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The combined use of global positioning system (GPS) technology and
motion sensors within the discipline of movement ecology has increased
over recent years. This is particularly the case for instrumented wildlife,
with many studies now opting to record parameters at high (infra-second)
sampling frequencies. However, the detail with which GPS loggers can elu-
cidate fine-scale movement depends on the precision and accuracy of fixes,
with accuracy being affected by signal reception. We hypothesized that
animal behaviour was the main factor affecting fix inaccuracy, with inherent
GPS positional noise ( jitter) being most apparent during GPS fixes for non-
moving locations, thereby producing disproportionate error during rest
periods. A movement-verified filtering (MVF) protocol was constructed to
compare GPS-derived speed data with dynamic body acceleration, to pro-
vide a computationally quick method for identifying genuine travelling
movement. This method was tested on 11 free-ranging lions (Panthera leo)
fitted with collar-mounted GPS units and tri-axial motion sensors recording
at 1 and 40 Hz, respectively. The findings support the hypothesis and show
that distance moved estimates were, on average, overestimated by greater
than 80% prior to GPS screening. We present the conceptual and
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mathematical protocols for screening fix inaccuracy within
high-resolution GPS datasets and demonstrate the impor-
tance that MVF has for avoiding inaccurate and biased
estimates of movement.
publishing.org/journal/rsif
J.R.Soc.Interface

19:20210692
1. Introduction
A popular method to determine terrestrial animal movement
uses global positioning system (GPS) technology, which
enables long-term continuous spatial monitoring of wild ani-
mals without disturbing them (for reviews see [1,2–5]). This
approach has led to broad applications, including examination
of home ranges [6,7], migratory routes [8–10], habitat use
[11,12], resource allocation [13,14], activity budgets [15–17] as
well as social interactions [18]. Since their inception, animal-
borne GPSs have reduced considerably in mass and size,
while data storage capacity, battery longevity and affordability
have improved [5,19,20]. Consequently, scientists can now
track animals as small as ca 20 g songbirds (Seiurus aurocapilla)
[21] at frequencies as high as 10 Hz (e.g. [22]), providing so
much detail of animal movement that even animal behaviour
can often be inferred [23–25]. Such inference is, however, lim-
ited by fix precision, regardless of fix accuracy, which can be
particularly ambiguous when the movement rates of the
focal species are less than the spatial resolution of the GPS
fixes [26]. Species-specific resampling strategies and correction
factors can go some way to redressing this (see [26,27–29]).

Many factors affect GPS performance, including habitat
type and heterogeneity [30–33], topography of the terrain
[34,35], clear sky availability [36], weather conditions [31],
submersion in water [37,38], time of day [39], vegetation
cover/type [34,40], GPS orientation [41] and fix acquisition
rate [42,43], in addition to the number of available satellites
and their orbiting geometry with respect to one another
[44,45]. All these elements affect the propagation of signal
quality and/or receiver reception capability and thus increase
triangulation error (see Hofman et al. [4] for review), often
assessed via the dilution of precision (DOP) values [45,46].

Species-specific movements can be misinterpreted
because GPS error often exaggerates the extent of movement,
with error associated with distance measures being additive
over time, and particularly germane at higher sampling fre-
quencies (given that higher rates of error are incorporated
per unit time) [43,47,48]. Indeed, although a number of
authors have attempted to resolve the accuracy of GPS
performance by quantifying the fix success rate and loca-
tion error over various scenarios (see [49,50]), the critical
modulator of GPS performance is animal behaviour
(see [41,51–54]). For example, Heard et al. [39] demonstrated
that fix success rate for GPS collars on grizzly bears (Ursus
arctos) followed a bimodal circadian pattern, which was paral-
leled to the activity time budgets of the bear, with higher forest
density cover and variability in collar orientation being attrib-
uted to declines in fix rate. Similarly, after collaring both
Eurasian lynx (Lynx lynx) and wolverine (Gulo gulo) in
a similar habitat, Mattisson et al. [52] suggested that high dis-
crepancy in fix rate between the two species could be
explained by differences in their behavioural repertoire. In
essence, the specifics of animal movement, the ‘what’,
‘where’, ‘when’ and ‘how’ (see [1]), underpins the species
interaction with its environment and consequently the dual
proficiency of signal propagation and reception between satel-
lites and receiver. Resting is the most common behaviour for
most terrestrial animals (particularly carnivores) and critically
affects the fix accuracy, because resting is typically associated
with a change of body position (e.g. resting on the collar)
and/or coverage within/near ‘signal obstructing’ environ-
mental features (e.g. sleeping under trees or in caves/
burrows), thus decreasing the available sky for the GPS recei-
ver [32–34,45]. This issue is compounded for collar-mounted
GPS devices, because behaviours variously affect the position
of the GPS antenna even though many collars are designed to
be bottom-weighted to minimize this problem [34,51,55].

Despite the well-documented issues of locational error
and numerous mitigation strategies being proposed [56–59],
there has been no ‘gold standard’ solution to identify inaccur-
ate fixes. For example, Lewis et al. [44] emphasized using
DOP values and removing fixes with values greater than 5
and only keeping positions where three or more satellites
were registered to eliminate potentially large location
errors. This recommendation was based on the premise that
a wider geometry of satellite spacing results in lower
recorded DOP values and this, along with a higher number
of registered satellites, is associated with minimizing triangu-
lation errors. The relationship between spatial precision and
increasing DOP values, while generally accepted, is noisy
and can reduce datasets considerably, while still leaving
notably anomalous fixes intact [35,60]. Juxtaposed to this,
Bjørneraas et al. [49] developed a method that focused on
the movement characteristics of the focal species to identify
large locational errors with minimal data reduction. This
included screening for unrealistic distances travelled, speeds
and turn angles between successive locations. However, this
can become complicated and arbitrary at high sampling fre-
quencies and is computationally intensive for large datasets.

To our knowledge, a specific solution for screening
inaccurate locations from high-resolution GPS data (e.g.
≥1 Hz) has not yet been proposed. The difficulty is that,
while shorter fix intervals are typically associated with
higher fix accuracy [42,51,61], locational error is, within the
wider context of daily movement, relatively small and
harder to identify accurately. Disentangling this error is par-
ticularly relevant because GPS units used on animals with
high fix rates are usually deployed with fine-scale analysis
of movement trends in mind (see [26]).

We note that since GPS ‘jitter’ (a term we use to define
fixes inaccurately fluctuating around a central location) is dis-
proportionately high during stationary periods [38,42,47] the
viability of deriving accurate movement from high-resolution
GPS trajectories depends on the ability to determine when an
animal is moving or not in a manner that is independent of
the GPS-derived movement. Studies have already used accel-
eration to activate GPS units only during movement, both as
a means to increase battery longevity and to avoid the fix
inaccuracy prevalent during periods of inactivity [53,62].
Properly coupled GPS–acceleration systems are uncommon
however, because a moving animal (as discerned from the
accelerometer) does not necessarily correspond with a work-
ing GPS (e.g. due to signal obstruction and because cold start
‘blind’ satellite searches are associated with lower fix success
rates [42]). For highly resolved animal tracks, we advocate the
importance of recording fixes continuously, in part to miti-
gate performance issues associated with cold starts between
fix intervals [26,42,63] but also because fine-scale GPS



Table 1. Contingency table documenting the mean accuracy and misclassification rate of the MVF method from∼25 h of behavioural observations (ethograms)
between eight individuals. FN, false negative; FP, false positive; TN, true negative; TP, true positive.

test data (actual) accuracy
(TP + TN/TP +
TN + FP + FN)positive (moving) negative (non-moving)

predicted

(MVF

method)

positive

(MVF = 1 =

moving)

true positive rate (TPR)

TPR ¼ TP
(TP þ FN)

�100 ¼ 95:21%

false positive rate (FPR)

FPR ¼ FP
(FPþ TN)

�100 ¼ 0:35%

97.43%

negative

(MVF = 0 =

non-moving)

false negative rate (FNR)

FNR ¼ FN
(FNþ TP)

�100 ¼ 4:79%

true negative rate (TNR)

TNR ¼ TN
(TNþ FP)

�100 ¼ 99:65%

test data

(actual)

time spent moving/

non-moving

19.37% 80.63%

VeDBA (±1 s.d.) 0.198 ± 0.058 0.039 ± 0.012
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estimates can be compared alongside acceleration data to aid
in differentiating between non-travelling movements and
travelling movements (see [64]). Beyond this, identifying
‘hotspots’ of GPS jitter may be useful for discerning GPS
performance according to habitat type and/or behaviour.
As part of this, we propose a new method for screening
raw, high-resolution GPS data by accounting for the
amount of activity using accelerometers and equating their
outputs with an estimate of speed to evaluate the likelihood
of movement per unit time. This is based on the observation
that dynamic body acceleration (DBA—for definition see
Wilson et al. [65]) increases approximately linearly with
speed in terrestrial animals [66–68]. Thus, any GPS-derived
speed should co-vary with DBA.

Here, we propose a decision tree-based framework in
which user-defined thresholds of (i) GPS speed, (ii) DBA,
and (iii) time are implemented to screen GPS fixes and
remove those that do not equate to genuine travelling move-
ment. We also suggest an initial method for screening
extreme anomalous fixes using distance estimates between
the raw GPS track and the median filtered equivalent. We
illustrate this using data from 11 GPS collar-fitted free-ranging
lions (Panthera leo) within the Kgalagadi Transfrontier Park in
the Kalahari Desert. The aims of this study are to provide both
the conceptual and methodological protocol for screening
high-resolution GPS data using a movement-verified filtering
(MVF) protocol and to discuss the broader applicability this
method has for discerning animal movement.
2. Methods
The procedure was applied to 14 days of data derived from 11
wild lions (five males and six females) in the Kgalagadi Trans-
frontier Park, South Africa, during February–March 2019. Lions
were equipped with a LiteTrack GPS collar (Lotek Wireless Inc.
[69]), to which a Gypsy_5 Techno-smart GPS unit (Technosmart
s.r.l. [70]) set to record at 1 Hz and a ‘Daily Diary’ (DD) (contain-
ing inter alia tri-axial accelerometers and tri-axial magnetometers)
(see [71]) recording at 40 Hz were attached. The GPS units were
encased in a thick 3D-printed acrylonitrile–butadiene–styrene
(ABS) plastic oval housing and DDs were enclosed in a water-
tight aluminium housing (see electronic supplementary material,
figure S1.1). In total, 15 lions from four prides between 19 and 25
February 2019 were collared. Twelve collars were fitted with the
Gypsy_5 Techno-smart GPS units and all collars were fitted with
DDs. However, one DD (which was paired with a Gypsy_5 unit)
malfunctioned, so 11 complete DD-Gypsy_5 datasets were ana-
lysed in this study. There were two collar sizes: small collars
weighed 1.24 kg and large collars weighed 1.33 kg (attached
with all devices), which constituted less than 2% and less than
1% of the body mass of the lightest equipped female and male
animals, respectively. Lions were recaptured two weeks after
the initial deployment to retrieve the Gypsy_5 GPS and replace
the DD SD cards. The collars remained on the lions as part of
a longer term study, releasing automatically using an on-board
timed drop-off mechanism—later found using the VHF beacon.
See electronic supplementary material, S1 for more information
on the study site, capture protocol and devices used. All analyses
were performed in Daily Diary Multi Trace (DDMT) [72], R (v.
3.6.2, [73]) and Origin pro 2016 (OriginLab Corporation, [74]).

Intermittent behavioural observations of each pride took
place at dawn and dusk, and occasionally during the day and
night, for approximately 2–3 h. During these periods, ethograms
of the collared individual’s various activities were recorded to
document movement for comparison with the acceleration
and GPS speed estimates to verify the accuracy of our MVF
thresholds (table 1). These observations were also performed to
check for any potential negative side effects of the collars,
though none were apparent.
2.1. The movement-verified filtering method
The MVF protocol (illustrated in figure 1) primarily involves
deriving DBA from tri-axial accelerometery data, computing
speed from GPS data and evaluating how both covary during
travelling movement. The user then decides on the threshold
limits that DBA and GPS speed must exceed (in terms of
both magnitude and duration) for a movement bout to be veri-
fied. Specifically, the step-by-step method (used for lions) is set
out in §§2.1.1–2.1.6.
2.1.1. Derivation of DBA
Vectorial dynamic body acceleration (VeDBA) [75] was the DBA
metric used for activity [65] and as a proxy for speed [66].
VeDBA is the vectorial sum of the DBA in a tri-axial acceleration
signal (see electronic supplementary material, S2). A rolling
mean was applied to raw VeDBA values (a 2 s centre-aligned
window was used for lions) to ensure that both acceleration



GPS fix taken

distance between MeFF and RF < Z

initial screening of outlier coordinates

movement thresholds

time threshold

DBA > X
and

GPS velocity > Y

duration of period ≥ T

no yes

MVF = 0 MVF = 1

comparing
individual

periods
encoded as 1

comparing
individual

values

Figure 1. Schematic of the derivation of MVF. GPS fixes with an MVF value
of 1 are considered to be more accurate given that the data indicate travel-
ling. Note that values used at each stage (including the stepping range and
post-smoothing windows in the prior derivations of GPS speed and VeDBA)
are user defined and must be adapted for the study species.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20210692

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

01
 F

eb
ru

ar
y 

20
22

 

and deceleration components of an animal’s stride cycle were
incorporated together within any particular time period [65].

2.1.2. Derivation of GPS speed
The trigonometric Haversine formula [76,77] was used to calcu-
late the shortest distance between fixes of an appropriate
stepping range (see electronic supplementary material, S2). We
define a stepping range as the interval between each retained
fix: a five-fix stepping range was used for lions (distance com-
puted between every fifth fix). Each successive distance
estimate was divided by its time period (between retained
fixes) to convert to GPS speed (m s−1). A rolling mean was
applied to GPS speed (5 s centre-aligned rolling mean used for
lions) for greater interpolation purposes with respect to accelera-
tion estimates (see Discussion and electronic supplementary
material, S2, detailing the importance of a suitable stepping/
post-smoothing range). Missing fixes were not included in the
computation of GPS speed.

2.1.3. Time synchronizing GPS speed and DBA data
Both VeDBA and GPS speed data were time synchronized
and sub-sampled to 1 Hz to make the data more manageable
for analysis and because differentiating between fine-scale beha-
viours was not a prime objective of this study. Missing locational
data were expressed as ‘NA’.

2.1.4. Using GPS-derived distance to identify extreme outliers:
distance threshold (Z )

Missing locational data were replaced by linear interpolation
between fixes (we define this set of coordinates as ‘raw fixes’;
RF). To identify extreme outliers, a median rolling filter was
applied to both the longitude and latitude coordinates of the
RF (we define this set of coordinates as ‘median filtered fixes’;
MeFF). The Haversine method was then used to calculate the
distance (units in metres) between the two sets of coordinates
(RF versus MeFF) per unit time. Locational data (RF) above the
Z threshold were deemed outliers (and thus failed the first step
of the MVF protocol). By applying a rolling median using a suit-
able window length, large distance estimates reflecting either
single or multiple ‘batched’ outlier(s) could be distinguished
from fixes deemed ‘accurate’ but highly separated in space
owing to large gaps in locational data. The window length size
and Z threshold should be chosen according to the animal in
question because of the scales of movement undertaken by differ-
ent species (median filter window length of 60 s and a lenient
threshold of 100 m used for lions). The window length should
be large enough so that the calculated median is not affected
by a potential batch of consecutive anomalies at any one time.
When plotted against time, the distance between RF and MeFF
shows relatively consistent variation about a given range (depen-
dent on the window size set), though large obvious spikes
indicate outliers, and the extent of this disparity can give an indi-
cation of the Z threshold to set.

2.1.5. Movement thresholds (X and Y)
The second stage for screening the GPS data was the thresholds
of VeDBA (XVeDBA) and GPS speed (YGPS) that infer moving
behaviour. We set the protocol for fixes to fail the MVF protocol
when:

(i) VeDBA < X and GPS speed > Y (likely resultant from
locational error)

(ii) VeDBA > X and GPS speed < Y (likely resultant from a
stationary behaviour),

where X and Y were given defined thresholds.
For the lions, after initial inspection of data with respect to

ground-truthed behavioural observations, the threshold X was
determined as 0.11 g and the threshold Y was determined as
0.35 m s−1 (see below). These thresholds were lenient, incorporat-
ing even slow movement and accounting for discrepancies of the
relative magnitude of acceleration estimates between individuals
(see [65,78]).

2.1.6. Time threshold (T )
The final stage of validating movement was to implement a
minimum time threshold (T ), over which uninterrupted move-
ment had to occur before it was classified as such. This was
implemented to discern travelling movement (where the animal
location changed) from non-travelling movement (e.g. when the
animal rolled over) for periods when both XVeDBA and YGPS

thresholds were met. MVF values were assigned a value of 1,
for every GPS fix that was time-matched to periods where the
above thresholds (XVeDBA and YGPS) were met for a minimum
duration of T (5 s was used for lions in the current study). MVF
periods encoded as 1 occurring≤ 2 s from one another were
merged. An MVF value of 0 represented either missing locational
data, extreme outliers (identified by Z threshold) or periods when
the data indicated the animal was non-moving.

2.2. Data analyses
Various movement-derived metrics were compared between
periods when animals were deemed to be moving (‘travelling’
movement; MVF = 1) and periods when they were deemed
to be non-moving (‘non-travelling’/stationary movement;
MVF = 0). Such metrics include estimates of pitch, roll, heading,
distance travelled, speed and tortuosity estimates (see electronic
supplementary material, S4 for procedures and references
therein). Here, unless otherwise stated, data ascribed as non-
moving do not include data when GPS positions were missing
or were extreme outliers (the latter determined by the Z
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threshold as described above). Results presented as percentages
are given as ‘x’ with variance as one standard deviation (s.d.)
and range in the format (�x ± 1 s.d. (rangemin− rangemax)).
3. Results
Across 25 h of behavioural observations, the MVF method
using the thresholds outlined above registered an average
accuracy of 97% (table 1; data correctly assigned as
moving). This protocol was determined to have a high true
negative rate (greater than 99%) and low false positive rate
(less than 1%), indicating that data that surpassed the MVF
protocol indeed showed that the animal was moving with a
high degree of certainty. The true positive rate was slightly
lower (ca 95%) and was perceived to have been primarily
modulated according to the variability in fix latency, which
(irrespective of stepping/post-smoothing range) can result
in a time delay, uncoupling estimates of GPS speed
from the instantaneous and definitive expression of DBA esti-
mates. It thus occasionally results in the beginning or end of
periods that animals were moving being misclassified as
‘non-moving’ (MVF = 0).

Fix success rate for the GPS varied between 89% and 97%
across different animals. There was no indication of systema-
tic drop-out (variability of fix success rate) being modulated
according to time over the 14 day monitoring periods (elec-
tronic supplementary material, table S3.1 and figure S3.1).
Generally, GPS-derived speed correlated well with VeDBA
(�x r2= 0.74 ± 0.04 (0.67–0.81)) (electronic supplementary
material, figure S2.4), especially during periods that were
defined by the MVF protocol as ‘movement’ (figure 2a,c; elec-
tronic supplementary material, figure S2.1:3). Discrepancies
between GPS speed and VeDBA were associated with
location error (figure 3; electronic supplementary material,
figure S2.3), with the MVF approach highlighting that the
position of the collar depended on the animal’s behaviour
(figure 4; electronic supplementary material, table S3.2) and
that this was a prime modulator of GPS performance
(cf. figure 3 and figure 2b; electronic supplementary material,
figure S2.3).

On average, 13.3% ± 3.3 (8.3–19.5) of data acquisition
passed the MVF protocol (electronic supplementary material,
table S3.2). The majority of data deemed to be non-moving,
70.4% ± 3.6 (65–77), was due to both XVeDBA and YGPS

thresholds not being met. However, an appreciable pro-
portion of non-moving data was due to the YGPS threshold
being met, but not the XVeDBA threshold, 12.4% ± 3.0 (9–18),
or both YGPS and XVeDBA thresholds being met, but not for
the duration of Ttime, 12.5% ± 2.9 (8–18). Data where XVeDBA

was met, but not YGPS, comprised 4.85% ± 1.3 (3–7) (elec-
tronic supplementary material, figure S3.2). The additive
nature of errors associated with GPS jitter was significant
and exemplified within cumulative distances moved
(between fixes) (figure 5; electronic supplementary material,
table S3.2) and was apparent even at the broadest scales of
movement (electronic supplementary material, figure S2.5).
It was clear that GPS jitter was much more prominent
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when lions were resting; unless these data were filtered, use
of these raw unfiltered GPS data resulted in biased and erro-
neous speed, distance and tortuosity of movement estimates
(electronic supplementary material, table S3.2). Following
the MVF method, there appeared to be a greater correlation
between DD- and GPS-derived heading estimates (electronic
supplementary material, figure S4.1).
4. Discussion
4.1. Evaluation of the MVF protocol
This work demonstrates the value of using both DBA and GPS
data to discernmoving behaviours from stationary behaviours
with a computationally quick protocol which effectively filters
inaccurate fixes from high-frequency GPS data (e.g. ≥1 Hz,
though it shouldwork at lower frequencies; see electronic sup-
plementary material, figures S2.1 and S2.2). The central
premise is that when the magnitude of GPS speed and
VeDBA both indicate movement (via pre-set thresholds),
then movement is indeed likely (table 1, figure 3 and
figure 2a; electronic supplementary material, figures S2.1
and S2.3). This highlights the problem of GPS jitter when
VeDBA does not correspond to movement even though the
GPS indicates otherwise. Conversely, (relatively energetic)
non-travelling behaviours are flagged when the magnitude
of VeDBA infers movement while data on GPS speed do not.

Our results reaffirm the importance of screening GPS
inaccuracies within high-frequency independently collected
datasets of animal movements, owing to the additive nature
of GPS jitter, which is most prevalent during rest periods
(figure 3; electronic supplementary material, figure S2.3 and
table S3.2). This was particularly relevant in the current
study because of the high proportion of data allocated to
non-moving behaviours (electronic supplementary material,
table S3.2) (reflecting the energy-conservation strategy that
Kalahari lions adopt (see [79]). Indices of collar/postural off-
sets (evaluated using absolute values of pitch and roll)
showed high variability during times when GPS units did
not acquire fixes (figure 4), even when the fix success rate
could not be attributed to battery longevity (electronic sup-
plementary material, table S3.1, figure S3.1). Animal
behaviour (including habitat selection) thus seems to be a pri-
mary factor affecting fix success rate and quality. Clear mono-
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modal peaks in the indices of posture were only witnessed
when all thresholds of our MVF approach were met
(figure 4). While there were slight differences in the tightness
of these distributions between lions (presumably because
of discrepancies between collar fit), this does suggest that
the optimum collar–body position for acquiring satellite sig-
nals occurred during travelling movement. By contrast,
distributions were much more varied during times of non-
moving, again highlighting the interplay between animal be-
haviour, collar orientation and GPS performance.

Our results highlight how, in the absence of appropriate
filtering, inappropriate conclusions about a species’ move-
ment can be made. Here, there were stark contrasts of
tortuosity, speed and, most notably, distance travelled
estimates between sets of data that both passed and failed
our MVF method (electronic supplementary material,
table S3.2). This method may therefore have particular
value for distinguishing true small-scale area-restricted
search (ARS) behaviour [80] by removing spurious turn
angles caused by jitter [81,82] (see electronic supplementary
material, figure S4.1). Here, cumulative distance from non-
moving data was 80% higher than their actual moving
periods for some lions. This highly inflated index of move-
ment was exemplified when measured as hourly averages
(figure 5), apparently showing that lions travelled greater
distances during the hottest parts of the day, something
that is extremely unlikely (see [83]). Furthermore, our MVF
protocol reduced the apparent maximum speed of any lion
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from greater than 150 to 48 km h−1. This critical issue high-
lights the drawbacks of assessing GPS data sampled at high
frequency (in spite of necessary post-resampling strategies
(electronic supplementary material, S2)), which intensifies
erroneous location estimates (see figure 3 and electronic sup-
plementary material, figure S2.3), even at macro-scales of
movement (electronic supplementary material, figure S2.5).

4.2. Utility of the MVF protocol according to species-
specific and environmental circumstance

The Haversine method for determination of animal speed
and location using GPS positional fixes can estimate distances
travelled with high precision [76]. However, for datasets con-
taining many points collected at high frequencies, distance
estimates are unreliable at small stepping ranges owing to
the interplay between location error and the precision of
longitude and latitude coordinates that produce additive
errors [26,84]. Most commercial GPS units record fixes to
five decimal places, with the fifth digit of the decimal place
giving approximately 1.1 m resolution. Furthermore, the
computation time for a device to record a GPS fix can vary,
reducing the synchronization of time between both GPS
and the accelerometer logger. Given that many terrestrial
animals maintain relatively low travel speeds for extended
periods (see [85]), we note that an appropriate choice of
stepping range and smoothing window is critical for dedu-
cing reasonable step-length estimates per unit time
(electronic supplementary material, figures S2.1 and S2.2),
with this being dependent upon the (species-specific) scales
of movement being assessed (see [29,66,86]).

Essentially, there is a trade-off between incorporating
higher rates of (precision-based) error at smaller stepping
ranges and increasing the lag of change relative to the prop-
erly time-synchronized acceleration data at higher stepping
ranges. This means that accurate fine-scale estimates of
GPS-derived speed are not possible and so the relationship
with body movement measurements such as VeDBA will
never be succinct given the disparity of resolution from
both measures. In addition, inter- and intra-specific
variations of acceleration estimates can arise owing to discre-
pancies of: morphology [66], locomotion mechanisms (e.g.
change in gait to facilitate higher speeds [87]), extrinsic fac-
tors (e.g. moving over a deformable substrate/changeable
grade [86,88]), tag placement [65] and collar roll [89,90],
thereby altering the relationship between VeDBA and
mechanical power (and thus speed) [86,91].

Alongside GPS resampling, MVF user-defined thresholds
are expected to change according to the study species and
scales of movement in question. For example, DBA estimates
(specifically ‘overall dynamic body acceleration’; ODBA [65])
of African elephants (Loxodonta africana) typically ranged
between 0.15 and 0.3 g during periods of walking [92] and
this is comparable to that reported for Eurasian beavers
(Castor fibre) (0.265 ± 0.029) [93]. Though, notably, both species
have different leg lengths and move with very different gaits,
which gives very different DBA-dependent speed estimates,
as demonstrated by Bidder et al. [66] for multiple species.

It is notable here that we have focused on terrestrial
movement, and this is primarily because the relationship
between DBA and speed can break down substantially for
many aquatic and aerial species. This occurs because, for
example, birds can glide at a variety of ground speeds
(depending on, for example, wind vectors and glide angle)
without changing DBA. Another reason is that air com-
pression with water depth affects the buoyancy of many
marine animals, which complicates the DBA∼speed relation-
ship depending on swim angle [94–96]. Furthermore, GPS is
restricted to (potentially infrequent) resurfacing events for
diving animals and so scaling DBA with GPS-derived
speed is problematic for extended periods of time during
underwater movements. Taken together, while we do not
rule out extensions of the MVF method for use in such
environments, we advocate that, in its current form, it is
most suitable for evaluating movements on land.

Importantly, the validity of this method is dependent on
the interaction between a focal species’ behaviour and
where it inhabits—the critical limitation being the assump-
tion that fixes are accurate during periods of moving. This
is demonstrably not always the case (figure 6), even in our
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study area, the Kgalagadi Transfrontier Park, which is open,
with relatively sparse vegetation. Since vegetation type and
density are key modulators of GPS accuracy
[36,39,40,44,50], the viability of our method needs to be
tested within other (e.g. more vegetated) environments.

Nevertheless, for the study species in question, we have
highlighted the effectiveness of this method and, in line
with the above considerations, have demonstrated that a gen-
eral correlation does exist between the magnitudes of both
DBA and GPS speed during movement periods (figure 2;
electronic supplementary material, figure S2.1:4). As such,
we suggest that this approach could be used further to dis-
cern reliable events of high performance (e.g. hunt chases)
and implemented within the dead-reckoning framework
(see [67,97]), both as a corollary to the DBA–speed relation-
ship (required for the speed coefficient) [67] and the GPS
screening protocol prior to the correction process of dead-
reckoned tracks [68]. At the very least, we demonstrate
the utility of GPS speed to be included as a useful parameter
for identifying behaviours and this may be of value to more
complex approaches (e.g. machine learning (see [98,99–101]),
the lowest common denominator (LoCoD) method [102] and
space-state models (e.g. [103,104]) for precluding certain
behaviours from movement and screening for location
error. Indeed, applying this method as a validator of move-
ment extent within behaviour-based studies over finely
resolved space and time may facilitate the powers of infer-
ence, such as when considering animal responses to human
barriers (see [105]). Lastly, we theorise that high fix frequency
will help elucidate fix inaccuracy within areas of high canopy
cover, possibly via extensions to this method such as includ-
ing an upper GPS speed threshold limit and comparing
variation in GPS speed juxtaposed to DBA estimates and
GPS- and DD-derived heading estimates (see electronic
supplementary material, S4).
5. Conclusion
Here, we reaffirm the importance of initial GPS screening to
avoid inaccurate movement estimates. Animal behaviour
seems to be a major modulator of GPS performance, and
this is particularly germane in collared species due to the
interaction between behaviour and collar orientation. The
proposed MVF method provides a basis for high-resolution
GPS screening, which is user friendly, computationally
quick and focuses on identifying behaviour to filter GPS
data. Movement-defined thresholds can be modelled accord-
ing to the focal species in question, while further differences
between motion sensor and GPS derivatives can be incorpor-
ated into this MVF foundation to resolve fix inaccuracy
during movement. Movement-based outputs comparing
MVF values from lion data exemplified the degree of inaccur-
acy associated with GPS jitter and the importance of
removing such additive error prior to assessing fine-scale
trends of movement, particularly step length. Our results
show that consideration of data from both GPS units and
motion sensors greatly helps validate true movement pat-
terns and reaffirms the caution required when interpreting
fine-scale GPS sampling such as during ARS analysis. Further
work could assess the value of MVF for other species with
different activities and habitat selections, particularly those
that move within highly vegetated areas. The consequences
of the errors introduced by GPS inaccuracies are broad,
including erroneous inferences of behaviour, movement,
speed and energy budgets. The approach proposed here
avoids these errors and enables accurate assessments of
these traits.
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