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Abstract: An overview of research on the development of the hybrid test method is 

presented. The maturity of the hybrid test method is mapped in order to provide context to 

individual research in the overall development of the test method. In the pseudo dynamic 

(PsD) test method, the equations of motion are solved using a time stepping numerical 

integration technique with the inertia and damping being numerically modelled whilst 

restoring force is physically measured over an extended timescale. Developments in 

continuous PsD testing led to the real-time hybrid test method and geographically distributed 

hybrid tests. A key aspect to the efficiency of hybrid testing is the substructuring technique 

where the critical structural subassemblies that are fundamental to the overall response of the 

structure are physically tested whilst the remainder of the structure whose response can be 

more easily predicted is numerically modelled. Much of the early research focused on 

developing the accuracy and efficiency of the test method, whereas more recently the method 

has matured to a level where the test method is applied purely as a dynamic testing technique. 

Developments in numerical integration methods, substructuring, experimental error 

reduction, delay compensation and speed of testing have led to a test method now in use as 

full-scale real-time dynamic testing method that is reliable, accurate, efficient and cost 

effective.  

Keywords: seismic, pseudo dynamic testing, real-time hybrid testing, numerical time 

integration, geographically distributed testing 

 

1. INTRODUCTION 
This paper details the development of the hybrid test method. The term hybrid test is used 

here to describe the family of coupled physical-computational simulations of seismic 

response, in which a part of the structural behaviour is tested physically while other terms are 
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modelled numerically. This definition includes pseudo-dynamic (PsD) testing (with or 

without substructuring) and real-time hybrid tests (RTHT). This family of test methods was 

developed to answer the need for realistic seismic testing of engineering structures without 

the costs and scaling issues associated with shake table testing of complete structural models. 

Starting from PsD testing in the 1970s, hybrid tests have developed in diverse ways to meet 

different testing needs. PsD testing has become a well-established and valuable technique that 

can be applied to complex structural models. RTHT has to date been applied to relatively 

small and simple test specimens, but is now approaching a level of maturity where it can be 

more widely used with confidence. 

 As a result of years of development, the hybrid test method is now being applied 

purely as a reliable dynamic test method. The main motivations now for performing hybrid 

tests, similar to those of other seismic dynamic testing techniques, are: (i) real-time testing of 

the rate dependent behaviour of dampers and base isolators; (ii) increased interest in 

modelling building performance up to collapse, evaluating the response to the Maximum 

Considered Earthquake rather than just the Design Basis Earthquake; (iii) understanding 

uncertainty around structural performance at extreme deformation levels; and (iv) increased 

interest in non-structural elements under lower level earthquakes. 

 This paper is structured as follows; Section 2 will discuss the development of 

founding hybrid test methods to its current form as a RTHT, including a brief discussion of 

the motivation for such testing. Section 3 will detail the development of time integration 

techniques that improve stability and efficiency of the hybrid test method, particularly for a 

RTHT. In Section 4, stability and accuracy of the hybrid test method is discussed in terms of 

actuator delay compensation techniques. The developments in geographically distributed 

hybrid testing are detailed in Section 5. The hybrid test method has now reached a level of 

maturity that it has become a standard method of dynamic testing and in Section 6 

applications of the PsD and RTHT methods are discussed. 

 
2. BACKGROUND OF HYBRID TESTING 
The dynamic response of structures to extreme events such as earthquake is often difficult to 

model numerically with complete accuracy, particularly at extreme deformations. The 

difficulties often arise in structures that may undergo high levels of material nonlinearity, 

including cyclic degradation and low-cycle fatigue. Some structural components exhibit rate 

dependency in their response, and many seismic mitigation devices (e.g. dampers, inerters, 

visco-elastic materials) are based on rate dependent properties. The main types of structural 
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laboratory testing under dynamic loads reviewed by Williams & Blakeborough, [1] are: (i) 

quasi-static testing (ii) shake table testing (iii) PsD testing and more recently, (iv) RTHT. 

Another specific test method worth discussing is the effective force test (EFT) method; this is 

conceptually different to the PsD test method, but similarly to the PsD method can be applied 

to any structural system that can be idealised with lumped masses.  

 Quasi-static testing, such as the static cyclic test method, is typically used to assess the 

onset and development of non-linearity in structural elements under reversed cyclic loads. 

This has provided the basis for codes and guidelines on element design. However, there 

remains a need to understand the behaviour of complex structures comprising many elements 

where, for example, the exact sequence of element yield can significantly affect the overall 

seismic response. A need therefore remains for methods of dynamically testing or simulating 

whole-structure seismic response. 

 Shake table testing employs a rigid ‘table’ that supports the structure being tested and 

is dynamically excited by single or multiple actuators. In principle this can offer an accurate 

representation of real-world conditions, however it is hampered by major drawbacks. Testing 

at large scale requires very expensive, high-capacity actuation systems, resulting in the 

widespread use of scale models. However, the scaling of non-linear behaviour is fraught with 

uncertainty. In addition, accurate table control can be difficult to achieve due to interactions 

between the table and the specimen mounted on it, particularly when the latter responds non-

linearly. To negate the need for scaling and reduce the cost of dynamic test equipment, the 

PsD test method was developed; this allows slow, large-scale modelling of the stiffness 

elements of a structure, with dynamic terms computed numerically. If the structural response 

includes unpredictable rate dependent behaviour, for example due to a damper, then it may 

not be possible to compute all the dynamic terms reliably. In this case the test may need to be 

run at the correct loading rate in order to provide a realistic simulation; the RTHT and EFT 

methods were developed to meet this need. 

  The PsD or RTHT methods can be used to understand the performance of an entire 

structure. Alternatively, substructuring can be used to split the structure into parts whose 

behaviour can be modelled numerically with confidence, and those which really need to be 

tested physically. This approach enables a test engineer to understand the interaction between 

a critical structural element or component and the remainder of the structure. The genesis of 

different forms of hybrid testing can be seen in Figure 1. 
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Figure 1. History tree of the types of hybrid testing and their first implementations 

(after [2]) 

2.1 Conventional Pseudo Dynamic Test Method 

The concept of the PsD test was first proposed by Hakuno et al., [3] in which an actuator 

excitation of a single-degree-of-freedom (SDOF) system was combined with the solution of 

the equation of motion on an analogue computer. The PsD test method was first formally 

implemented by Takanashi et al., [4]. The method was seen a necessity to form more accurate 

analytical models to capture stiffness and strength deterioration during earthquake loading. 

The PsD method therefore analysed the nonlinear response of a structure during an 

earthquake, but with the stiffness nonlinearity modelled by a physical test specimen rather 

than an analytical model. The structural stiffness of the test member input into the computer 

model was obtained from the physical experiment of the structure. The predicted 

deformations computed by a piecewise linear method were then sent back to the actuator to 

give the next time step target displacement for the actuator to apply to the test system. This 

procedure was repeated until the end of the test.  

 A PsD test offers a powerful way of verifying the performance of seismic-resisting 

structural systems, and can provide valuable data for the development and calibration of non-

linear numerical models of structures and elements (see Section 6.1 for examples). It enables 

realistic seismic simulation without the need for dynamically rated test equipment, and the 

slow rate of testing allows for very complete monitoring and inspection of the state of the 

structure at every stage of the earthquake. 
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Figure 2. Schematic of the pseudo-dynamic test method [2] 

In the PsD test method, it is conventionally assumed that the structure can be represented by 

lumped masses. At the location of the lumped masses, actuators apply the dynamic loading to 

the structure in the form of target displacements whilst inertia and damping are numerically 

modelled. The equation of motion in Equation 1 is solved over a series of time steps Δt, i.e. at 

the (i+1)th step of: 

  (1) 

in which M is the mass matrix, is the nodal acceleration vector, C is the damping matrix, 

is the nodal velocity vector, is the restoring force vector and is the external 

excitation force applied to the system. For a linear elastic structure  in which K 

is the elastic stiffness matrix and  is the nodal displacement vector; for a non-linear 

system with hysteresis, the elements of K will change during the loading event and the 

relationship between R and x becomes more complex, depending on the displacement history 

as well as the current state. Figure 2 indicates how the displacement  is calculated by the 

numerical component and sent to the experimental test structure. The displacement command 

for the current time step is applied to the structure by the actuators. The measured restoring 

force,  is then fed back to the numerical model where the displacement for the next 

target displacement command is calculated. Effectively, the PsD test method is a 

computational dynamic analysis in which the stiffness term is measured physically [5]. 

In PsD testing, the slow loading rate of the test structure is required so as not to induce 

damping or inertia responses, because these have already been accounted for numerically  

[6]. In early investigations into the test method, issues of stability and accuracy of the test 
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method were heavily researched ([7], [8] & [9]). The assumed structural idealisation and 

numerical representation of the damping along with numerical integration errors raised 

concerns about the accuracy and stability of the test method (these are detailed in Sections 3 

& 4).  

 

 
Figure 3. (a) Conventional pseudo dynamic method and; (b) continuous pseudo 

dynamic method (Magonette, [10]) 

2.2 Continuous Pseudo Dynamic Test Method 

The PsD method is undertaken using an expanded timescale, allowing time required for 

numerical integration of the equations of motion and the implementation of the resulting 

command displacements by the actuators [11]. It is important that the response of the material 

being tested be rate independent as time dependent behaviour is not captured [10]. The time 

integration scheme employed needs to be efficient, therefore explicit integration procedures 

were typically used in early research. Some of the first implementations of PsD testing 

required a pause phase to allow for the computation of the numerical integration step to be 

completed, as can be seen in Figure 3(a). During the pause stage of the integration step, there 

(a) 

(b) 
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is a certain amount of load relaxation that also leads to inaccuracies. The experiment should 

preferably be performed in a non-discrete manner to allow smooth loading in order to fully 

capture the response of the structure.  

Early efforts at continuous hybrid testing met with limited success due to issues of 

overshoot in the algorithms used ([9] & [12]). Figure 3(b) shows how the continuous PsD 

method developed by Magonette, [10] differs from the conventional PsD method. The control 

algorithm used by the servo-controller allowed the actuator to follow the target displacement 

accurately within small time steps preventing the need for the hold period. In addition to this 

approach, Nakashima et al., [13] and more recently Bonelli et al., [14], adopted an approach 

of parallel partitioned time integration in order to separately solve the equation of motion for 

the physically tested part of the structure and the numerical part of the structure (physical and 

numerical substructuring is described in Section 2.3). A fine time step is used on a small 

number of DOFs the physically tested part of the structure on one computer whilst a coarser 

time step is used on a larger number of DOFs [14]. The approach allows smooth continuous 

PsD testing. 

2.3 Substructured Pseudo Dynamic Test Method 

The important concept of substructuring in PsD testing was first introduced by Dermitzakis 

and Mahin, [15] and subsequently implemented by others; [16], [17], [18], [19] & [20]. The 

concept of substructuring allows the critical part of the structure (typically with a highly 

nonlinear response) to be physically tested (physical substructure (PS)) and the rest of the 

structure to be simultaneously numerically modelled (numerical substructure (NS)). The 

force and displacement from the actuator(s) are fed back to the numerical model where they 

are used to solve the next time step command as can be seen in Equation 2. Substructuring 

prevents testing of large, heavy and costly structures. In practice, it is difficult to apply 

gravity loads physically in a substructured PsD test and very such few tests have been 

performed; this was, however, achieved by Obata and Goto [183]. If gravity loads are not 

physically applied to the substructure then the second-order P-Δ effects are taken into 

consideration numerically by geometric transformation. However, the buckling capacity of 

members in compression (e.g. columns) and the collapse load may be overestimated when 

gravity loads are not physically applied. In a substructured PsD test, the equation of motion 

can be written in discretised form as: 

  (2) 



8 

where  is the numerical restoring force vector for the numerical substructure DOFs, 

where, for a linear numerical substructure,  (KN is the numerical 

substructure stiffness matrix and  is the numerical substructure nodal displacement 

vector) and  is the restoring force vector for the physical substructure DOFs, which is 

likely to be a non-linear function of the experimental substructure nodal displacement vector 

. In the analysis, RN is now calculated numerically and RE is determined experimentally. 

At each step, Eq. (2) is solved for the displacements xN and those elements of xN that are at 

the interface between the physical and numerical substructures are applied to the test 

specimen by actuators. The resulting interface forces RE are then fed back as part of the input 

to the next timestep.  

 When substructuring the system under test, great care needs to be taken to ensure that 

boundary conditions are realistically simulated. If boundary conditions applied to physical 

test specimens are not consistent with those used in the numerically modelled part, then 

misleading results may be obtained. In addition, it is important that the boundary conditions 

at the interface between the physical and numerical substructure are represented as 

realistically as possible by the actuators applying the interface forces. 

Developments in multi-axis substructure testing have also been made using multi-

axial actuators with uni-directional rotation or three-dimensional rotational hinges ([21], [22], 

[23], [24], [25], [26], [27] & [28]). The multi-directional displacements of the test structure 

are taken into account by co-ordinate transformation methods based on trigonometry. 

Possible sources of error in substructured tests are discussed in section 4.1. 

2.4 Real-time Hybrid Test Method 

Nakashima et al., [29] present the first system capable of performing a real-time (or fast) PsD 

test. In a RTHT, the numerical substructure accounts for the mass, damping and stiffness of 

the numerically modelled part, the damping and inertia response of the physical substructure 

are measured in the test along with the stiffness forces, and together these comprise the force 

feedback to the numerical model. For structures with components whose response has 

velocity dependent characteristics, the RTHT method is especially useful. In structural 

dynamics, the use of visco-elastic material or damping components, whose dynamic response 

is influenced by the applied velocity rather than just the inertia forces, is increasingly 

common. Section 6.2 presents examples of RTHTs on structures with velocity dependent 
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components such as dampers. In a substructured RTHT test, the equation of motion can be 

written in discretised form as: 

 
 (3) 

where MN is the numerical substructure mass matrix,  is the numerical substructure 

nodal acceleration vector, CN is the numerical substructure damping matrix,  is the 

numerical substructure nodal velocity vector and RN is the vector of numerically computed 

stiffness forces. The vector of experimental fed-back forces differs from in Eq. (2) 

because it includes the inertia and damping forces from the test specimen in addition to the 

stiffness forces. In a typical substructured RTHT of a seismic structural damping device the 

experimental mass tends to consist of just the mass of the device under test, together with any 

moving elements of the test rig. The interface forces measured from the experimental 

substructure are fed back into the numerical substructure and used to calculate the target 

displacement at the next time step for the entire structure. 

The challenge to overcome when a PsD test is run at a timescale close to or at real-

time is that the command for the next time step from the numerical model needs to be 

computed very quickly. Nakashima et al., [29] completed a RTHT on a viscous damper. 

Nakashima and Masaoka, [30] developed a method to allow uninterrupted command signals 

in which previous command displacements are used to extrapolate the command 

displacement to its next value one time step ahead of the current time. Early examples of 

RTHTs include; [30], [31] [32], [33], [34] & [35]. As noted by Bonnet, [5] these test 

arrangements were typically bespoke to the particular laboratory in which they were 

undertaken.  

2.4.1 Real-time Hybrid Shaking Table Testing 

Shake tables and actuators have been combined to perform RTHT (termed as a real-time 

hybrid shaking table test (RTHSTT)). Users of shake tables have seen this development as a 

positive one because, by physically testing only a part of a structure, a larger scale can be 

used; this can reduce the difficulties associated with using large scale factors in some shake 

table tests. RTHSTTs are most often undertaken on velocity dependent substructures or 

damping devices as the test records true dynamic behaviour. A commonly-cited target 

application is the use of tuned mass damper-type devices to reduce building response to 

extreme dynamic loads. These devices are generally most effective when positioned in the 
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top storey of a structure. Using RTHSTT, this storey including the device can be tested at 

large scale, with the lower storey responses modelled numerically and the shake table 

providing the interface floor displacements. 

 The RTHSTT method is slightly different to a RTHT because the shake table 

dynamics have to be compensated for. Many researchers have undertaken RTHSTTs such as; 

[36], [37], [38], [39], [40] & [41]. Iemura et al., [36] and Igarashi et al., [37] developed the 

first RTHSTT procedure to evaluate active and tuned mass damping devices, respectively. 

The damping devices formed the PS and the entire structure formed the NS. Igarashi et al., 

[37] identified delay in the shake table hardware as critical to ensure stability of the test 

system. The delay results in phase lag between the control signal and shake table response 

and is compensated for by digital filtering of the target displacement using a least squares 

approximation in the frequency domain.  

Horiuchi et al., [38] present a delay response algorithm for a RTHSTT that uses the 

absolute acceleration response at the boundary between the NS and PS rather than the relative 

displacement response typically used in previous RTHTs. Rather than calculating 

displacements, a linear acceleration method of time integration is required to calculate the 

shake table commands. Reinhorn et al., [42] describe a small scale RTHSTT using force 

controlled substructuring with a flexible element (spring) being introduced between the 

actuator and test specimen to account for force noise. Shao et al., [41] describe the RTHSTT 

of a one-third scale three-storey structure tested using the same force-based shake table 

testing platform as Reinhorn et al., [42]. Lee et al., [43] evaluated the vibration control effect 

of a tuned liquid damper (TLD) for a building structure using the RHSTT method. An inverse 

transfer function of the shaking table measured from the relative table acceleration to the 

reference signal was used for control and to cancel out the dynamic characteristics of the 

shake table [43].  

2.5 Effective Force Test Method 

Effective force testing (EFT) is a conceptually different method for undertaking dynamic 

tests ([44], [45] & [46]). The EFT method was developed in order to circumvent some of the 

issues associated with PsD testing. It had been previously noted by several authors ([6], [7] & 

[47]) that a PsD test with explicit time-varying forces imposed at each lumped mass to 

conduct real-time tests could be implemented without the need for computing and imposing 

required displacements [44]. In the EFT method, the forces applied to the test structure are 

the products of the lumped masses and their accelerations, and are therefore independent of 
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structural properties such as stiffness and damping. The EFT forces are known a priori for 

any given ground acceleration time history because the force is a calculation of mass 

multiplied by the acceleration. The benefit of the EFT method is that it removes the need for 

real-time computation of structural response. However, in order to achieve the correct 

dynamic response in a pure EFT test, the full structural mass needs to be modelled physically, 

which is often impractical. Therefore, without substructuring, its application is likely to be 

limited. 

As with RTHT, control in EFT requires high quality controllers and servo-valves [47] 

hence, it was not until technical developments improved that Dimig et al., [44] could conduct 

the first EFT. The force control algorithm developed by Dimig et al., [44] was tested on an 

SDOF spring-mass-damper system. Errors were observed when the actuator was unable to 

excite the SDOF structure at its natural frequency due to the light damping of the structure 

and the interaction between the structure causing velocity feedback issues [44]. Shield et al., 

[45] performed an EFT on the same SDOF system as Dimig et al., [44], however, velocity 

feedback correction was applied.  

Pan et al., [48] proposed a displacement-force mixed control method for EFT. A 

switching control method was used in which the actuator is controlled by force when the 

forces are large then controlled by displacement when the forces are small.  

Zhao et al., [46] demonstrated the feasibility of the EFT method by comparing the 

nonlinear response of a single-storey steel framed structure with rigid diaphragm using both 

shake table and EFT methods. A nonlinear velocity feedback compensation scheme based on 

that by Shield et al., [45] with improved hardware was shown to be effective. However, they 

noted that, because actuators are putting energy into the system, there is a risk of instability if 

the compensation algorithm is not sufficiently accurate. The presence of structural damping 

within the test specimen offers some margin of error against instability and it may be that 

stability could be assured by artificially increasing the damping in either the physical or 

numerical part. However, such changes need to be made with care as they will reduce the 

fidelity with which the test represents real structural behaviour, arguably negating the 

purpose of the test.  

 Sivaselvan et al., [49] presented a new approach to hydraulic actuator force control 

using a displacement compensation feedback loop and added compliance of a flexible 

mechanism intentionally placed between the actuator and structure. The displacement 

compensation is needed to ensure control over the structure's range of resonant frequencies. 

The added compliance is required as the actuator is mechanically stiff but force control 
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requires a mechanically compliant system to allow for small force adjustments. This problem 

is important in actuators that are designed as displacement control devices because they are 

particularly sensitive to force control parameters. Nakata and Kru, [50] are currently 

experimentally investigating the feasibility of a MDOF EFT.  

 Ultimately, any real-time testing system will be limited by actuator flow capacity, as 

increased model complexity is likely to result in higher structural velocities that need to be 

tracked by the actuators. This limit is particularly relevant to EFT, where the combination of 

large forces and high velocities requires very high oil flow rates which may approach the 

capacities of the servo-valves. The low mass present in most RTHT setups generally leads to 

lower force demands and hence achievable flow rates. 

3. ACCURACY AND STABILITY OF HYBRID TESTING – TIME INTEGRATION 
TECHNIQUES 

Very many numerical integration techniques for hybrid testing have been proposed, and it is 

not feasible to review them all here. A sample of the most commonly used algorithms is 

detailed here, with the aim of highlighting the main types of method available. These include 

the development of explicit, implicit and operator-splitting numerical integration schemes. 

See also [5], [51], or [52] for good overviews of numerical time integration algorithms in 

hybrid testing.  

3.1 Explicit Numerical Integration Techniques 

Explicit methods are often used in early implementations of hybrid testing because they are 

computationally efficient and easy to implement. The numerical integration scheme is termed 

explicit because the new response value for a step is calculated based on the previous step(s). 

One of the drawbacks to early implementations of explicit methods was their conditional 

stability, resulting in a limitation on the maximum time step that can be used. The maximum 

time step is limited by the natural frequency of the system. The limitation is defined as 

follows for the widely used central difference method (CDM); 𝜔𝜔𝑛𝑛Δ𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = 2, where 𝜔𝜔𝑛𝑛 is the 

highest natural frequency of the system and Δ𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum time step. The limitation 

is important for structures with higher modes of vibration [7]. However, in many 

applications, the NS can be represented by a simplified structural model that eliminates 

higher frequency modes. Therefore, simple and computationally quick explicit methods may 

be more appropriate. In the case of more detailed and complex NS, recently developed 
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unconditionally stable explicit methods can overcome stability issues associated with higher 

frequency modes. The choice of integrator is clearly dependent on the application.  

Many researchers have used the CDM as the integration scheme for PsD and RTHT 

([9], [29], [30], [31], [32], [53], [54], [55], [56]). Wu et al., [56] observed that the CDM could 

be modified to provide explicit target velocity as well as explicit target displacement.  

The Newmark method [57] and subsequent family of modified Newmark methods 

have proven popular in hybrid testing. Shing and Mahin, [7] have shown that error 

propagation properties of the Newmark method are better than those of the CDM. Thewalt 

and Mahin, [47] have also shown that the Newmark method is more reliable and superior to 

the CDM.  

 The Chang Method (CM) [58] is an unconditionally stable explicit algorithm that was 

extended by Chang [59] to be an unconditionally stable explicit method applicable to PsD 

testing without stability limits. The error propagation properties are better than the CDM and 

explicit Newmark method. The method has similar numerical properties as the implicit 

constant average acceleration method (CAAM) by derivation of coefficients based on the 

assumption that displacement and velocity are equivalent as those of the CAAM. However, 

the algorithm of Chang [58] was only unconditionally stable for stiffness softening and linear 

systems, whilst that of Chang [59] was only unconditionally stable for stiffness hardening 

systems. Chang et al., [60] overcame this by developing a new family of explicit algorithms 

for general PsD testing.  

 Chen and Ricles [61] developed an unconditionally stable explicit integration 

algorithm for RTHT using a discrete transfer function approach (known as the CR method). 

The method is explicit for both displacement and velocity. Chen and Ricles [61] detail the 

control theory used to select the algorithm parameters to achieve unconditional stability for a 

linear system. A linear ramp generator and extrapolation procedure ensures continuous servo-

hydraulic motion. Chen and Ricles [62] extended this algorithm to include controllable 

numerical damping for RTHT. 

3.2 Implicit Numerical Integration Techniques 

Implicit numerical integration schemes calculate the new response value for a step based on 

one or more of the current response values as well as previous step values. Implicit 

algorithms were avoided in early research as they required iterative correction which could 

induce undesirable unloading and required the tangent stiffness of the system being tested, 
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which can be difficult to evaluate during a test [63]. However, in contrast to explicit methods, 

implicit integration methods are in general unconditionally stable [11].   

The Hilber-Hughes-Taylor (HHT) [64] numerical integration scheme (α-method) was 

developed in order to improve numerical dissipation to damp out spurious participation of 

higher modes. Numerical damping is beneficial for improving computational stability; 

however numerical damping also suppresses the accuracy of the solution. It is more important 

to minimise errors through the accuracy of the experimental instrumentation rather than 

relying on numerical damping to achieve solution accuracy through computational stability. 

The HHT scheme showed improved numerical dissipation of higher modes and is 

unconditionally stable when compared with the explicit Newmark method. Thewalt and 

Mahin, [47] were the first to successfully implement an implicit time integration scheme for 

PsD testing. The implicit algorithm was based on the α-method developed by Hilber et al., 

[64] and was proven to be more reliable and superior to explicit schemes [65]. 

The value of two constants, γ and β, in the Newmark method can be set such that the 

scheme becomes implicit and unconditionally stable. The method is most often applied as the 

CAAM with γ = 0.5 and β = 0.25. The CAAM does not produce any numerical damping, 

unlike the implicit Newmark method which provides numerical damping for γ > 0.5.  

A number of authors have developed implicit algorithms specifically for RTHT, 

namely; [52], [66], [67], [68] and [69]. 

3.3 Operator-Splitting Techniques 

The implicit operator-splitting method (OSM) improves over other implicit schemes as it has 

a non-iterative approach. A procedure of splitting the numerical integration into implicit-

explicit components was proposed by Hughes et al., [70] and first implemented in PsD testing 

by Nakashima et al., [16]. The method is implicit for the linear part of the response and 

explicit for the nonlinear part of the response i.e. uses the tangent stiffness of the test 

structure that negates the need for iteration.  

In a similar fashion to the Newmark method, the OSM has had α-damping applied to 

it, known as the α-OSM ([16] & [71]). The scheme was developed in order to combine the 

speed of computation from explicit methods with numerical dissipation. Nakashima & Kato, 

[72] proposed an error compensation technique called the I-Modification that required the 

predictor stiffness of the structure and the difference between measured and command 

displacements [51]. Bursi and Shing, [65] showed that its use with the α-OSM mitigates the 

effects of undershoot type experimental errors by introducing energy dissipation. 
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Developments in the state space approach to time integration have been made by 

Wang et al., [73] and Zhang et al., [11]. Wang et al., [73] introduced a state-space procedure 

(SSP) for the OSM (termed OS-SSP). The state-space approach allows the equations of 

motion to be rewritten as first-order differential equations i.e. replaces a single second-order 

equation by two first-order equations. The method was shown to have enhanced stability and 

accuracy over the explicit Newmark method, although it was not unconditionally stable. 

Zhang et al., [11] developed a conditionally stable explicit modified predictor-corrector 

(MPC) time integration scheme using the SSP (termed MPC-SSP). The explicit nature of this 

algorithm allows it to be used on a linear system in a RTHT and has a similar performance as 

the OS-SSP method. 

 Bonelli and Bursi, [51] investigated the feasibility of implementing a predictor-

corrector procedure into the generalised implicit Chung Hulbert method [74] (termed α-CH) 

for PsD testing. The method maintains the efficiency of the OSM but improves the accuracy 

by using the implicit predictor and secant-stiffness estimation of the actual structural 

stiffness. However, further developments are required for implementation in a RTHT.  

When velocity dependent restoring force is considered in a RTHT, the OSM is 

effectively implicit. Therefore, Wu et al., [75] proposed an unconditionally stable predictor-

corrector method based on the OSM that is explicit when applied in a RTHT.  

 Ghaboussi et al., [76] extended the explicit-implicit method of Hughes et al., [70] 

such that the damping matrix of the PS is not included as the energy is assumed to dissipate 

entirely due to material hysteresis damping. The authors provide guidelines as to the selection 

of parameters in the method of Hughes et al., [70] that relate to the quality of the predicted 

displacement  and stability criterion. As the stability criteria are predefined, the method has 

the advantage of not requiring the initial stiffness of the PS.  

 Hung and El-Tawil, [77] developed a full operator method (FOM) that uses predicted 

accelerations to compute explicit displacement and velocity in the predictor step. The method 

is suitable in a quasi-static and RTHT. The advantages of the FOM over the OSM are the use 

of measured restoring force from the PS and the use of tangent stiffness as opposed to initial 

stiffness providing greater accuracy for highly nonlinear systems.  

  Hung et al., [78] presented an unconditionally stable implicit predictor-corrector 

algorithm termed the Predictor-Alpha-Corrector (PAC) method for quasi-static hybrid testing. 

The PAC method showed considerably reduced error compared to the OSM.  
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3.4 Integral Form 

In explicit/implicit time integration methods the fundamental second order differential 

equation of motion is solved, however an approach solving the integrated first order form of 

the equation of motion has been implemented by [79] & [80]. Chang et al., [79] first 

proposed the scheme that is derived from Chen and Robinson [81], in which an incremental 

form of the explicit Newmark method is integrated. The equation of motion is now solved in 

terms of change in velocity rather than acceleration [80]. Using direct integration for PsD 

testing, cumulative errors may become large if the rapid variation of resistance of the test 

system is not captured accurately due to non-linear behaviour [82]. However, using the first 

order solution method errors resulting from the assumption that the structural properties 

remaining constant throughout a time step (linearisation error) are eliminated by the 

integration of the restoring force, while the sharp characteristics of the seismic loading are 

smoothed out by the integration of the applied force [82]. The result is an algorithm which is 

capable of picking up the effects of rapidly varying excitation forces and stiffness changes, 

while at the same time displaying improved error propagation characteristics over the 

standard Newmark explicit representation. The method showed improved ability to deal with 

rapidly varying loads and stiffnesses as often experienced in civil engineering structures. 

Algaard et al., [80] removed some of the drawbacks associated with the method namely; 

conditional stability and excessive numerical damping. As mentioned previously, Wang et 

al., [73] implemented the integral form using the state-space approach with the OSM 

resulting in a conditionally stable implicit algorithm. More recently, Kim et al., [83] 

presented a new convolution integral method (CIM) of time integration for a RTHT that 

addresses issues with size and complexity of the NS. 

 

4. ACCURACY AND STABILITY OF HYBRID TESTING – HARDWARE AND 
SOFTWARE 

Errors in PsD and RTHTs can be broadly separated into structural idealisation errors, 

numerical errors associated with the integration scheme (discussed in Section 3) and 

experimental errors. In particular, systematic experimental errors in hardware (actuator) have 

been the focus of significant investigation. 
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4.1 Errors in the Hybrid Test Method 

The structural idealisation used in a PsD or RTH test will have a significant impact on the 

accuracy of the method. The discrete numerical model used must provide a realistic 

representation of the mass, damping and (in substructured tests) stiffness of any numerically 

simulated parts. In a PsD test, there is a need to represent the mass of the structure by a small 

number of lumped masses, whose inertia forces can be replicated by a few actuators. 

Structures are not discrete entities, so the question arises; how well does the discrete model of 

the system represent the continuous system? Special consideration is therefore needed when 

performing a hybrid test to ensure the test specimen and test set-up can accurately replicate 

the proposed structure under consideration.  

 A particular area of importance is the interface between the numerical and physical 

parts of a substructured test. Again, it is usually desired to model this interface as comprising 

only one or two degrees of freedom, so that the necessary interface displacements and forces 

can be conveniently applied by very few actuators. The location and nature of this interface 

therefore needs careful thought, balancing realism against the pragmatism of what can 

reasonably be achieved in the laboratory. 

 As in any experimental or numerical modelling exercise, care needs to be taken over 

the boundary conditions. While fixed supports are easily applied within finite elements codes, 

providing complete fixity in the laboratory is difficult. If, for example, one was conducting a 

test involving notionally fixed-base columns in both the numerical and physical parts, failure 

to provide comparable levels of base restraint in each part could give misleading results. 

These problems can be minimised through preliminary static stiffness tests on the 

experimental substructure, and through updating of the numerical model based on feedback 

of the early experimental results. 

Laboratory constraints dictate the complexity and size of the structure that can be 

tested. The question arises as to how much is the accuracy improved in performing a hybrid 

test? Kim et al., [83] developed an improved method of numerical integration that allows a 

complex and large NS to be analysed during a hybrid test. The issue of substructure selection 

was also addressed by Kwon and Kammula [84] and its influence on the accuracy of a hybrid 

test by developing a weighted systematic selection procedure for the NS. Yang et al., [85] 

addressed issues with complexity and size through an online optimising method for testing 

multiple identical substructures (e.g. bridge piers). In their tests, using an optimisation 

method, Yang et al., [85] updated material parameters of the numerically simulated bridge 
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piers to match those of the experimentally tested bridge pier during a hybrid test. Spencer et 

al., [86] present a phased approach for hybrid testing to address issues of complexity. 

Accuracy and completion of the hybrid tests was ensured through a phased approach that 

proceeds through a series of increasingly complex analytical simulations followed by final 

large scale hybrid testing. 

Abbiati et al., [87] observed that coupling between the PS/NS and the time integration 

scheme in a PsD test with a large number of DOFs can also cause instability issues. The PS 

time step is typically 2ms, but it is not possible in a PsD test to complete the NS analysis for a 

large number of DOFs within this time step. Abbiati et al., [87] addressed this issue of 

stability associated with large numbers of DOFs by using parallel processes for analysing the 

NS and PS separately. A paralleled partitioned algorithm was developed to perform time 

integration that allowed for subcycling to achieve continuous PsD testing.  

Errors in experimental execution can be broadly classified as measurement or control 

errors. In particular, PsD and RTHTs are very sensitive to actuator control errors. 

Experimental errors are probably of most concern because the nature of the error can result in 

failure of the test procedure. The experimental errors can then be further sub-divided into 

either systematic or random errors [88]. The random errors are typically as a result of noise in 

the measurement system or round-off errors associated with the A/D conversion of the signal 

[88], but have been shown to be irregular in nature and produce negligible effects [89] when 

compared to systematic errors.  

Systematic errors introduced by the actuator are of most concern in hybrid testing 

because they provide undesirable energy effects on the dynamic response of the system [63]. 

Due to the cumulative nature of numerical integration, incrementally small errors introduced 

to the system will result in resonance-like effects in the error growth. For higher modes, this 

resonance-like growth of cumulative error occurs faster than for lower modes. In MDOF 

systems, systematic errors will cause spurious higher mode response due to relatively small 

convergence errors. This issue was particularly problematic in early PsD tests, leading to a 

variety of mitigation strategies being developed. For example, it is possible to find the 

dominant frequency and tune the servo-control system to improve the actuator performance. 

Numerical integration with numerical damping can also help to reduce spurious higher mode 

effects. 

In RTHT, a further significant issue is the unavoidable time delay between sending a 

command to an actuator and it achieving the commanded displacement. This has been the 

subject of extensive research, which is described in Sections 4.2 and 4.3 below. 
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 In PsD testing of 3D structures, measurement of multi-directional displacements is a 

non-trivial issue, since no established, reliable multi-direction transducer has yet been 

developed. For example, in Obata and Goto [27], a spatial truss-type multi-axial linear 

variable differential transformer (LVDT) arrangement was used, but this required an iterative 

transformation to determine orthogonal displacement components. The availability of a 

simple, accurate technique for 3D displacement measurement would make a significant 

enhancement to multi-axial PsD testing. 

 Errors associated with numerical integration have been discussed in Section 3; 

however determination of structural damping is not always straightforward. The exact 

characteristics of structural damping may be difficult to model because in reality different 

types of damping may exist e.g. viscous, Coloumb, etc [90]. Molina et al., [91] note that 

hysteretic damping depends on displacement history and is observed in the restoring force 

therefore viscous damping should not be included in the equation of motion in a conventional 

PsD test.  

4.2 Actuator Delay Compensation Techniques 

Hybrid testing is a complex closed-loop procedure that has a number of components within 

the system such as a computer, servo-controller, hydraulic actuator, test specimen and data 

acquisition system. The servo-hydraulic actuator can be thought of as a physical transfer 

system between the NS and PS. The servo-hydraulic actuator and its associated controller 

form a dynamic system, including a servo-valve (that controls the flow of oil to the actuator) 

and hydraulic piston (converts hydraulic energy into force/movement). Within the servo-

hydraulic actuator, a time lag of the order of 5-10 ms exists between sending the command to 

the actuator controller and achieving the desired displacement of the test specimen. This time 

lag is often referred to as a delay. The delay can be reduced, but not eliminated, by careful 

tuning of the actuator's controller. In addition, it may not be constant throughout a test.  

 The impact of a time delay (Td) can be seen in Figure 4(a). The output displacement 

signal lags the input displacement command signal to the actuator (Figure 4(a)). The effect of 

this delay is the measured and actual restoring forces do not match. The reason for this is that 

the actuator has measured the restoring force before the actuator has reached the target 

displacement. The problem is that the algorithm being used to solve time integration assumes 

both the target displacement (command) and measured force (actual) correspond to each 

other. The hysteresis loop in Figure 4(b) shows that energy is added to the system at each 

command displacement timestep as a result of the difference in the measured and actual 
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response. The delay has been shown to equate to negative damping in linear-elastic SDOF 

systems [32] and if this delay becomes larger than structural damping the response will 

diverge and become unstable [2]. This delay in the system is particularly important in fast or 

real-time hybrid testing as it can cause instability. Other less important delays also exist in the 

entire test system such as communication delays, computation delays and A/D or D/A 

conversion delays. 

 
Figure 4. Effects of time delay on (a) displacement history; and (b) load versus 

displacement hysteresis [2] 

The servo-hydraulic actuator, as part of the overall test system, needs to be controlled using, 

e.g., displacement feedback. The most common method for control of servo-hydraulic 

actuators is proportional integral derivative (PID) control. A PID controller is a feedback 

controller that uses a feedback loop to measure the error in a process and minimise it by 

adjusting the process control inputs. Proper control tuning of the actuator can help to mitigate 

errors associated with delay, however other methods of control of actuators (transfer systems) 

have been proposed that improve on PID control. Three main approaches have been 

developed to account for delay in RTHT systems; forward prediction schemes; performance 

evaluation schemes or model-based filtering. Bonnet et al., [92] provide a detailed description 

of compensation techniques up to 2005.  

4.2.1 Constant Delay Compensation 

The effect of the output and command displacements lagging each other was identified by 

Horiuchi and Konno [93] as a response delay. The time delay adds energy to the system 

because the force measured does not correspond to the command displacement. The effect of 

this time delay was first characterised by Horiuchi et al., [32] as being equivalent to negative 

damping for a linear-elastic SDOF system. Instability is caused by the negative damping 

being larger than structural damping. The method of delay compensation developed by 
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Horiuchi and Konno [93] forward predicted the target response by a constant delay, δt, as 

shown in Figure 5. 

 
Figure 5. Schematic of the prediction method for actuator delay compensation [32] 

Horiuchi et al., [32] developed a N-th order polynomial fit, where a third order polynomial 

was recommended in practice to forward predict the command displacement by one time step 

ahead of the current time step. The compensation method has been successfully implemented 

in a number of substructured RTHTs; [30], [31], [34], [94] & [95]. Carrion and Spencer, [96] 

modified the forward extrapolation scheme of [32] to include the external excitation force 

and structural properties in a model-based approach. 

 Nakashima and Masaoka, [30] and Darby et al., [33] improved on the interpolation 

function's forward prediction scheme to more smoothly predict the displacement and 

velocity. Rather than the actuator moving at each time step, which is typically quite large, the 

interpolation schemes predict the output at sub-intervals resulting in a smoothed output. 

Horiuchi and Konno, [97] proposed a compensation scheme that predicts the acceleration 

based on the assumption that acceleration varies linearly. The predicted acceleration is then 

used to calculate the target displacement.  

 Zhao et al., [55] developed a phase lead compensator that removes the phase change 

caused by adjusting the compensation signal (in addition to the command signal) for a fixed 

time delay. Wallace et al., [98] developed a delay compensation technique that identifies the 

critical time delay for a linear system above which instability occurs. A delay differential 

equation is used to model the substructured system with a single fixed delay where analytical 

and numerical methods are used to determine stability. Delay differential equations are 

ordinary differential equations of the system with actuator delay explicitly included. Jung and 

Shing, [99] used PID control with a supplemental feed-forward scheme to compensate for 

delay, with the rate of change of the displacement command based on a fixed time delay. A 
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Smith-type predictor [100] was proposed by Shao et al., [101] (also used by [49] & [102]) to 

compensate for time delay in the displacement feedback. The Smith predictor achieves this 

by removing undesirable inner loop dynamics from the outer displacement feedback loop. 

Chen, [103] proposed a method called the inverse compensation method to compensate for 

delay in a system that modelled the actuator as a first order discrete transfer function. The 

model transfer function’s inverse was then used to compensate for actuator delay [62].   

Virtual coupling between the numerical and physical components was introduced by 

Christenson et al., [104] through virtual stiffness and damping to improve the stability of the 

system in the presence of time delay. The concept was first introduced by Colgate et al., 

[105] but also investigated by Seible et al., [106]. Virtual coupling improves performance by 

providing a trade-off between performance and stability depending on the relative restoring 

force in the PS. 

4.2.2 Adaptive Delay Compensation 

The assumption of constant actuator delay can lead to under- or over-compensation of delay 

resulting in experimental error when variable delays exist. Adaptive delay compensation is 

particularly required to ensure stability in a RTHT. Darby et al., [95] present a method of 

delay compensation based on adaptive control theory to deal with this issue. The delay 

estimation method uses a proportional feedback system to calculate the delay error for each 

time step; however the authors note that time to convergence is sometimes an issue and may 

not be efficient for rapidly changing nonlinear systems.  

 Wagg and Stoten, [107] developed outer-loop control using an adaptive minimal 

control synthesis (MCS) algorithm that worked in conjunction with the standard inner-loop 

PID control of the actuator. The method was demonstrated stable for continuous time, 

however Neild et al., [40] further developed the delay compensation scheme using an 

adaptive MCS controller for a RTHT. Control issues resulting from deleterious higher order 

numerical model dynamic effects were reduced by the use of filters on the displacement and 

acceleration signals. Stability was demonstrated on a shake table test of a one DOF mass-

spring-damper system with the mass being the PS and the spring the NS. Lim et al., [108] 

demonstrated the application of a modified MCS outer-loop controller for a linear 

substructured two DOF system. The improvements made by Lim et al., [109] were to modify 

the demand of the MCS controller (termed MCSmd). The modification overcame the 

limitations of the MCS algorithm of Neild et al., [40] however, some complications imposed 

by the selection of initial gains still existed in the modified MCS algorithm. Bonnet et al., 



23 

[110] used the MCSmd outer-loop control algorithm developed by Lim et al., [108] within a 

multi-tasking environment to perform a RTHT. The approach was demonstrated to perform 

well for substructured systems with stiff coupling. Tu et al., [111] developed an adaptive 

control algorithm based on the MCS algorithm for base isolation. 

The adaptive polynomial based forward prediction algorithm proposed by Wallace et 

al., [98] used least squares polynomial extrapolation. The compensation method used an error 

driven adaptive feedback controller as an outer-loop control strategy. It was shown that the 

method allowed the forward prediction algorithm to accurately cope with frequency 

dependent system behaviour and operate with no prior knowledge of the system 

characteristics [98]. The approach built on the fundamental concepts of the Darby et al., [95] 

method of using the transfer system synchronisation error to ensure delay compensation [98].  

 Ahmadizadeh et al., [112] minimised variable actuator delay by incorporating a linear 

acceleration extrapolation scheme into the delay estimation algorithm developed by Darby et 

al., [31]. A learning gain achieved an online estimate of delay by comparing measured and 

desired displacements. 

 Chen and Ricles, [62] developed an error tracking adaptive compensation approach to 

deal with servo-hydraulic actuator delay in a RTHT based on the adaptive inverse 

compensation (AIC) scheme [103]. The AIC does not require an accurate estimate of the 

delay but an evolutionary variable is used to adjust the delay compensation based on a real-

time evaluation of actuator control [113]. 

 Chen and Tsai, [114] developed a combined adaptive second-order phase lead 

compensator (PLC) and an online restoring force compensator (RFC) for use in RTHTs. An 

adaptive gradient law is used in the PLC to estimate actuator delay during a test; however the 

adaptive gain needs to be tuned in the PLC. The RFC is computed using an averaged tangent 

stiffness that solves equilibrium of the equation of motion such that the structural response is 

corrected. Chen and Tsai, [114] investigated the effect on a SDOF system with low structural 

damping because the effect of actuator dynamics is more pronounced in such systems. 

 Wu et al., [115] present a method that nearly exactly compensates the time delay 

using upper bound delay and optimisation of feedback. The uncertainty of time delay is dealt 

with by an upper bound delay technique where the delay is assumed to be larger than the 

maximum possible delay i.e. is overcompensated. The displacement measurement is 

optimally selected so that the measured and actual displacements are as close as possible.  

The upper bound delay is calculated using the initial (maximum) stiffness, as the delay 



24 

increases with increasing stiffness. The method reverts to an assumption of fixed delay if the 

real delay is greater than the assumed upper bound. 

 Chae et al., [116] developed an adaptive time series (ATS) compensator for RTHTs 

based on the relationship of input actuator displacement expressed in terms of the time series 

of the output displacement. The ATS compensator continuously updates the coefficients of 

the transfer system at each time step using least squares method to reduce the effects of time 

delay and amplitude error. Importantly, the adaptive gains do not need to be defined as per 

previous compensation schemes. 

4.2.3 Model-based Filtering 

In hybrid testing, very stiff structures introduce force errors even if the displacement is very 

accurate. A model-based filtering procedure to filter noise in a RTHT was introduced by 

Carrion and Spencer [2]. A model-based approach deals directly with the dynamics of the 

transfer system (actuator) rather than compensate for delay or time lag. A framework was 

developed by Carrion and Spencer [2] to filter restoring force and measured displacement 

noise from hybrid tests using model-based estimation and a Kalman filter [117]. The model-

based Kalman filter is employed because classical filters (e.g. low pass, bandpass or highpass 

filers) introduce an undesired phase lag on the filtered results, which is unacceptable in 

hybrid tests. System dynamics and inputs are taken into account in the filter estimation along 

with measurement and measurement error statistics [118]. The procedure was verified using a 

full-scale substructure PsD test in a two-bay single-storey steel frame [119] with significant 

improvement in measured force and moment versus analytical solution being observed.  

 

5. GEOGRAPHICALLY DISTRIBUTED HYBRID TESTING 

Hybrid testing by its nature is conducive to performing tests in geographically separate 

locations, as communication between the PS and NS can take place over the internet rather 

than through a fixed cable between laboratory equipment. Distributed tests are often referred 

to as on-line tests as communication between PS and NS takes place via the internet. A 

distributed test enables researchers to combine the capabilities of two or more sites [120]. 

This may add value by combining complementary facilities and expertise not available in a 

single laboratory - for example linking a foundation test in a geotechnical laboratory to a 

reaction-wall test in a structures laboratory. Splitting a test structure across multiple sites may 

also enable large-scale testing of bigger, more complex structures than can be tested in a 
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single laboratory - for example, a substructured test requiring physical tests of multiple bridge 

piers may entail more space and equipment needs than can be met at a single test site. Of 

course, multi-site testing adds significant complexity and, in planning such a test, the 

researchers will wish to ensure that the additional benefits clearly justify the costs of the 

increased administrative and technical complexity.  

 The concept was first discussed by Campbell and Stojadinovic [121] and Watanabe et 

al., [122]. Watanabe et al., [123] introduced a test method using parallel PsD testing via the 

internet called Multi-Site Pseudo-Dynamic Substructure testing. However, the first successful 

distributed hybrid tests were conducted by Watanabe et al., [124] between Kyoto University 

(KU) and Osaka City University (OCU) (see also [125]).  

Distributed hybrid tests have also since been conducted within the United States of 

America (USA) [119], UK [126] and Taiwan [127] and between a number of countries, 

notably Korea/Japan [128], the USA/Japan [129], USA/Taiwan [130], and New 

Zealand/USA [131]. The importance of collaboration and sharing of resources was identified 

formally by the George E. Brown Network for Earthquake Engineering Simulation (NEES) 

comprising of 15 advanced earthquake engineering test facilities. The NEES network 

combines testing facilities with computing resources to shift the emphasis of research from 

reliance on physical testing towards integrated experimentation, computation, theory, 

databases and model-based simulation [119]. A grid framework within NEES (NEESgrid) 

enables researchers to achieve this through telepresence, open access to consistent data via a 

data repository, access to open source analytical software and performance of distributed 

synchronised testing. NEES has inspired the inception of other similar research 

environments, for example; the Korea Construction Engineering Development Collaboratory 

Program (KOCED) [132], NZ-NEES [131] and UK-NEES ([126] or [133]). KOCED 

connected 12 large scale testing facilities at major universities around Korea. Uniquely, NZ-

NEES provided a mobile command centre to collect in-the-filed data to be remotely sent back 

to the node. Within UK-NEES, a distributed hybrid test was performed between Bristol, 

Cambridge and Oxford Universities using a dedicated fibre-optic network.  

5.1 Development of Distributed Hybrid Testing 

The main frameworks that have been developed in distributed hybrid testing are; the 

Client/Server framework [124]; the Internet-based Simulations for Earthquake Engineering 

(ISEE) framework ([127] & [134]) the Host/Station framework [135]; Networked Structural 

Laboratories (NetSLab) framework [136] University of Illinois – Simulation Co-ordinator 
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(UI-SimCor) framework ([137]) and the Open-source Framework for Experimental Setup and 

Control (OpenFresco) [138]. 

5.1.1 Client/Server Framework 

The Client/Server framework developed by Watanabe et al., [124] consists of a main 

computer and a number of local server/experimental systems (see Figure 6). The main 

computer controls both the dynamic analysis and the client system that controls the local 

server/experimental systems. The target displacements are transferred across the internet and 

controlled locally by each local server, with restoring force and measured displacements 

being sent back to the client. Two different configurations were adopted in the client/server 

approach, of which the more successful used Windows based workstations for all the main 

and local servers. The data communication over the internet was performed using the well-

known transmission control protocol/internet protocol (TCP/IP). 

 
Figure 6. Schematic of client/server configuration and data communication (after [129]) 

Watanabe et al., [124] tested a steel and concrete piered viaduct with an average elapsed time 

per step of 22s between KU and OCU. A similar test of a base-isolated viaduct between KU 

and the Korea Advanced Institute of Science and Technology (KAIST) [128] took 

approximately 25s for each timestep. The tests demonstrated the feasibility of the 

Client/Server framework, however the time dependent characteristics of the base isolator 

were not investigated. 

 Park et al., [129] performed distributed hybrid tests of a four span base-isolated bridge 

with the PSs located in KAIST and Korea Institute of Machinery and Materials (KIMM). 

Two data communication schemes were tested; one using a web based java monitoring 

system and the other using wireless internet phone technology. The mobility and encrypted 
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data security of the mobile phone approach offer great potential for geographically distributed 

testing; however, data transmission speed was an issue when compared to a wired internet 

connection.   

5.1.2 ISEE Framework 

The ISEE is a client-server based framework that improved communication protocols 

compared to the Client/Server framework of Watanabe et al., [124]. Yang et al., [127] and 

Wang et al., [134] describe the development of ISEE through a database approach and 

application protocol approach, respectively (see also [130] and [139]). Yang et al., [127]  

developed the database querying approach to provide a platform for the exchange and 

warehousing of experimental data as shown in Figure 7. The structured query language 

(SQL) communication protocol controls the communication between the Analysis Engine, 

the Facility Controller and the Data Center. The use of SQL provides a ready-made platform 

for a web based data repository. The application protocol approach developed by Wang et al., 

[134] presents improved complexity in solving the data communication issues.  

 

 
Figure 7. Network configuration of database approach for DSCFT test (after [139]) 

The ISEE database approach was applied to a double skinned concrete filled steel tube 

(DSCFT) hollow column from a single-storey, three-bay pinned structure tested between the 

National Taiwan University (NTU) laboratory and National Center for Research on 

Earthquake Engineering (NCREE) laboratory as shown in Figure 6. The application protocol 

approach was validated using a similar test and was shown to be slower but simpler to use in 

comparison to the database approach. Yang et al., [140] presented some further 

improvements on the ISEE system to include web broadcasting.  
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Figure 8. (a) Schematic of distributed hybrid test environment; and (b) flowchart of 

data exchange algorithm [135] 

5.1.3 Host/Station Framework 

The data exchange interface used by Tada and Kuwahara [141] was adopted by Pan et al.,  

[135] in a client/server framework referred to as Host/Station here. Figure 8(a) presents a 

schematic of the Host/Station environment. The NS is simulated on the Host computer 

connected to the Osaka University Network, whilst the PS is tested in KU with the control 

run on the Station computer connected to the Kyoto University Network (KUINS III). The 

http protocol was used to connect the Station and Server computers and the data exchange 

was implemented using a dynamic link library. The data exchange procedure uses flags to 

(a) 

(b) 
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apply the incremental displacements as shown in Figure 8(b), e.g. checking, loading, 

unloading, ready and unready. 

An important contribution of this research was the implementation of distributed 

testing with a FEM program. Pan et al., [135] note that iterations for material nonlinearity in 

FEM packages are prohibitive in a distributed online test requiring a method to prevent such 

iterations. A method was developed to predict the tangent stiffness based on previous steps 

(using a least squares method), applying target displacement (using an implicit algorithm), 

measuring restoring force and correcting for difference between predicted and actual stiffness 

for the next time step. The method was shown to be successful at predicting the stiffness even 

for complex experimental hysteresis behaviour.  

 Pan et al., [142] improved on the approach of Pan et al., [135] by developing a 

distributed hybrid test method that treats the PS and NS as independent systems with the 

equations of motion for each substructure being calculated separately for each geographically 

separate location. Improvements in data exchange using a socket mechanism as compared to 

standard internet protocols were also developed. Wang et al., [143] & [144] investigated 

some of the numerical characteristics of the test method developed by Pan et al., [142] in 

order to improve the stability and accuracy of the iteration scheme used by Pan et al., [142]. 

The method was capable of adopting FEM programs and dealing with nonlinearities, 

however performance was slow.  

5.1.4 UI-SimCor Framework 

[145] discussed a framework for distributed tests within NEESgrid called UI-SimCor. 

Pearlman et al., [146] and Spencer et al., [119] describe the Multi-site Online Simulation Test 

(MOST) of a two-bay single storey steel frame shown in Figure 9(a) that linked the PSs at the 

University of Illinois at Urbana-Champaign (UIUC) and University of Colorado, Boulder 

(UC) with the NS at the National Center for Supercomputing Applications (NCSA) in 

Urbana-Champaign. A control protocol (NEESgrid Teleoperations Control Protocol (NTCP)) 

provides remote access to the control systems of both the PS and NS. Transient problems 

such as network interruptions during a distributed test are accounted for by state transition of 

the control protocol using accepted, executing and terminated states. A set of requested 

actions (proposal) is sent by a client to the control protocol server. If the proposal is 

accepted, the action is executed by the client. If any site rejects a proposal, the entire test can 

be cancelled by the client. The NEESgrid data repository stores all experimental data (and 

metadata) and provides access to it, with data being archived incrementally during the 
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running of an experiment. A simulation co-ordinator controls the PS and NS as shown in 

Figure 9(b). The MOST experiment lasted approximately 5 hours with 1500 time steps (12s 

per time step). The MOST experiment essentially used UI-SimCor to create an artificial 

separation between the simulated model and the time integration procedure [120]. Separately, 

Mosqueda et al., [147] made improvements to the NTCP for use within NEESgrid to reduce 

the the communication overhead for each integration time step. 

 
Figure 9. (a) MOST steel frame structure experimental set-up; and (b) modular 

framework for MOST experiment [119] 

Kwon et al., [137] discuss the development of the software architecture that interfaces 

advanced analysis FEM packages, such as Abaqus [148], OpenSees [149], VecTor2 [150] or 

Zeus-NL [151] with UI-SimCor. Four application examples are discussed; a purely simulated 

soil structure interaction (SSI) bridge model, a purely simulated RC building model, a three-

site distributed hybrid test termed Mini-MOST [152] and the MISST project [145].  

(a) 

(b) 
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5.1.5 NetSLab Framework 

To facilitate research between the US and China the NetSLab internet-based network 

platform was developed. The network is based on the client/server approach with a socket 

communication mechanism as per Pan et al., [142]. NetSLab improves on the ubiquitous 

hierarchical internet infrastructure of firewalls and network address translators using the 

concepts of Dynamic Unified Data Packet (DUDP) and Generalized Data Communication 

Agency (GDCA) ([153] and [154]). The test results are processed by three types of tasks 

namely; Controller, Tester and Observer as shown in Figure 11. The Controller controls the 

test progress, data communication and performs the structural analysis. The Tester can be 

either Virtual or Actual. The Actual-Tester operates the test equipment in the laboratory and 

the Virtual-Tester can provide purely analytical results. The Viewer monitors and shares 

results. As shown in Figure 10, a centralised Controller PC with an Internet Protocol (IP) 

address co-ordinates the test participants (referred to as Testers) by sending and receiving 

requests using a Port 80 communication port.  

 
Figure 10. Schematic of communication strategy for remote hybrid testing in NetSLab 

[136] 

The framework was developed for single storey structures (NetSLab-SDOF) only. Tests were 

carried out on a multi-span bridge (1/5th scaled seven-column bent bridge [136] and ¼ scale 

four-span RC highway bridge [155]. In these tests, the PS was tested in either Hunan 

University or Harbin Institute of Technology (both in China) and the NS simulated elsewhere 

via the internet. NetSLab was shown to be feasible and reliable at performing distributed 

tests, however the method is limited as it only tests one dof and not multiple dof. The 

NetSLab capabilities were extended by Xu et al., [156] to allow remote structural health 
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monitoring by sending measurement data from an on-site monitoring system rather than a test 

facility. 

5.1.6 OpenFresco Framework 

Within the Pacific Earthquake Engineering Research (PEER) Center there has been a drive 

towards the creation of a generic hybrid simulation framework. A client/server framework 

called OpenFresco [138] was developed with this goal in mind. The fundamental idea of 

OpenFresco is to allow testing to be undertaken at different laboratories, with different test 

equipment and without specialised knowledge required for the underlying software [157].  

 
Figure 11. Event-driven strategy using polynomial predictor/corrector to generate 

continuous actuator commands (after [158]) 

A distributed test performed by Takanashai and Fenves [120] between UCB (client) and KU 

(server) evaluated the proposed object-oriented framework of OpenFresco. TCP/IP is used for 

network communication between the client and server. The power of this approach is that the 

classes defined in OpenSees can be used as the NS as OpenFresco utilises the object-

orientated structure of OpenSees. The PS and its interface with the NS are dealt with by 

defining an Experimental Element class. This element provides the method to communicate 

with and control the PS and collaborates directly with OpenSees without a need for 

modification. A multi-tier software architecture approach is adopted in OpenFresco 

consisting of three tiers; a client tier (computational simulation), one or two middle server 

tiers (OpenFresco processes) and a backend server tier (laboratory control systems). Both 

local and distributed simulations can be performed using OpenFresco where ShadowExpSite 

and ActorExpSite are required on the client and server side respectively to undertake a 

geographically distributed test.  

The middle tier provides the link between the computational modelling package and 

the data control/acquisition in the laboratory. Within the middle tier, classes are set-up to 
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represent the real-world experimental element (ExperimentalElement), the real-world 

laboratory (LocalExpSite) and the ExperimentalSetup that transforms the trial displacements 

into actuator control displacements. Finally, the ExperimentalControl converts the trial 

displacements for the actuator into control signals for the respective control system in the 

laboratory. The benefits of OpenFresco are the pre-defined classes of experimental setups 

(e.g. OneActuator, TwoActuators,…), experimental elements (e.g. beamColumn, 

twoNodeLink, truss,…) and experimental control hardware (e.g. dSpace, xPCTarget, 

LabVIEW and SCRAMNet). The power of OpenFresco has been demonstrated by a number of 

authors; [120], [159] and [160].  

 
Figure 12. Schematic of the multi-tasking control loops in the implementation of a 

hybrid test using SCRAMNet experimental control [161] 

The concept of an event-driven strategy to account for complexity and randomness during 

hybrid tests was developed by Mosqueda et al., [158] in which five states exist; extrapolate, 

interpolate, slow, hold and free vibration as shown in Figure 11. The default state is 

extrapolate, where the commands are predicted based on previously computed displacements 

and the integrator computes the next target displacement [89]. The state changes from 

extrapolate to interpolate after the next target displacement is received by the controller. The 

advantage of an event driven strategy is that logic can be used to handle excessive delays 

[162]. Excessive delays are overcome by slowing down the actuator to allow a command 

update. Alternatively, if the target displacement is not received after a specified number of 

steps, the state transitions to a hold state to allow the target displacement to be received. After 

this if no target displacement is received the system times out to free vibration. 

Nakashima and Masoaka, [30] were the first to separate the integration of the equation 

of motion and signal generation into two separate tasks on a single processor. Schellenberg et 
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al., [161] utilised this concept of multitasking to undertake tasks on separate processors (see 

[89]) to improve computational efficiency in distributed hybrid tests. Figure 12 indicates the 

three-looped control architecture used in OpenFresco to undertake hybrid tests. The outer 

control task is run on a separate local processor than the servo control loop. The intermediate 

control loop is termed the predictor-corrector control loop and allows synchronisation 

between the outer and inner control loops, which perform their tasks at different time scales.  

5.2 Recent Developments in Distributed Hybrid Testing 

Kim et al., [163] presented the first distributed RTHT of a scaled two-storey shear frame 

structure (NS) with MR damper (PS) tested between University of Connecticut and UIUC. 

Every 2ms data was sampled and the equation of motion of the NS was solved using explicit 

Runge-Kutta method because of its speed and lack of iteration. A Smith predictor-based 

approach accounts for network communication time delay within the simulation co-ordinator 

(UI-SimCor). Distributed RTHT error of approximately 5% for peak displacement, peak 

damper force and energy dissipation of the MR damper was observed when compared to 

local RTHT results. 

Hacker et al., [164] discussed improved distribution of test data through a repository 

called NEES Project Warehouse that manages the scientific data using web-based data 

analysis and simulation. The NEES Project Warehouse extends the framework of the 

centrally maintained web-based gateway called NEEShub [165]. The aim of NEEShub is to 

provide an accessible framework within NEES of uniform processes and data formats to 

enable greater collaboration and sharing in earthquake engineering.  

More recently, Ojaghai et al., [166] demonstrated the feasibility of performing 

distributed hybrid tests in real time over the internet, through a series of experiments 

conducted between Oxford and Bristol universities in the UK. The tests used existing 

hardware and control systems at both sites, with modifications designed to minimise local 

delays and to prioritise real-time communications over other processes. Real-time hybrid 

testing was achieved across a variety of relatively simple test set-ups. However, the method 

was tailored to the particular laboratories involved and was not readily transferable to other 

sites. To address these limitations, Lamata et al., [167] & Lamata et al., [168] have sought to 

develop a more structured framework, known as Celestina, to promote multi-site 

collaboration in earthquake engineering. This includes both the capacity for data sharing 

through a virtual database in which the local databases of participating institutions can be 

accessed as though they are part of a single, central site (Celestina-Data) and a robust 
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protocol for the setting up and performance of distributed hybrid simulations (Celestina-Sim). 

The efficacy of the Celestina-Sim approach has been demonstrated through distributed 

simulations between Oxford (UK) and Kassell (Germany). 

 

6. APPLICATIONS OF HYBRID TESTING 

Much of the early research into PsD testing dealt with the accuracy, stability and reliability of 

the test procedure rather than the actual application of the test method. Only a small variety 

of the notable PsD and RTHT experiments that solely used the test method as a form of 

dynamic testing (rather than for development of the method) are discussed herein. Often, PsD 

and RTHT have been performed on SDOF systems. However, numerous examples of the 

application of PsD to MDOF structures exist, and several of these are discussed in Section 

6.1. For RTHT, tests on MDOF physical substructures are rare, because the stiff coupling 

between multiple actuators linked via their connection to a single test specimen makes real-

time actuator control extremely challenging. 

6.1 Applications of Pseudo Dynamic Testing 

Balendra et al., [169] performed one of the first PsD tests that detailed the application of the 

test as a research tool rather than focusing on the implementation of the test method. 

performed a PsD test on a full-scale, single-storey, eccentrically braced frame (without 

substructuring) with a shear link designed to dissipate energy. Test results were used to 

validate an analytical model. The PsD method was shown to adequately capture the inelastic 

deformation characteristics of the shear link.  

 Shing et al., [170] performed a substructured PsD test of a half-scale concentrically 

braced steel frame at UC. The bottom-storey braced frame formed the PS whilst the 

remainder of the three-storey braced frame structure formed the NS. Results indicated the 

importance of modelling the flexibility of the gusset connections accurately as the 

deformation of the connection has a significant influence on the seismic capacity of the 

frame.  

 Buopane and White, [171] performed a PsD test of a half-scale two-storey masonry 

infilled reinforced concrete framed structure. Accuracy of the dynamic actuators was 

provided by an iterative actuator control scheme developed by Seible et al., [106]. Intentional 

soft coupling as developed by Seible et al., [106] was used to overcome the spurious higher 
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modes associated with PsD testing of stiff structures. Results demonstrate good seismic 

performance by maintaining compressive strut action in the masonry wall.  

 
Figure 13. Generalised floor plan of bi-directional PsD test [22] 

Molina et al., [22] performed bi-directional PsD testing of full-scale three-storey building at 

the Joint Research Centre, Ispra, Italy, as shown in Figure 13. The building was constructed 

of steel columns and beams with composite reinforced concrete floor slabs. The feedback 

displacement of each floor for control purposes was achieved through linear displacement 

transducers attached to each floor with geometric transformation of the target displacement 

being required. The results were used to investigate the influence of the slab on the seismic 

moment capacity of the beam-column connections.  

 Pegon and Pinto, [19] discuss general developments in PsD substructured testing of a 

full-scale bridge structure at the ELSA Laboratory at Ispra, Italy. Notably, the paper 

investigates the topic of asynchronous testing. The main complexity in asynchronous testing 

is that typically the entire structure being tested is fixed to a reaction floor and for an 

asynchronous test only physically unconnected parts of a test structure can be investigated. A 

unique and absolute reference frame is therefore needed to describe relative and absolute 

motion; however this requires great care deriving the expression of the coupling term 

appearing in the connecting dofs [19]. PsD tests of a RC bridge comparing synchronous and 

asynchronous input motion showed similar results for the shorter pier tested but substantially 

higher ductility demands in the medium length pier. 
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 Molina et al., [20] performed substructured PsD tests of a full-scale rubber base 

isolated four-storey building. The isolators formed the PS whilst the superstructure formed 

the NS. The tests were not performed at real-time. Therefore alteration of the restoring force 

was required to compensate for material strain-rate effects of the rubber isolators. Tests 

investigated the effect on response of two types of rubber isolators (soft-blend and medium-

blend rubber).  

 
Figure 14. SPEAR structure (a) test setup and; (b) 3D view [172] 

Pinto et al., [173] performed substructured PsD tests of a six pier model of an existing bridge. 

Two 1:2.5 scaled piers formed the PS and the abutments, four remaining piers and bridge 

deck formed the NS. Importantly, the weight of the deck was applied as vertical loading. 

Asynchronous input excitations were applied as per the method developed by Pegon and 

Pinto [19]. Three intensity ground motions were applied to test the vulnerability of the bridge 

and demonstrated the poor performance of the bridge. This test provides a particularly good 

illustration of the benefits of the substructuring approach, since it is unlikely that any 

laboratory in the world (either shake-table or PsD) could accommodate a test of the full 

structure at an acceptable scale.  

 Negro et al., [172] performed a full-scale PsD test on a torsionally unbalanced 

reinforced concrete framed structure, as shown in Figure 14. The structure tested in the 

Seismic PErformance Assessment and Rehabilitation of existing buildings (SPEAR) project 

has been extensively investigated (see also; [174], [175] and [176]). The building represents 

old construction types in southern European countries that were not subject to specific 

designed to be earthquake resistant. McCrum and Broderick, [177] also performed a series of 

full-scale substructured PsD tests on a torsionally irregular multi-storey steel concentrically 

braced frame structure. Both projects identified the significance of plan irregularity on 

seismic response. 
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 Paquette and Bruneau, [178] performed PsD testing of a full-scale one-storey 

unreinforced brick masonry specimen with flexible wooden diaphragm floor. The research 

goal was to better understand the flexible floor/rigid wall interaction of this typical type of 

construction. Even with excessive cracking observed, the building was found to be quite 

resilient to the applied earthquake loading. 

 
Figure 15. Dimensions and test set-up of the full-scale CFT/BRB composite frame [179] 

Tsai et al., [179] and Tsai and Hsiao, [180] describe a substructured PsD test of a full-scale 

three-storey three-bay concrete filled tube CFT/BRBF structure as shown in Figure 15. 

Second order P-delta effects in the columns were taken into consideration during the 

computation of the target displacement by modifying the restoring force. Many parts of the 

displacement based designed structure such as the gusset plate connections and seismic 

performance of the BRBs were under investigation during the test. 

 Eatherton, [181] performed half-scale substructured PsD tests of a controlled rocking 

steel braced frame system that eliminates post-earthquake permanent residual drifts. The tests 

took place at UIUC within the NEES network. A series of quasi-static hybrid tests were 

performed on scaled three-storey steel braced frames. Experimental results showed that the 

controlled rocking system satisfies the stated performance goals, with a predictable hysteresis 

and the displacement of the frames almost entirely due to rigid body motion.  

 Kammula et al., [182] investigated the performance of a self-centering energy 

dissipative bracing system using substructured PsD testing. Over thirty full-scale hybrid tests 

of a six-storey steel structure were carried out to derive seismic fragility curves. The first 

storey braced frame formed the PS whilst the remainder of the upper stories formed the NS. 
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Test results demonstrated the reliability of the test method for seismic fragility assessment of 

structures. 

 
Figure 16. Loading system for 3-D PsD tests [183] 

Obata and Goto [183] performed one of the earliest multi-axial PsD tests in order to 

investigate the effect of multi-directional loading on the ultimate limit-state behaviour of a 

steel bridge pier. Another example of multi-directional loading was Dang and Aoki, [184] 

who performed three-dimensional PsD tests of a quarter-scale stiffened square cross-section 

steel bridge pier subjected to vertical and bi-directional horizontal loading as shown in Figure 

16. The test program provided insight into bearing capacity decrease and displacement 

response variations of the bridge under bi-directional loading.  

 Abbiati et al., [87] performed scaled (1:2.5) laboratory based PsD tests of an existing 

1950’s reinforced concrete bridge that was to be retrofitted using isolation devices. Hybrid 

numerical simulations were used to analyse the existing and retrofitted structure to aid design 

of the PsD experiments. Two of the twelve bridge piers formed the PS whilst the remaining 

ten bridge piers and deck formed the NS. The PsD tests formed part of SERIES (Seismic 

Engineering Research Infrastructures for European Synergies) funded project called RETRO.  

6.2 Applications of Real-time Hybrid Testing 

Igarashi et al., [37] performed a full-scale substructured RTHSTT of an idealised two DOF 

structural system with a tuned mass damper (TMD) providing structural control. The TMD 

formed the PS whilst the structural system formed the NS. Results showed that the control 

method using the TMD is feasible as long as the stability conditions of the test specimen and 

test parameters are satisfied. A similar substructured RTHT was performed by [36] of an 

active mass damper (AMD). 
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Figure 17. Schematic of real-time hybrid test of semi-active control device [2] 

Carrion and Spencer, [2] described a full-scale substructured RTHT of an MR damper for 

semi-active control of a three-storey steel framed structure. The MR damper formed the PS 

whilst the remainder of the structure formed the NS (see Figure 17). Model-based 

feedforward compensation accounted for the variations on the actuator dynamics. The RTHT 

demonstrated the successful performance of the structural control algorithm. A number of 

other authors have also performed substructured RTHTs to investigate semi-active control of 

building structures using MR dampers, such as [104], [185] & [186]. 

 Lee et al., [43] evaluated the vibration control effect of a scaled tuned liquid damper 

(TLD) for a building structure using the RTHSTT method. The TLD formed the PS and a 

numerical structural model of a single- and three-storey steel frame formed the NSs. 

Feedback from the shear force signal measured by a shear type load cell located between the 

shake table and TLD was used in the control loop as an interaction force between the TLD 

and NS as shown in Figure 18. Comparison between the RHSTT method and a conventional 

shake table test showed good agreement. The test results showed that the TLD could 

effectively mitigate the seismic response of the structure investigated.  
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Figure 18. Conceptual view of real-time hybrid shake table test of TLD [43] 

Stavridis and Shing, [187] performed a series of RTHTs of a ⅓ scale three-storey suspended 

zipper steel frame. The bottom-storey formed the PS whilst the remainder of the structure 

formed the NS. The zipper struts were designed to transfer unbalanced forces up to the story 

above when the V-bracing in the storey below buckles. Results showed the top storey 

remained elastic and prevented collapse as designed.  

 Karavasilis et al., [188] evaluated the seismic performance of a full-scale two-storey 

four-bay steel moment resisting frame (MRF) structure with compressed elastomer dampers 

using a substructured RTHT. The tests were conducted to verify the performance-based 

seismic design of the structure. The experimental substructure consisted of two individual 

compressed elastomer dampers and the MRF formed the NS. Results showed that the steel 

MRF with elastomer dampers performed better than conventional special MRFs. 

 

7. CONCLUSIONS 

This paper presented an overview of hybrid testing and provided an introduction to the basic 

concepts and developments within the method. The technical developments in the test 

method from the mid-1970’s to present such as continuous hybrid testing and the 

substructuring technique were presented. The paper presented an extensive overview of: 

numerical time integration techniques, experimental error compensation, geographically 

distributed hybrid testing and the application of pseudo dynamic and real-time hybrid testing 

methods for evaluating the seismic response of engineering structures.  

 The acceleration in recent years in the use of hybrid testing purely as a dynamic 

testing technique can be seen indicates that the pseudo dynamic and real-time hybrid test 

methods have matured to a point where they are now widely accepted as reliable research 

tools. Nevertheless, their implementation still requires quite a high level of expertise, and 
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careful decisions regarding issues such as: choice of numerical integration scheme; choice of 

feedback variables, optimisation of actuator performance and delay compensation.  

 The effective force test method and distributed hybrid test method still require further 

technical development and validation in order to reach maturity. However, over the past 30 

years, the pseudo dynamic and real-time hybrid testing methods have become robust, 

accurate and reliable dynamic test methods that can be used to perform seismic tests of full-

scale engineering structures in a cost effective manner. In the future, distributed hybrid 

testing has the potential to develop into a reliable and useable research tool, with multiple 

substructures either within a single laboratory or more widely geographically distributed. A 

significant amount of research and development has been performed in hybrid testing, and as 

a result the method has the potential to be more widely adopted by structural engineering 

industry in a similar way as other industries, such as aeronautical and automotive. 
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