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Abstract: Developing Field Programmable Gate Array (FPGA)-based applications is typically a slow 7 

and multi-skilled task. Research in tools to support application development has gradually become 8 

more high-level. This paper describes an approach which aims to raise further the level at which an 9 

application developer works in developing FPGA-based implementations of image and video pro- 10 

cessing applications. The starting concept is a system of streamed soft coprocessors. We present a 11 

set of soft coprocessors which implement some of the key abstractions of Image Algebra. Our soft 12 

coprocessors are designed for easy chaining, and allow users to describe their application as a data- 13 

flow graph. A prototype implementation of a development environment, called SCoPeS, is pre- 14 

sented. An application can be modified even during execution without requiring re-synthesis. The 15 

paper concludes with some performance and resource utilization results for different implementa- 16 

tions of a sample algorithm. We conclude that the soft coprocessor approach has the potential to 17 

deliver better performance than the soft processor approach, and can improve programmability 18 

over dedicated HDL cores for domain specific applications while achieving competitive real time 19 

performance and utilization. 20 

Keywords: Image Processing, FPGA, Soft coprocessor 21 

 22 

1. Introduction 23 

Image processing algorithms are used in many applications, such as image classifi- 24 

cation, medical image processing, video surveillance and target detection and tracking [1- 25 

3]. These applications have been embedded in more and more devices such as 26 

smartphones, unmanned autonomous vehicles and surveillance cameras [4-6]. Safety crit- 27 

ical image processing applications require the processing system to be accurate, and often 28 

fast [7]. With the rapid development of image sensors, the resolution of images and videos 29 

is becoming higher than ever. For high-resolution images, traditional processors struggle 30 

to keep up with increasing resolutions [8]. It may not be possible to process very large 31 

images in real-time using conventional CPUs. Thus, it is necessary to consider ways of 32 

accelerating the most time-consuming computing tasks parts of the application in these 33 

cases. Commonly, there are four approaches to accelerating image processing algorithms, 34 

which are: multi-core clusters of CPUs, GPUs, FPGAs and ASICs. CPUs and GPUs are 35 

instruction-based processors, and so they operate on the normal fetch-execute cycle 36 

model. This can means that it can takes several clock cycles to execute one instruction. 37 

They are also relatively high power compared to ASICs and FPGAs when implementing 38 

the same application [9]. ASICs usually have the best performance and lowest power, but 39 

they are not programmable and are very expensive to produce. FPGAs are somewhere 40 

between GPUs and ASICs. They are capable of producing low power, low cost but high- 41 

performance solutions. However, the design time for custom cores can be much longer 42 

than for GPUs [10]. In the field of image processing, because of the independence of pixels, 43 

FPGAs can produce good speedup, particularly when used as a coprocessor for low-level 44 
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image processing operations [11]. However, the key challenge is to speed up the process 45 

of producing an FPGA-based solution to image processing application problems.  46 

The need to accelerate the application development process is generally acknowl- 47 

edged. Although vendors and researchers have been putting effort into creating higher- 48 

level design environments for building hardware accelerators usingon FPGAs, some 49 

problems still remain [10,12-14]. Hardware designers tend to use ‘high-level’ in the sense 50 

that the syntax is at a higher level than Very high-speed integrated circuit Hardware De- 51 

scription Language (VHDL) or Verilog HDL [15]. But for application developers and soft- 52 

ware programmers, ‘high- level’ means that hardware design issues can be practically 53 

ignored, and the coding focuses on the application alone, as though the developer were 54 

coding for a PC. To application developers, the above tools remain low level, even if they 55 

use C syntax [15]. If application developers use the tools naively, without taking hardware 56 

design issues into account, the result is likely to be very inefficient hardware. Also, alt- 57 

hough these High-level Synthesis (HLS) tools are described as high-level, there are some 58 

features of the input language that cannot be synthesized. For example, Xilinx Vitis HLS 59 

does not support the use of pointers and dynamic memory allocation in C [13,16]. 60 

Since the result of the HLS tools above is still HDL, users typically require the usual 61 

long re-synthesis time when they make changes to the algorithm or application [14]. This 62 

hinders the experimental nature of image processing application development, which is 63 

one of the targets of this paper.   64 

Xilinx recently aimed to shorten the synthesis time by their new product, Adaptive 65 

Computing Accelerating Platform (ACAP) and released an early product of the ACAP 66 

family, Versal [17]. The main advantage of the ACAP family is the ability to rapidly do re- 67 

synthesis (within milliseconds). Xilinx also provides their AI Engine to accelerate the de- 68 

ployment of AI applications on their selected Xilinx devices. Combined with Xilinx Vitis, 69 

the development of AI and image processing applications on some of the Xilinx devices 70 

can be significantly accelerated [18]. Unfortunately, only some of the latest Xilinx devices 71 

support this feature. 72 

Thus, the current challenges toof using FPGAs to accelerate an image processing sys- 73 

tem can be summarized as follows: 74 

1) It is hard to achieve both programmability and performance on FPGAs across all 75 

devices.  76 

2) Current vendors' HLS tools still require users to be knowledgeable about hardware 77 

and the limitations of the tools. 78 

3) Lengthy synthesis time is a hindrance during experimental and iterative image 79 

processing system development. 80 

In this paper, a higher level approach for image processing system development is 81 

proposed to address to some extent the above-mentioned challenges. We will present a 82 

number of concepts, which are integrated into a prototype Soft Coprocessor System 83 

(SCoPeS), to support the development of FPGA-based image processing applications. De- 84 

tailed contributions of the paper are as follows: 85 

1) We propose the concept of customizable Soft Co-Processors (SCPs) as the basic 86 

building block for stream-based applications.  We allow users to chain SCPs together so 87 

they can communicate directly with each other and not merely with the host. We use AXI- 88 

Stream Interconnect to connect the SCPs in the a system. In this way, we provide users 89 

with a flexible system which can be programmed as a dataflow graph (DFG). Users do not 90 

normally need to re-synthesize when they change the DFG. 91 

2) We provide a set of customizable Software Co-Processors based on the key con- 92 

cepts of Image Algebra (IA), including a range of point, neighborhood, and global opera- 93 

tions. 94 

3) We provide a set of efficient hardware skeletons for defining new IA-like opera- 95 

tions, where users need only supply their own C-based pixel-level function.  This enables 96 

the creation of very efficient function specific SCPs. 97 
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Our prototype SCoPeS environment includes several tools to support the SCP ap- 98 

proach. A hardware configuration generator tool enables users to specify the number and 99 

of each type of SCPs to be available for the current application project. Provided the ap- 100 

plication uses only this pool of SCPs, no resynthesis is required. A code generator enables 101 

users to define their applications in terms of a text-based DFG. (This is in place of special 102 

tools for editing a graphical view of the DFG). Users can edit the textual DFG description, 103 

normally without requiring re-synthesis. 104 

The rest of this paper is organized as follows. In section II, we introduce the back- 105 

ground and related work in terms of Image Algebra, high-level programming models and 106 

different FPGA implementations of image processing algorithms and systems. Section III 107 

provides a user’s view of our design approach. In section IV, we describe the architectures 108 

and underlying implementations, including our Generic and Function-specific Image Al- 109 

gebra based SCPs and how they connect and communicate with each other. In section V 110 

we demonstrate how we create a new image processing system using our SCoPeS envi- 111 

ronment. In section VI, a comparison between different design approaches for a simple 112 

image processing operation is presented for evaluation purposes. 113 

2. Background and Related Work 114 

2.1. Current Tools for Designing FPGA Custom Cores in a High-level Environment 115 

Modern FPGAs are no longer thought of as arrays of gates, but as collections of larger 116 

scale functional blocks, integrated using programmable logic. They are still programma- 117 

ble but are not restricted to programmable logic (PL), and sometimes come equipped with 118 

on-chip ARM processors or embedded GPUs. When implementing an image processing 119 

system on FPGAs, the design effort is a critical project requirement. Very large image pro- 120 

cessing systems are difficult to design efficiently and require very detailed hardware 121 

knowledge. To address this challenge, vendors have released their HLS tools to reduce 122 

the design time. The syntax of design description languages has moved up from 123 

VHDL/Verilog HDL to C/C++ level because of HLS tools like Vivado HLS and Intel HLS 124 

compilers [19,20]. Applications are becoming more complex. System-on-chip solutions are 125 

achievable through the hybrid architecture of ARM+PL and the HLS design approach.  126 

 There are also some HLS tools from academia, such as LegUp [21], CyberWorkBench 127 

[22] , autoBridge [23]  and LeFlow [24]. autoBridge is an HLS tool specifically for floor 128 

planning and pipelining high-frequency designs on multi-die FPGAs. LeFlow is an HLS 129 

tool designed specifically for deep learning inference implementation. LegUp can gener- 130 

ate a hybrid system of custom cores and soft processors; the other tools only generate 131 

custom cores. In currently available HLS tools, users need to rely on the vendor’s tools to 132 

integrate the RTL design into a whole system, which is a non-trivial task. After the HLS 133 

stage, there is generally no additional help for users to integrate their resulting system. 134 

2.2. Soft processors 135 

As an alternative to the inflexible custom core approach, it has become popular to 136 

provide cores for simple programmable processors. These allow users to program in high- 137 

level languages. A soft processor is achieved by configuring FPGA hardware resources as 138 

a processor. Soft processors can reduce the design time through using a high-level lan- 139 

guage. They also reduce the hardware knowledge required to design a full system. How- 140 

ever, usually single core performance of a soft processor is poor, since soft processors go 141 

through the standard fetch-execute cycle for each instruction, and they cannot run at as 142 

high a clock rate as normal hard-core processors. For example, Xilinx Microblaze usually 143 

runs under 400 MHz, while Intel and ARM processors can run at well over 1GHz [25-29].  144 

 When users program these soft processor systems, they do not normally have to 145 

think in terms of the hardware but at a relatively high-level, and potentially get decent 146 

performance. Unfortunately, there are no soft processors optimized directly for image 147 

processing from vendors like Intel (Altera) and Xilinx. Two soft processors developed 148 



J. Imaging 2022, 8, x FOR PEER REVIEW 4 of 18 
 

 

specifically for image processing are, for example, IPPro [30] and a RISC-V soft processor 149 

[31].  These processors require fewer resources than Nios II and Microblaze. 150 

 151 

2.3. Image Algebra and Pixel Level Abstractions 152 

Image Algebra (IA) [32] is a mathematical theory concerned with the transformation 153 

and analysis of digital images at the whole image (rather than pixel) level. The main goal 154 

is the establishment of a comprehensive and unifying theory of image transformations, 155 

image analysis, and image understanding. Basic IA operations can be classified as: point 156 

operations, neighborhood operations, and global operations.  157 

In point operations (P2P), the same operation is applied at every input pixel position 158 

using only pixels at that position. Operations can be binary or unary; they include rela- 159 

tional (e.g. ‘>’, ‘=’), arithmetic (e.g. ‘+’, ‘×’), and logical (e.g. ‘and’, ‘or’) operations. Nor- 160 

mally one output pixel is generated for each corresponding input pixel position.  161 

A neighborhood operation (N2P) is applied to each (potentially overlapping) region 162 

of an image. It is most common to use a 3×3 or 5×5 window. A new pixel value will be 163 

generated for each window position. The user specifies the matrix of weights for the win- 164 

dow which can beis used in calculating the result value.   165 

A global operation is a reduction operation which is applied to the whole image and 166 

produces a scalar (R2S) or a vector (R2V). For example, the global maximum will produce 167 

one scalar value, whereas histogram will produce a 256-element vector (for standard grey 168 

level images). 169 

2.4. FPGA-based image processing 170 

In embedded systems, FPGAs are powerful tools for accelerating image processing 171 

algorithms, especially for real-time embedded applications, where latency and power are 172 

important considerations. FPGAs can be embedded in the a camera to directly provide 173 

pre-processed image streams. In this way, the sensor will provide an output data stream 174 

rather than merely a sequence of images [33]. FPGAs can achieve both data parallelism 175 

and task parallelism within many image processing tasks. Unfortunately, simply putting 176 

a PC-based algorithm onto an FPGA usually gives disappointing results [34]. Also, many 177 

image processing algorithms have been optimized for scalar processors. Thus it is usually 178 

necessary to optimize the algorithm specifically for an FPGA before implementing. 179 

There have typically been three approaches to implementing an image processing 180 

algorithm/system on FPGAs: 181 

1) Custom hardware designed using Verilog HDL or VHDL and combined with the 182 

vendor’s IPs. 183 

2) Use high-level synthesis tools to convert a C-based representation of the algorithm 184 

to hardware. 185 

3) Map the algorithm on to one or a network of soft processors. 186 

When users need to implement an algorithm on FPGAs using custom cores, they 187 

need to consider the memory mapping, architecture, and algorithmic optimizations. On 188 

the other hand, when users try to use soft processors to implement their complex algo- 189 

rithm, they will usually be limited by the poor single core performance on the one hand, 190 

and resource usage utilization of a multi-core architecture on the other. Thus, balancing 191 

programmability, resource utilizations and performance is a key challenge for implement- 192 

ing algorithms on FPGAs. 193 

2.5. Summary 194 

Currently, HLS tools are the key to rapidly implementing FPGA-based image pro- 195 

cessing algorithms or systems. HLS tools can even accept different input languages, such 196 

as C/C++, Java, Python and LabVIEW. Users need to use Xilinx Vivado or Intel Quartus 197 
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Prime to do the integration. This stage and usually this stage requires detailed hardware 198 

knowledge.  199 

In terms of the efficiency of implementing image processing algorithms and systems 200 

on FPGAs, custom cores have better performance than soft processors, but require users 201 

to have detailed hardware knowledge to design efficient accelerators.  Soft processors 202 

keep the high-level programming model, but single core performance is poor. Users need 203 

to use multiple soft processors in order to meet the performance requirements. Fig. 1 in- 204 

dicates informally the programmability (easey of use) vs performance (throughput) of the 205 

different approaches. Our goal is to move a step closer to achieving both performance and 206 

programmability at the same time. For suitable applications, our soft coprocessor ap- 207 

proach has seeks to have performance approaching HLS products and HDL custom cores, 208 

but even if it is not as programmable or as general purpose as soft processors. 209 

 210 

 211 

Figure 1.  Qualitative Rrepresentation ofing Programmability vs Performance 212 

 213 

To address these challenges and problems, in this paper we present our approach – 214 

the soft coprocessor (SCP) approach. This aims to achieve performance closer to custom 215 

cores while providing users with a higher-level programming model than the current Vi- 216 

vado toolchain. 217 

3. User’s View of the Soft Co-Processor Approach 218 

3.1. The Concept of Soft Coprocessors 219 

For FPGAs, performance and programmability are in conflict with each other. For 220 

specific applications such as image and signal processing, it is sometimes possible to pre- 221 

sent a higher -level programming model which is less general purpose but can exploit 222 

common data access patterns. One of the first uses of coprocessors was in the early days 223 

of microprocessor design. For example, the Intel 8086 processor could use a separate 8087 224 

coprocessor chip to increase the speed of floating-point calculations with which it was 225 

closely integrated [35]. In this case aA coprocessor does not have the usual overhead of 226 

the fetch-execute cycle which is a significant overhead for soft processors.  We therefore 227 

propose the concept of soft coprocessors to try to gain many of the benefits of an applica- 228 

tion-specific processor but with the efficiency of a coprocessor. All our soft coprocessors 229 

have the following basic properties: 230 

• A standard interface for data transfer between soft coprocessors, allowing devel- 231 

opers to add a soft coprocessor to a system without having to design custom I/O hard- 232 

ware.  233 

• Each soft coprocessor can be parameterizable, allowing a degree of programmabil- 234 

ity and functional flexibility, but without requiring re-synthesis. 235 

• The soft coprocessors should be able to interact with each other, and to be formed 236 

into a DFG arrangement, to reduce communication and buffering overheads. This as- 237 

sumes a stream-based system approach. 238 
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• Each soft coprocessor should be able to interact with the background control and 239 

communication system which controls manages the operation of the whole FPGA-based 240 

system.  241 

FPGAs have a lot of computing resources but a more restrictive on-chip memory 242 

model. The efficient use of memory resources is crucial to system performance. Skilled 243 

developers can choose the optimal memory management approach from a vast range of 244 

possibilities. However, for application developers, it is difficult to properly arrangefully 245 

exploit the precious limited on-chip memory resources using HLS tools. In order tTo pro- 246 

vide optimized memory allocation for point, neighborhood and global operations, we 247 

provide three fundamental types of soft coprocessor based on the core Image Algebra (IA) 248 

operations. 249 

3.2. Soft coprocessors for stream-based image processing 250 

Stream-based processing using on-chip memory is preferred where possible, since 251 

simultaneous access to off-chip memory by multiple coprocessors would be a bottleneck. 252 

For a specific application domain such as image processing, we would like a set of 253 

SCPs which can be reusedinstantiated, and which cover the common domain operations.  254 

A good way to identify such a set is to find an existing algebra for the domain and build 255 

on the abstractions which have been identified and used at a mathematical level.  In the 256 

case of image processing, we have chosen some of the core concepts of Image Algebra 257 

(IA). 258 

3.3. Single Image Algebra-based SCPs 259 

We provide a built-in library of core SCPs which carry out the core operations of 260 

Image Algebra. There are four core classes of IA SCPs, plus a fifth type for compound 261 

operations: 262 

(i) Point operations. We provide two types of SCPs which apply a point function to 263 

every pair of pixels in the two streamed input images (or to each pixel and a scalar param- 264 

eter), and generates an output pixel stream. The actual function applied is a parameter. 265 

The range of point functions include all the standard (integer) arithmetic, logical and re- 266 

lational functions. For example, a threshold operation would use the image-scalar SCP 267 

with the two parameters (≥, threshold value). Image stream pPixels are implemented 268 

usingheld as 8-bit integers, and intermediate values created during the result of addition, 269 

subtraction and multiplication are designed according to the worst case of the calculation- 270 

are held in higher precision as necessary. 271 

(ii) Neighborhood operations. We provide an SCP for each common size of neighbor- 272 

hood (3x3, 5x5, etc.). The NxN matrix of weights is supplied as a parameter.  A standard 273 

neighborhood operation has two functions: the point function which is applied pairwise 274 

to each pixel-weight pair in the window; then the reduction operation which reduces the 275 

NxN intermediate results to a single pixel result. For example, for a standard convolution, 276 

the two function parameters are (×, |Ʃ|). Using this type of SCP a range of common image 277 

processing functions are is possible, such as dilation, erosion, convolution-based edge de- 278 

tection, and image filtering. 279 

 For example, a simple dilation SCP on a binary image would be an instance of the 280 

3x3 SCP with the kernel weights [1,1,1,1,1,1,1,1,1] and the functions (×, OR‘or’) (effectively 281 

just a neighborhood OR). An erode SCP would use have AND ‘and’ instead of ‘or’OR as 282 

a parameter. 283 

 For some operations (perhaps involving image reduction), the window can step by 284 

more than one pixel: for example, in the convolution layer of a Convolutional Neural Net- 285 

work (CNN) [36]. This is achieved by having a stride parameter as part of the neighbor- 286 

hood operation SCP. The default stride is 1x1. 287 

(iii) Global operations. We provide an SCP which performs a reduction operation on 288 

a streamed image. The result is a single value. The available reduction functions include 289 
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Ʃ, |Ʃ|, max, min, count, and average. A second global SCP produces a vector as a result 290 

(typically used for finding the image histogram). 291 

(iv) Block operations. Sometimes, we need to divide an image into multiple smaller 292 

blocks and then apply the same algorithm to each block. For example, for the Histogram 293 

of Oriented Gradients (HOG) algorithm, we find a histogram of edge gradients for each 294 

block. Thus, we provide a Block-based SCP which provides a Neighborhood operation or 295 

other function, for each block separately.  296 

(v) Common complex operations. Although the above basic SCPs can be chained to- 297 

gether to perform a compound IA-based algorithm, in practice there are certain common 298 

patterns of operations which can be more efficiently implemented as a single operation. 299 

We therefore provide a number of pattern-specific SCPs. For example, edge-finding and 300 

morphological operations sometimes apply a window in several rotated orientations, and 301 

have a final reduction stage to produce a single result. We provide a Cycle Neighborhood 302 

SCP which takes as its parameters the weight matrix, the number and step angle of rota- 303 

tions, the two functions for the neighborhood operation, and the final reduction operation.  304 

 For example, suppose we want a complete Sobel edge detection operation using a 305 

single complex neighborhood SCP.  We supply the kernel (the vertical one, say) and spec- 306 

ify two orientations, with a rotation step angle of 90o. The two neighborhood function 307 

parameters are “×” and “|Σ|” and the vector of kernel weights is [-1, 0, 1, -2, 0, 2, -1, 0, 1].  308 

The final operation to combine the two window outputs (the vertical and horizontal edge 309 

strengths) is ‘+’. (Adding the absolute edge strengths is a common approximation to avoid 310 

squaring and adding). The code to create an instance of the complex neighborhood SCP 311 

with all these parameters is shown in fig. 4. 312 

3.4. Chaining Multiple Core SCPs in a Data Flow Graph 313 

Multiple instances of the above generic SCPs can be chained together to implement 314 

a compound algebraic expression. The output stream of one SCP is fed directly as the 315 

input to the next without buffering the complete intermediate image or without involving 316 

the host processor. Synchronization is handled automatically by the SCP framework. This 317 

chaining can be represented by a simple Data Flow Graph (DFG). 318 

For example, the above Sobel edge detector could have been created using two basic 319 

3x3 neighborhood SCPs feeding their results into a third point SCP. 320 

3.5. Skeleton SCPs for Function Specific Coprocessors 321 

Using generic SCPs is useful during the algorithm experimentation stage, because 322 

the hardware does not need to be changed even if different functions are selected. How- 323 

ever, once the algorithm is finalized, more efficient function specific coprocessors for com- 324 

pound operations can be created. To make this convenient without requiring hardware 325 

knowledge, we provide a set of SCP skeletons. These are effectively ‘hollow’ codingss of 326 

the above four classes of SCP (point, neighborhood, global and block). The skeletons con- 327 

tain HLS code to manage the dataflow patterns of each type of operation.  In this way, 328 

users need only to supplyies the core pixel-level function in the form of a simple C/C++ 329 

function. It is in this C function that the user specifies the arbitrarily complex operation. 330 

Users can code detailed optimizations, for example, by embedding constant kernel coeffi- 331 

cients. An example we will see later is an SCP specifically for a more efficient implemen- 332 

tation of the Sobel edge detector. 333 

A new SCP created using our skeletons will need to be synthesized the first time. 334 

Once it is added to the SCP library, it is available thereafter.  335 

Function specific SCPs are commonly used to replace a chain of SCPs, or they can 336 

replace a generic SCP with one which is optimized for the specific purpose.  For example, 337 

a more efficient dilation SCP could be created using the 3x3 neighborhood skeleton, and 338 

encoding a simple OR function which avoids the need to apply the redundant ‘×1’ step.  339 
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Function-specific SCPs will be more area-efficient than their generic counterparts. 340 

Each generic SCP must retain the hardware for all the available functions, in case the user 341 

wishes to experiment with different functions during development, without resynthesis. 342 

Of course, the function specific SCPs are not as functionally flexible. There are also several 343 

coding conventions which must be followed, for accessing the parameters. This is one of 344 

the necessary trade-offs when working with FPGAs.  345 

We now give an example of using a neighborhood skeleton SCP to implement a Sobel 346 

Ooperation as a single and efficient function -specific SCP. The code of the Sobel opera- 347 

tionfunction, including thresholding, is given in fig.ure 2.  348 

  349 

 350 
Figure 2. The core function for the Sobel oOperation when using a skeleton SCP 351 

3.6. Generating SCP Configurations 352 

We distinguish between the application program and the hardware configuration it 353 

runs on.  To avoid frequent re-synthesis, our model is that a (pre-synthesized) configu- 354 

ration contains the set of SCPs which are available to the application developer.  Pro- 355 

vided the application makes use of only these SCPs, then changes to the application can 356 

be made without any re-synthesis. There are separate tools for defining both the configu- 357 

rations and the application. 358 

To speed up the process of getting a runnable FPGA configuration, our SCoPeS en- 359 

vironment maintains a library of FPGA configurations which contain different mixes of 360 

SCPs from the SCP library.  The need for this arises because the developer may not know 361 

in advance exactly how many instances of which each type of SCP s will be needed.  If 362 

the Configuration library does not have the necessary mix for the current project, then we 363 

provide a tool which enables the user to create a new SCP configuration. The user can 364 

specify the number of each class of SCP, and the Hardware Configuration Generator 365 

(HGC) tool will then generate the complete FPGA bitstream, and add it to the Configura- 366 

tion library, as shown in Figure fig. 3. Obviously, the required hardware resources of the 367 

defined configuration must be able to fit on to the target FPGA. 368 

 369 
Figure 3. The GUI for creating a new project configuration 370 



J. Imaging 2022, 8, x FOR PEER REVIEW 9 of 18 
 

 

3.7. Text-based DFG Code Generator (TCG) 371 

Normally, users could use the default Xilinx SDK to program the Zynq-based hard- 372 

ware platform in baremetel mode or use PetaLinux+Xilinx SDK to build a Linux-based 373 

application for more complex applications. In this stage, there is no hardware level design; 374 

normally users can develop their application in C/C++. Users need to use the HLS-ex- 375 

ported driver to create their own initialization function, set all the parameters individu- 376 

ally, and invoke them for during the execution. We use the AXI-Stream InterconnectS in- 377 

terface for connecting all our coprocessors (see later) to match the user-supplied DFG. This 378 

textual DFG specifies the coprocessor instances, their parameters, and their interconnec- 379 

tion channels. Our Textual Code Generator (TCG) tool takes the text representation of the 380 

DFG and generates the executable C code for the Xilinx SDK. This simplifies and speeds 381 

up the development of the final application. 382 

As an example, fig.Figure 4a shows the developer’s code (the textual DFG) for an 383 

automatic thresholding system using the Otsu method (assuming we have already have 384 

written the final Otsu SCP to select and apply the threshold using our skeletons) after an 385 

Open operation. Because in the system, wTe fix the entry point as the ‘Streamer’, which is 386 

used a block whichto is directly connected to the camera, and which generates a stream 387 

with all the parameters and the image data, and the camera is directly connected to the 388 

streamer. There is no need to define the input source because in the system we cannot 389 

split the stream. Thus, in the code, wWe set theuse ‘Streamer’ to define the first output 390 

channel to channel 3. And We then we do the dilation and erosion through neighborhood 391 

operations. After that, we do the edge detection, histogram finding and Otsu threshold- 392 

ing. The result image stream is returned through channel 2. Fig.ure 4b outlines the gener- 393 

ated Xilinx SDK useable code from the DFG in fig.ure 4a.  394 

 395 

 396 
Figure 4a. Example Textual Description of a DFG for Otsu after an oOpen operation 397 

 398 
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 399 
Figure 4b. Example of the code generated by the TCG tool from the DFG in fig.ure 400 

4a. 401 

 402 

In fig.ure 4b, the first block on the right describes is the output from the first pass of 403 

our TCG tool through the text description, generating all the necessary header files based 404 

on the names of the functions. The second block shows the generated initialization func- 405 

tions. Then the main body of the program is generated based on the text-based DFG.  406 

3.8. Using the SCoPeS Development Environment 407 

Our SCoPeS development environment includes the tools necessary to build an ap- 408 

plication using the SCP library, as mentioned above. It is currently a prototype IDE. The 409 

typical design flow for a new project/application is thus as follows: 410 

1. Decompose the desired algorithms into IA expressions. 411 

2. Select (or create) a suitable configuration from the Configuration library. (We can 412 

select a different one later if we run out of instances of a certain type of SCP). 413 

3. Define each algorithm as a Data Flow Graph (DFG), and use the TCG tool to set up  414 

the system defined by the DCG.  415 

4. Experiment with the system, until the functions and parameters and computing 416 

tasks are fixedfinalised. 417 

5. If necessary, design function specific coprocessors to replace some of the IA-based 418 

SCPs selected in step 2. 419 

6. If step 5 was utilized, import the function specific coprocessors into the system and 420 

resynthesis the system configuration. 421 

4. Architectures and Implementations of Coprocessors 422 

In this section, we discuss some key implementation aspects of the SCP approach, 423 

including the architecture for single IA-based SCPs, hardware skeletons and hardware 424 

configurations. 425 

4.1. SCP Architectures for Image Algebra Operation Types 426 



J. Imaging 2022, 8, x FOR PEER REVIEW 11 of 18 
 

 

When implementing the SCPs on FPGAs, the use of the internal memory depends on 427 

the type of operation. Point operations usually do not need image buffers; neighborhood 428 

operations require line buffers to hold the relevant pixels within the window according 429 

todepending on the size of the convolution kernel. Some global operations do not require 430 

any buffering; but some function-specific global SCPs may need a whole frame buffer to 431 

hold the frame untilto the end offrame has been processeding, such as Otsu adaptive 432 

thresholding [30]. When creating an instance of one type of SCP, the optimized data han- 433 

dling then comes for free. Fig.ure 5 shows how we handle the data flow and buffering in 434 

different types of SCPs. Since we are using HLS to implement these SCPs, the detailedde- 435 

tails of the architectures are hidden from us, and we only have control over the data flow 436 

and buffering. 437 

The Point operation SCP reads the next pixel from the input stream and performs the 438 

calculation before pushing the result to the output stream. With pipelining, one pixel is 439 

output every clock cycle. 440 

In the neighborhood operation SCP (e.g. convolution), the example architecture of a 441 

generic 3×3 neighborhood operation is shown in Figure fig. 5. As the streamed pixels ar- 442 

rive, we use a BRAM-based line buffer to hold two lines and two pixels. When the third 443 

pixel of the third line arrives, we have the whole window ready for a neighborhood oper- 444 

ation to produce one single output pixel. Then, we increment the window position, and 445 

read one more pixel, and do the next neighborhood operation. The neighborhood calcu- 446 

lation in our generic operator is divided into two stages. In the first stage, for each position 447 

in the window, each image pixel in the window is combined pairwise with the corre- 448 

sponding value in the kernel (the matrix of window weights supplied by the users). These 449 

intermediate results are then reduced in the second stage. (For convolution, this would be 450 

an accumulation operation).  451 

As a global operation can reduce a streamed input image to either a scalar result or a 452 

vector result, two versions of global SCP, R2S and R2V, are createdavailable. Sometimes 453 

the result of a global operation is subsequently used to process the same image (e.g. to 454 

threshold an image based on its average pixel value). In this case, it will be necessary to 455 

buffer the whole input image in an image buffer. Thus, in the architecture for a global 456 

operation SCP (Figure fig. 5), when a streamed image comes from a camera or another 457 

SCP or from a file, users can choose if they need a built-in frame buffer or not before push- 458 

ing the result pixel. During the buffering or streaming of the input frame, the calculation 459 

for the global operation can be done at the same time, since the global SCPs are fully pipe- 460 

lined. Supported operations include Min, Max, Σ, |Σ|, Count, and Global Average, and 461 

are applied to give either a scalar or vector result. An image histogram can be obtained by 462 

selecting the R2V SCP and specifying the address in BRAM where the vectorit will be 463 

stored so that subsequent SCPs can access the result directly. However, when internal 464 

memory allocation such as a frame buffer is needed, re-synthesis may be required. 465 

 466 
Figure 5. Data flow and buffering for the four different Ooperation tTypes  467 

(clockwise: Global, Neighborhood, Block and Point operations) 468 

 469 
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The Block Operation can be regarded as a special neighborhood operation which op- 470 

erates on a stream of blocks. This requires an outer level of processing to extract blocks in 471 

order, and to stream each block to the neighborhood operation. For each block, we can do 472 

any neighborhood-based operation. When performing a neighborhood operation (e.g. 473 

3x3) on a block, we must allow for the edge effect at block boundaries. Therefore, the block 474 

buffer is one column larger (for a 3x3 operation) than the original block (see Figure fig. 5). 475 

Also, the buffering hardware will handle any block stride length dynamically in SCPs as 476 

it is sometimes useful to experiment with different block strides at runtime.  477 

Complex SCPs which perform a neighborhood operation with a kernel in different 478 

multiple orientations avoid the need to replicate the line buffer.  Using the complex 479 

neighborhood SCP, and supplying the appropriate kernel plus the rotation parameters, 480 

we can do these operations in a single pass of the stream.  This solution uses only a single 481 

line buffer. 482 

4.2. Communication between Coprocessors 483 

To allow users to change the DFG interconnections between SCPs without re-synthe- 484 

sis, we use AXI-stream Interconnect (a Xilinx provided IP core) to connect SCPs instead 485 

of using naïve FIFOs. Each SCP has a ‘TDEST’ input to indicate where its output stream 486 

goes in the AXI-stream interconnect system.  487 

When there are many SCPs in the application, there will be many parameters to be 488 

sent to the various SCPs, so it is crucial to find an efficient way of distributing these pa- 489 

rameters.  We also need would like parameter distribution to be dynamic (in the sense 490 

that they can be changed while the program is running). Our solution is to send the pa- 491 

rameters as part of the header package for every new frame.  It would be possible to send 492 

them using the ARM processor through the AXI bus using the AXI-Lite interface [32] by 493 

enabling the data stream [33], but the ARM has would have to work sequentially in send- 494 

ing all the parameters every frame, which is time-consuming when there are many SCPs 495 

involved. This is why our approach is to group the command and data together by ap- 496 

pending the parameters to the front of each frame in the image data stream.  497 

The parameter stream is illustrated in Figure fig. 6. The parameter stream comprises, 498 

for each SCP, the ID of the SCP, its various parameters, and the output channel (TDest- 499 

EST). Because we fix the entry point of the system to be the streamer, in this particular 500 

case we only need to define the output channel of each SCP. (More generally, of course, 501 

both the input and output channels would be defined). Each SCP receives the complete 502 

parameter stream for all SCPs; it extracts only those parameters relevant to it, passes the 503 

parameter stream on to the output SCPchannel (the next SCP), and then starts processing 504 

the image data which followsing the parameter section. 505 

4.3. Coding SCPs behind the Scenes 506 

We created the Image Algebra-based soft coprocessors using Xilinx Vivado HLS. For 507 

interoperability of SCPs, the way of interfacing any coprocessor to the rest of the system 508 

is always the same. 509 

When the developer introduces a new SCP instance in the textual DFG description, 510 

behind the scenes one of the free instances of the SCP will be acquired from those still 511 

available in the user-selected configuration. The parameters in the DFG are used by the 512 

TCG tool to generate and set the various properties of the SCP in an object-oriented fash- 513 

ion. Code is also generated to form the connections via the channels in the AXI inter-con- 514 

nection scheme described above. This code is for the Xilinx SDK after the hardware plat- 515 

form has already been defined and synthesized. For example, Figure fig. 7 shows the TCG- 516 

generated generated code for the Xilinx SDK to set up a complex SCP (of type NeighOP2) 517 

followed by a thresholding SCP (of type PointOP) for the Sobel operation outlined previ- 518 

ously, based on a two-step rotating kernel. 519 
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When implementing designs using Xilinx Vivado HLS, directive settings (or prag- 520 

mas) can have a significant effect on hardware utilization and performance. Optimization 521 

using well-designed directives can be several times more effective than an un-optimized 522 

design. To master these directive settings takes a lot of time and requires a deeper under- 523 

standing of how the hardware works. We therefore developed our own internal library of 524 

reusable macros and reserved variables which we used to simplify and standardize the 525 

HLS coding of all the IA SCPs. These macros are also available to the developer when 526 

creating skeleton-based function specific SCPs and when writing the low-level C function. 527 

This library is not normally required to be visible to the developer, but we mention it as a 528 

valuable approach to simplify the retargeting of our HLS coding of SCPs and skeletons to 529 

another types of FPGA type of our HLS coding of SCPs and skeletons. This internal library 530 

includes: 531 

• Interface settings  532 

• Pipelining directives 533 

• Buffer settings  534 

• Special data types and hardware-level signal handling 535 

 536 

 537 

Figure 6. Stream-based Parameter Distribution 538 

 539 

 540 

 541 
Figure 7. From Text-based DFG to Hardware Platform through Xilinx SDK  542 

5. Evaluation and Comparisons 543 

In this section, we present some details of the performance and hardware utilization 544 

of the SCPs. We use the Xilinx Zedboard with an I2C OV7670 camera module as the test 545 

platform. The OV7670 camera can produce a 640×480 8-bit greyscale video stream and 546 

can be connected to the Zedboard. The Zedboard is equipped with an XC-7Z020 FPGA, 547 

which has programmable logic (PL) and an ARM processor. We use the Xilinx Zedboard 548 

to implement our designs and evaluate two different versions of our IA-based SCPs: the 549 

Minimum Area mode, and Maximum Performance mode (these have to be separately 550 

synthesized). We compare example operations using SCPs with equivalent implementa- 551 

tions using the image processing soft processor, IPPro. Finally, we also compare the use 552 

of a generic (complex) single SCP formulation of a Sobel operator with an equivalent func- 553 

tion-specific SCP created using a neighborhood skeleton SCP. 554 

5.1. Performance and Hardware Utilization 555 
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Table 1 shows the SCPs’ hardware utilization and performance (in frames per sec- 556 

ond) on a Virtex FGPA running at 150MHz in Minimum Area mode. This is compared 557 

with the utilization and performance of the soft processor-based solution using a multi- 558 

core IPProRO. The comparison is for four basic SCP operations (point, neighborhood, 559 

complex and global). Table 2 shows the equivalent figures using Max Performance mode 560 

for the SCPs. In both cases, the image size is 512×512 and in the neighborhood operation 561 

SCP, the kernel is a 3×3 matrix. 562 

Table 1 Comparison Between SCP (in Min Area mMode) and IPPRO Approach  563 

in Utilization and Performance 564 

SCPs FFs LUTs BRAMs DSPs FPS  

Point 1659 2015 0 3 186 

Neighborhood Basic 1104 1404 5 9 127 

Neighborhood Complex 4963 7141 5 72 125 

Global 622 998 0 0 189 

IPPRO [15] FFs LUTs BRAMs DSPs FPS 

Point (8 core)IPPRO [15] 
12279FF

s 

10941LUT

s 

18.5BRAM

s 

8DSP

s 

120FP

S 

Point (8 core) 12279 10941 18.5 8 120 

Neighborhood Basic (6  core) 13202 11826 32.5 6 76 

                          565 

Table 2  SCP The Utilization and Performance (in Max Performance mMode) 566 

SCPs FFs LUTs BRAMs DSPs FPS  

Point 3346 2965 0 3 556 

Neighborhood Basic 2309 1963 5 9 380 

Neighborhood Complex 9862 12368 5 72 374 

Global 1432 1353 0 0 568  

 567 

The first observation is on the difference between Min Area Mmode and Max Perfor- 568 

mance Mmode. Max Performance Mmode is roughly three times as fast, but takes twice 569 

as much area, as Min Area Mmode. However, in practice there may be no advantage in 570 

being able to process at nearly 400 FPS, and so the Min Area Mmode is often to be pre- 571 

ferred. 572 

To make comparison with various IPPro configurations easier, Table 3 shows the 573 

normalized inverse ratios of performance and resources (to one decimal place) based on 574 

the data in tables 1 and 2 (first for min usage area and then for max performance). Note 575 

that, in the performance ratio, a value greater than 1 in the IPPro rows indicates the degree 576 

to which SCP outperforms IPPro is worse than SCP. And in the utilization part, a value 577 

below 1 indicates the degree to which SCP uses fewer resources than IPPro. Thus ine 578 

mMax pPerformance mMmode SCPs process 4.63 times faster than IPPros in point oper- 579 

ations and 7.31 times faster in neighborhood operations, while using less hardware than 580 

IPPro. This is partly because the IPPro has to go through the standard fetch-execute cycle. 581 

In the min resources modeMin Area Mm,ode, the SCP performance is comparable a little 582 

faster thanto the IPProRO, yet uses only 20% of the resources (apart from DSPs) as Table 583 

3 shows.  584 

To illustrate the benefit of using a function-specific SCP, we choose Sobel for our final 585 

comparison. We compare the generic complex SCP with a function-specific SCP in doing 586 

a Sobel operation in Table 4.  587 

    Table 3 Inverse Ratios for SCP over to IPPro for Performance and Utilization (>1 is worse) 588 
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To illustrate the benefit of using a function -specific SCP, we choose Sobel for our 591 

final comparison. We compare the generic complex SCP with a function-specific SCP  in 592 

doing a Sobel operation, in Table 4.  593 

 594 

         Table 4. Comparison between a Generic and a Function -specific SCPs 595 

 FFs LUTs BRAMs DSPs FPS 

Generic 9862 12368 5 72 125 

SkeletonFunction-

specific 

932 1107 2 3 128 

 596 

Interestingly, the generic SCP approach and the function specific SCP have very sim- 597 

ilar performance (around 125 FPS for a 640×480 video stream). However, the skeleton 598 

approach is clearly much more area efficient (by a factor of approximately 310), because 599 

it removes all the unused function logic which is part of the generic SCP.  600 

6. Conclusion 601 

In this paper, we have presented several concepts and tools which are intended to 602 

make it easier for application developers to achieve design FPGA-based acceleration of 603 

image and video processing systems while designing at a high level. By ‘high - level’, we 604 

do not mean merely using the syntax of a high-level language; we mean designing sys- 605 

tems with no, or as little as possible, hardware knowledge.  Where it becomes necessary 606 

to drop down into hardware design, we have introduced approaches and customizable 607 

components intended to abstract away many of the hardware-aware details. 608 

Our main specific conclusions are as follows: 609 

1) We propose the concept of soft coprocessors, which are single-instruction proces- 610 

sors which can be parameterized to support a range of different functions. SCPs can be 611 

assembled into a DFG for efficient stream-based processing. 612 

2) The SCPs allow users to conveniently design and experiment with an image pro- 613 

cessing application by chaining SCPs together. We use AXI-Stream Interconnect to con- 614 

nect all the SCPs in the system in a way which reflects the algorithm’s Dataflow Graph 615 

(DFG). In this way, we provide users with a flexible system which can be programmed as 616 

a textual DFG. Users do not need to re-synthesize when they change the DFG. 617 

3) We provide reusable hardware SCP skeletons to allow developers to create effi- 618 

cient function - specific soft coprocessors without needing to know (much) about hard- 619 

ware structures.  620 

Min Area Operation 
Performance UsageUtilization (>1 is worse) 

Freq FPS FFs LUTs BRAMs DSPs 

Point 
SCP 150 MHz 1 1 1 1 1 

IPPro (8 core) 150 MHz 1.54 0.147.4 0.185.4 ---  0.3752.7 

Neighborhood  
SCP 150 MHz 1 1 1 1 1 

IPPro (6 core) 150 MHz 2.43 0.088.0 0.115.9 0.15--- 1.52.0 

Max 

Performance 
Operation 

Performance Usage 

Freq FPS FFs LUTs BRAMs DSPs 

Point 
SCP 150 MHz 1 1 1 1 1 

IPPro (8 core) 150 MHz 4.63 0.263.7 0.273.7 ---  0.3752.7 

Neighborhood  
SCP 150 MHz 1 1 1 1 1 

IPPro (6 core) 150 MHz 7.31 0.175.7 0.166.0 0.15--- 1.50.7 
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4) We have provided a set of generator tools which comprise the SCoPeS environ- 621 

ment – a prototype IDE to support the SCP concept.  622 

5) Overall, we conclude that the soft coprocessor approach has the potential to deliver 623 

better performance than the soft processor approach,, and can improve programmability 624 

over dedicated HDL cores for domain specific applications while achieving competitive 625 

real time performance and utilization. 626 

However, our work also has the following main limitations:  627 

1) Our current work is designed only for image and video processing development, 628 

and is not a general-purpose tool. However, as a general rule, the coprocessor approach 629 

is suited to any application area which has an associated under-pinning algebra. 630 

2) Our implementation currently only supports relatively simple DFGs.  631 

3) Our tools do not yet support image partitioning for greater parallelism, which can 632 

be a useful additional approach technique for accelerating image processing applications. 633 

Updating our tools to include this option of a multi-core approach is a valuable promising 634 

future development. 635 

Acknowledgement 636 

This work was sponsored by the China Scholarship Council. 637 



J. Imaging 2022, 8, x FOR PEER REVIEW 17 of 18 
 

 

References 638 

 639 
1. Hong, D.; Han, Z.; Yao, J.; Gao, L.; Zhang, B.; Plaza, A.; Chanussot, J. SpectralFormer: Rethinking hyperspectral image 640 

classification with transformers. IEEE Transactions on Geoscience and Remote Sensing 2021. 641 
2. Wu, T.; Yang, Z. Animal tumor medical image analysis based on image processing techniques and embedded system. 642 

Microprocessors and Microsystems 2021, 81, 103671. 643 
3. Khasanova, A.; Makhmutova, A.; Anikin, I. Image Denoising for Video Surveillance Cameras Based on Deep Learning 644 

Techniques. In Proceedings of the 2021 International Conference on Industrial Engineering, Applications and Manufactur- 645 
ing (ICIEAM), 2021; pp. 713-718. 646 

4. Kalinowska, K.; Wojnowski, W.; Tobiszewski, M. Smartphones as tools for equitable food quality assessment. Trends in 647 
Food Science & Technology 2021. 648 

5. Nguyen, M.T.; Truong, L.H.; Le, T.T. Video surveillance processing algorithms utilizing artificial intelligent (AI) for un- 649 
manned autonomous vehicles (UAVs). MethodsX 2021, 8, 101472. 650 

6. Aslan, S.; Güdükbay, U.; Töreyin, B.U.; Çetin, A.E. Deep convolutional generative adversarial networks based flame detec- 651 
tion in video. arXiv preprint arXiv:1902.01824 2019. 652 

7. Arvin, R.; Khattak, A.J.; Qi, H. Safety critical event prediction through unified analysis of driver and vehicle volatilities: 653 
Application of deep learning methods. Accident Analysis & Prevention 2021, 151, 105949. 654 

8. Siska, J.; Jaeschke, T.; Wagner, J.; Pohl, N. FPGA-Accelerated Multispectral Ultra-High Resolution SAR-Imaging with Wide- 655 
band FMCW Radars. In Proceedings of the 2019 IEEE Radio and Wireless Symposium (RWS), 2019; pp. 1-4. 656 

9. Attaran, N.; Puranik, A.; Brooks, J.; Mohsenin, T. Embedded low-power processor for personalized stress detection. IEEE 657 
Transactions on Circuits and Systems II: Express Briefs 2018, 65, 2032-2036. 658 

10. Chen, X.; Tan, H.; Chen, Y.; He, B.; Wong, W.-F.; Chen, D. ThunderGP: HLS-based graph processing framework on fpgas. 659 
In Proceedings of the The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2021; pp. 69- 660 
80. 661 

11. Yuan, H.; Ding, D.; Fan, Z.; Sun, Z. A Real-time Image Processing Hardware Acceleration Method based on FPGA. In 662 
Proceedings of the 2021 6th International Conference on Computational Intelligence and Applications (ICCIA), 2021; pp. 663 
200-205. 664 

12. Xiao, Z.; Chamberlain, R.D.; Cabrera, A.M. HLS Portability from Intel to Xilinx: A Case Study. In Proceedings of the 2021 665 
IEEE High Performance Extreme Computing Conference (HPEC), 2021; pp. 1-8. 666 

13. Winterstein, F.; Bayliss, S.; Constantinides, G.A. High-level synthesis of dynamic data structures: A case study using Vi- 667 
vado HLS. In Proceedings of the 2013 International Conference on Field-Programmable Technology (FPT), 2013; pp. 362- 668 
365. 669 

14. Liu, S.; Lau, F.C.; Schafer, B.C. Accelerating FPGA prototyping through predictive model-based HLS design space explo- 670 
ration. In Proceedings of the 2019 56th ACM/IEEE Design Automation Conference (DAC), 2019; pp. 1-6. 671 

15. Coussy, P.; Gajski, D.D.; Meredith, M.; Takach, A. An introduction to high-level synthesis. IEEE Design & Test of Comput- 672 
ers 2009, 26, 8-17. 673 

16. O'Loughlin, D.; Coffey, A.; Callaly, F.; Lyons, D.; Morgan, F. Xilinx vivado high level synthesis: Case studies. 2014. 674 
17. Gaide, B.; Gaitonde, D.; Ravishankar, C.; Bauer, T. Xilinx adaptive compute acceleration platform: VersalTM architecture. 675 

In Proceedings of the Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 676 
2019; pp. 84-93. 677 

18. Chatarasi, P.; Neuendorffer, S.; Bayliss, S.; Vissers, K.; Sarkar, V. Vyasa: A high-performance vectorizing compiler for tensor 678 
convolutions on the Xilinx AI Engine. In Proceedings of the 2020 IEEE High Performance Extreme Computing Conference 679 
(HPEC), 2020; pp. 1-10. 680 

19. Kathail, V.; Hwang, J.; Sun, W.; Chobe, Y.; Shui, T.; Carrillo, J. SDSoC: A higher-level programming environment for Zynq 681 
SoC and Ultrascale+ MPSoC. In Proceedings of the Proceedings of the 2016 ACM/SIGDA international symposium on field- 682 
programmable gate arrays, 2016; pp. 4-4. 683 

20. Domingo, R.; Salvador, R.; Fabelo, H.; Madronal, D.; Ortega, S.; Lazcano, R.; Juárez, E.; Callicó, G.; Sanz, C. High-level 684 
design using Intel FPGA OpenCL: A hyperspectral imaging spatial-spectral classifier. In Proceedings of the 2017 12th In- 685 
ternational Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), 2017; pp. 1-8. 686 

21. Canis, A.; Choi, J.; Fort, B.; Syrowik, B.; Lian, R.L.; Chen, Y.T.; Hsiao, H.; Goeders, J.; Brown, S.; Anderson, J. Legup high- 687 
level synthesis. In FPGAs for Software Programmers; Springer: 2016; pp. 175-190. 688 

22. Wakabayashi, K. CyberWorkBench: integrated design environment based on C-based behavior synthesis and verification. 689 
In Proceedings of the 2005 IEEE VLSI-TSA International Symposium on VLSI Design, Automation and Test, 2005.(VLSI- 690 
TSA-DAT). 2005; pp. 173-176. 691 

23. Guo, L.; Chi, Y.; Wang, J.; Lau, J.; Qiao, W.; Ustun, E.; Zhang, Z.; Cong, J. AutoBridge: Coupling Coarse-Grained Floorplan- 692 
ning and Pipelining for High-Frequency HLS Design on Multi-Die FPGAs. In Proceedings of the The 2021 ACM/SIGDA 693 
International Symposium on Field-Programmable Gate Arrays, 2021; pp. 81-92. 694 



J. Imaging 2022, 8, x FOR PEER REVIEW 18 of 18 
 

 

24. Noronha, D.H.; Salehpour, B.; Wilton, S.J. LeFlow: Enabling flexible FPGA high-level synthesis of tensorflow deep neural 695 
networks. In Proceedings of the FSP Workshop 2018; Fifth International Workshop on FPGAs for Software Programmers, 696 
2018; pp. 1-8. 697 

25. Hebbar SR, R.; Milenković, A. SPEC CPU2017: Performance, event, and energy characterization on the core i7-8700K. In 698 
Proceedings of the Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering, 2019; pp. 699 
111-118. 700 

26. Beutel, J.; Trüb, R.; Forno, R.D.; Wegmann, M.; Gsell, T.; Jacob, R.; Keller, M.; Sutton, F.; Thiele, L. The dual processor 701 
platform architecture: demo abstract. In Proceedings of the Proceedings of the 18th International Conference on Infor- 702 
mation Processing in Sensor Networks, 2019; pp. 335-336. 703 

27. Bellemou, A.; Benblidia, N.; Anane, M.; Issad, M. Microblaze-based multiprocessor embedded cryptosystem on FPGA for 704 
elliptic curve scalar multiplication over F p. Journal of Circuits, Systems and Computers 2019, 28, 1950037. 705 

28. Shamseldin, A.; Soubra, H.; ElNabawy, R. Performance of DSP operations implemented using a soft microprocessor: a case 706 
study based on Nios II. In Proceedings of the 2021 International Conference on Microelectronics (ICM), 2021; pp. 66-69. 707 

29. Mplemenos, G.-G.; Papaefstathiou, I. Mplem: An 80-processor fpga based multiprocessor system. In Proceedings of the 708 
2008 16th International Symposium on Field-Programmable Custom Computing Machines, 2008; pp. 273-274. 709 

30. Siddiqui, F.; Amiri, S.; Minhas, U.I.; Deng, T.; Woods, R.; Rafferty, K.; Crookes, D. Fpga-based processor acceleration for 710 
image processing applications. Journal of Imaging 2019, 5, 16. 711 

31. Kimura, Y.; Kikuchi, T.; Ootsu, K.; Yokota, T. Proposal of Scalable Vector Extension for Embedded RISC-V Soft-Core Pro- 712 
cessor. In Proceedings of the 2019 Seventh International Symposium on Computing and Networking Workshops (CAN- 713 
DARW), 2019; pp. 435-439. 714 

32. Wilson, J.N.; Ritter, G.X. Handbook of computer vision algorithms in image algebra; CRC press: 2000. 715 
33. Liu, G.; Luo, Q.; Liu, B.; Lu, B.; Guo, P. Embedded intelligent camera algorithm based on hardware IP. In Proceedings of 716 

the Tenth International Symposium on Precision Engineering Measurements and Instrumentation, 2019; p. 110533T. 717 
34. Bailey, D.G. Image processing using FPGAs. 2019, 5, 53. 718 
35. Palmer, J.F. The Intel® 8087 numeric data processor. In Proceedings of the Proceedings of the May 19-22, 1980, national 719 

computer conference, 1980; pp. 887-893. 720 
36. Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: analysis, applications, and prospects. 721 

IEEE Transactions on Neural Networks and Learning Systems 2021. 722 
  723 
 724 
 725 
 726 
 727 
 728 
 729 
Bio 730 
 731 
Tiantai Deng received his PhD from Queen’s University Belfast, MSc from the University of Manchester and BEng from Harbin 732 
Institute of Technology. He is currently a lecturer at the University of Sheffield. Prior to his career as an academic, he was a 733 
senior engineer at HiSilicon, Huawei. His main research focus is on hardware acceleration for image processing, deep learning 734 
and high-level design environments. 735 
 736 
Danny Crookes received the BSc and PhD degrees from Queen’s University Belfast in 1977 and 1980 respectively. He was ap- 737 
pointed to the Chair of Computer Engineering at Queen’s University Belfast in 1993, where he was the Head of Computer Science 738 
from 1993 to 2002. He has published over 260 scientific papers in journals and international conferences. His current research 739 
interests include medical image processing, hardware acceleration, and speech enhancement and separation. 740 
 741 
Roger Woods received the BSc and PhD degrees from Queen’s University Belfast in 1985 and 1990 respectively, and is currently 742 
a professor and Dean of Research with in the university. He has also formed Analytics Engines Ltd., and acts as their chief 743 
scientist. His research interests include heterogeneous programmable systems and design tools for data, signal and image pro- 744 
cessing, and telecommunications. 745 
 746 
Fahad Siddiqui received the BSc degree in Electronic Engineering from Sir Syed University of Engineering and Technology, 747 
Pakistan in 2007, the MSc degree in Electronic Engineering from the Polytechnic University of Turin, Italy in 2012, and the PhD 748 
degree from Queen’s University Belfast in 2018. His research interests focus on FPGA- based programmable architectures with 749 
an emphasis on hardware acceleration. He is currently Senior Hardware Security Architect at NVIDIA, Belfast, UK. 750 
 751 


