during 436 

helminth infection has been shown to depend upon the continuing presence of the parasites in vivo, 437 

with fully functional immune responses being restored following anti-helminthic chemotherapy and 438 

subsequent expulsion of the parasite (Sartono et al., 1995; Grogan et al., 1996). This would suggest 439 

that any immune suppression induced by treatment with a helminth-derived protein may only be for 440 

the duration of the treatment regime, however this may be sufficient to redress the balance of the 441 

patient’s immune system, thus preventing auto-inflammatory responses in the long term. In support 442 

of this premise, we found that protection of autoimmune diabetes in NOD mice by administration of 443 

FhES was maintained up to 30 weeks of age even though the final treatment was delivered when 444 

mice were only 6 weeks old. Although peritoneal macrophages isolated from mice during the FhES 445 

treatment regime responded poorly to simulation with IFN-γ (i.e. reduced expression of iNOS) 446 

compared with non-treated mice, by 10 weeks of age their reactivity was fully restored to levels 447 

observed in control animals (S. Donnelly, unpublished data).  448 



  

 Even if, as our data suggests, a patient’s immune system is compromised during the 449 

treatment regime, this strategy offers a better alternative to the currently available immune 450 

therapies, which are life-long prescriptions and are associated with global immune suppression, 451 

debilitating side effects and toxicity. However, the extent to which a parasite-derived molecule 452 

impacts upon the development of an effective immune response is yet to be fully elucidated. Recent 453 

studies indicate that even in the presence of a helminth infection, a significant degree of immune 454 

functionality remains. For example, macrophages isolated from mice harbouring a helminth 455 

infection retained some antimicrobial ability, despite lacking IL-12 production (Mylonas et al., 456 

2009). In addition, helminth infection has been shown not to effect the establishment of bacterial-457 

specific responses induced by immunisation with a DNA vaccine (Frantz et al., 2012), or to inhibit 458 

the development of Th1 responses induced by a concurrent infection with Toxoplasma gondii 459 

(Miller et al., 2009). Therefore, the immune-modulatory activity of any F. hepatica-derived 460 

therapeutic molecule will need to be assessed for its capacity to generate systemic suppressive 461 

effects on protective immune responses, vaccination and/or anti-tumour immunity. 462 

       463 

7. Concluding remarks 464 

There are over 100 different auto-inflammatory diseases affecting hundreds of millions of 465 

people worldwide, however few effective treatments have been developed. The majority of existing, 466 

and potential, therapies treat disease symptoms or block the inflammation triggered by the immune 467 

response, rather than prevent disease. Many such therapies fail to exhibit immunological selectivity 468 

and thus cause global immune suppression that leads to unwanted side effects such as susceptibility 469 

to infection, bone loss, neurodegenerative impacts and epithelial thinning. Since helminth parasites 470 

have evolved to produce molecules that selectively modulate immunological responses to promote 471 

their own survival, while concomitantly reducing excessive tissue damage, helminth-derived 472 

molecules offer a first in class mechanistic approach to address the underlying cause of auto-473 

inflammatory disease.  474 



  

Characterising the predominant proteins within the secretome of F. hepatica has allowed the 475 

identification of the specific modulatory pathways that are targeted by the parasite (Fig. 3), thereby 476 

revealing the strong therapeutic potential of these molecules. While individual proteins may not be 477 

sufficient to protect against disease, the identification of these immune-modulating proteins secreted 478 

by F. hepatica ideally positions us to create a defined recombinant (or synthetic) version of FhES. 479 

However, unlike the native FhES, the recombinant proteins can be modified during synthesis to 480 

enhance stability and to reduce immunogenicity and toxicity. Further, an optimal combination of 481 

proteins can be selected, based on their specific modulatory function; therefore a therapeutic 482 

cocktail can be custom-made for specific clinical requirements.   483 
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Figure legends 768 

 769 

Fig. 1. Treatment of NOD mice with the excretory/secretory products of Fasciola hepatica (FhES) 770 

prevents the development of autoimmune diabetes. Four week old female NOD mice were injected 771 

i.p. with FhES (10 µg in 100 µl of sterile PBS) or vehicle (PBS), on alternate days, for a total of six 772 

injections. The data shown are the percentages of mice that were hyperglycaemic (as defined by two 773 

consecutive blood glucose concentrations  14 mmol/L) or normoglycaemic, at the experimental 774 

end point (22-30 weeks of age) from three independent experiments.   775 

 776 

Fig. 2. Proteomics analysis of Fasciola hepatica secreted immune-modulatory fraction PI. (A) 777 

Excretory/Secretory products of F. hepatica (FhES) were separated by gel filtration 778 

chromatography and proteins in the resulting immune-modulatory fraction (PI) were 779 

electrophoresed on a 4-12 % reducing gel. The most prominent protein bands were digested with 780 

trypsin and identified by mass spectrometry (B). 
a
Matched to F. hepatica; 

b
identity confirmed as F. 781 

hepatica helminth defence molecule (FhHDM) by N-terminal sequencing. In addition to its 782 

monomeric form (band 3), a comparatively small amount of peroxiredoxin was present in dimeric 783 

(band 2) and other oligomeric forms (band 1). 784 

 785 

Fig. 3. Summary of putative mechanisms through which Fasciola hepatica may modulate auto-786 

inflammatory disease. (A) Antigen presenting cells (APCs) play an important role in the initiation 787 

and perpetuation of auto-inflammatory disease. Activated dendritic cells (DCs) prime auto-antigen 788 

specific T cells after migration to draining lymph nodes. This activation process is promoted by the 789 

inflammatory cytokines, IL-12 and IL-23, secreted by the classical/M1 phenotype of macrophage. 790 

APCs also play a significant role in the progression of disease, by facilitating the continued 791 

activation and expansion of auto-reactive lymphocytes at the site of disease (for example the CNS 792 

in multiple sclerosis (MS) and the pancreatic islet cells in type 1 diabetes (T1D)) and secreting 793 



  

destructive pro-inflammatory mediators, such as TNF, IL-1β and nitric oxide (not shown). (B) 794 

Fasciola secreted proteins influence the development of antigen-specific responses through contact 795 

with APCs. Interaction of macrophages with F. hepatica peroxiredoxin (FhPrx) converts 796 

macrophages to a M2/regulatory phenotype, which secrete the regulatory cytokines, IL-10 and 797 

TGFβ (Donnelly et al., 2005), and promote the development of Th2 cells. Fasciola hepatica 798 

cathepsin L1 (FhCL1) inhibits the ability of both macrophages and DCs to secrete the pro-799 

inflammatory cytokines, IL-12 and IL-23, which are necessary to promote the development of 800 

antigen-specific Th1 and Th17 immune responses, respectively. Fasciola hepatica helminth defence 801 

molecule (FhHDM-1) is internalised and cleaved in the lysosomes of APCs to release a peptide, 802 

which reduces the capacity of APCs to process and present antigen, thus reducing the proliferation 803 

of antigen-specific T cell responses. TcR, T cell receptor; Treg, regulatory T cell. 804 

 805 
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Band 1 Peroxiredoxin O76944 5 17 98 

Prolylcarboxypeptidasea Fhep43g08.q1k 5 19 99 

Sphingomyelin 

phosphodiesterasea 

Fhep53a06.q1k 6 15 92 

Band 2 Peroxiredoxin O76944 5 12 99 

Band 3 Peroxiredoxin O76944 13 15 99 

GST sigma-class DQ974116 6 20 97 

Band 4 Helminth Defence Molecule 
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Fhep21e05.q1k 3 10 68 
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Highlights 

 Within hours of infection, Fasciola hepatica suppresses host protective immune 

responses. 

 Administration of Fasciola excretory/secretory products mimics the immune 

modulatory properties of live infection. 

 Fasciola excretory/secretory products prevent the development of type 1 diabetes in 

mice. 

 Cathepsin L1 secreted by F. hepatica prevents the activation of pro-inflammatory 

macrophages.  

 Fasciola hepatica peroxiredoxin converts macrophages to an M2 phenotype. 

 Fasciola helminth defence molecule-1 inhibits the processing and presentation of 

antigen by macrophages. 
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