
A soft coprocessor approach for developing image and video
processing applications on FPGAs

Deng, T., Crookes, D., Woods, R., & Siddiqui, F. (2022). A soft coprocessor approach for developing image and
video processing applications on FPGAs. Journal of Imaging, 8. https://doi.org/10.3390/jimaging8020042

Published in:
Journal of Imaging

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2022 The Authors.
This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:04. Jun. 2024

https://doi.org/10.3390/jimaging8020042
https://pure.qub.ac.uk/en/publications/35b977cf-f5d8-4b23-8156-61b30617fe73

J. Imaging 2022, 8, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/jimaging

A soft coprocessor approach for developing image and video 1

processing applications on FPGAs 2

Tiantai Deng 1, Danny Crookes 2 Roger Woods 2 and Fahad Siddiqui 2 3

1 Department of Electronics and Electrical Engineering, The University of Sheffield 4
2 School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast 5
* Correspondence: d.crookes@qub.ac.uk 6

Abstract: Developing Field Programmable Gate Array (FPGA)-based applications is typically a slow 7

and multi-skilled task. Research in tools to support application development has gradually become 8

more high-level. This paper describes an approach which aims to raise further the level at which an 9

application developer works in developing FPGA-based implementations of image and video pro- 10

cessing applications. The starting concept is a system of streamed soft coprocessors. We present a 11

set of soft coprocessors which implement some of the key abstractions of Image Algebra. Our soft 12

coprocessors are designed for easy chaining, and allow users to describe their application as a data- 13

flow graph. A prototype implementation of a development environment, called SCoPeS, is pre- 14

sented. An application can be modified even during execution without requiring re-synthesis. The 15

paper concludes with some performance and resource utilization results for different implementa- 16

tions of a sample algorithm. We conclude that the soft coprocessor approach has the potential to 17

deliver better performance than the soft processor approach, and can improve programmability 18

over dedicated HDL cores for domain specific applications while achieving competitive real time 19

performance and utilization. 20

Keywords: Image Processing, FPGA, Soft coprocessor 21

 22

1. Introduction 23

Image processing algorithms are used in many applications, such as image classifi- 24

cation, medical image processing, video surveillance and target detection and tracking [1- 25

3]. These applications have been embedded in more and more devices such as 26

smartphones, unmanned autonomous vehicles and surveillance cameras [4-6]. Safety crit- 27

ical image processing applications require the processing system to be accurate, and often 28

fast [7]. With the rapid development of image sensors, the resolution of images and videos 29

is becoming higher than ever. For high-resolution images, traditional processors struggle 30

to keep up with increasing resolutions [8]. It may not be possible to process very large 31

images in real-time using conventional CPUs. Thus, it is necessary to consider ways of 32

accelerating the most time-consuming computing tasks parts of the application in these 33

cases. Commonly, there are four approaches to accelerating image processing algorithms, 34

which are: multi-core clusters of CPUs, GPUs, FPGAs and ASICs. CPUs and GPUs are 35

instruction-based processors, and so they operate on the normal fetch-execute cycle 36

model. This can means that it can takes several clock cycles to execute one instruction. 37

They are also relatively high power compared to ASICs and FPGAs when implementing 38

the same application [9]. ASICs usually have the best performance and lowest power, but 39

they are not programmable and are very expensive to produce. FPGAs are somewhere 40

between GPUs and ASICs. They are capable of producing low power, low cost but high- 41

performance solutions. However, the design time for custom cores can be much longer 42

than for GPUs [10]. In the field of image processing, because of the independence of pixels, 43

FPGAs can produce good speedup, particularly when used as a coprocessor for low-level 44

Citation: Lastname, F.; Lastname, F.;

Lastname, F. Title. J. Imaging 2022, 8,

x. https://doi.org/10.3390/xxxxx

Academic Editor: Firstname Last-

name

Received: date

Accepted: date

Published: date

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2021 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

J. Imaging 2022, 8, x FOR PEER REVIEW 2 of 18

image processing operations [11]. However, the key challenge is to speed up the process 45

of producing an FPGA-based solution to image processing application problems. 46

The need to accelerate the application development process is generally acknowl- 47

edged. Although vendors and researchers have been putting effort into creating higher- 48

level design environments for building hardware accelerators usingon FPGAs, some 49

problems still remain [10,12-14]. Hardware designers tend to use ‘high-level’ in the sense 50

that the syntax is at a higher level than Very high-speed integrated circuit Hardware De- 51

scription Language (VHDL) or Verilog HDL [15]. But for application developers and soft- 52

ware programmers, ‘high- level’ means that hardware design issues can be practically 53

ignored, and the coding focuses on the application alone, as though the developer were 54

coding for a PC. To application developers, the above tools remain low level, even if they 55

use C syntax [15]. If application developers use the tools naively, without taking hardware 56

design issues into account, the result is likely to be very inefficient hardware. Also, alt- 57

hough these High-level Synthesis (HLS) tools are described as high-level, there are some 58

features of the input language that cannot be synthesized. For example, Xilinx Vitis HLS 59

does not support the use of pointers and dynamic memory allocation in C [13,16]. 60

Since the result of the HLS tools above is still HDL, users typically require the usual 61

long re-synthesis time when they make changes to the algorithm or application [14]. This 62

hinders the experimental nature of image processing application development, which is 63

one of the targets of this paper. 64

Xilinx recently aimed to shorten the synthesis time by their new product, Adaptive 65

Computing Accelerating Platform (ACAP) and released an early product of the ACAP 66

family, Versal [17]. The main advantage of the ACAP family is the ability to rapidly do re- 67

synthesis (within milliseconds). Xilinx also provides their AI Engine to accelerate the de- 68

ployment of AI applications on their selected Xilinx devices. Combined with Xilinx Vitis, 69

the development of AI and image processing applications on some of the Xilinx devices 70

can be significantly accelerated [18]. Unfortunately, only some of the latest Xilinx devices 71

support this feature. 72

Thus, the current challenges toof using FPGAs to accelerate an image processing sys- 73

tem can be summarized as follows: 74

1) It is hard to achieve both programmability and performance on FPGAs across all 75

devices. 76

2) Current vendors' HLS tools still require users to be knowledgeable about hardware 77

and the limitations of the tools. 78

3) Lengthy synthesis time is a hindrance during experimental and iterative image 79

processing system development. 80

In this paper, a higher level approach for image processing system development is 81

proposed to address to some extent the above-mentioned challenges. We will present a 82

number of concepts, which are integrated into a prototype Soft Coprocessor System 83

(SCoPeS), to support the development of FPGA-based image processing applications. De- 84

tailed contributions of the paper are as follows: 85

1) We propose the concept of customizable Soft Co-Processors (SCPs) as the basic 86

building block for stream-based applications. We allow users to chain SCPs together so 87

they can communicate directly with each other and not merely with the host. We use AXI- 88

Stream Interconnect to connect the SCPs in the a system. In this way, we provide users 89

with a flexible system which can be programmed as a dataflow graph (DFG). Users do not 90

normally need to re-synthesize when they change the DFG. 91

2) We provide a set of customizable Software Co-Processors based on the key con- 92

cepts of Image Algebra (IA), including a range of point, neighborhood, and global opera- 93

tions. 94

3) We provide a set of efficient hardware skeletons for defining new IA-like opera- 95

tions, where users need only supply their own C-based pixel-level function. This enables 96

the creation of very efficient function specific SCPs. 97

J. Imaging 2022, 8, x FOR PEER REVIEW 3 of 18

Our prototype SCoPeS environment includes several tools to support the SCP ap- 98

proach. A hardware configuration generator tool enables users to specify the number and 99

of each type of SCPs to be available for the current application project. Provided the ap- 100

plication uses only this pool of SCPs, no resynthesis is required. A code generator enables 101

users to define their applications in terms of a text-based DFG. (This is in place of special 102

tools for editing a graphical view of the DFG). Users can edit the textual DFG description, 103

normally without requiring re-synthesis. 104

The rest of this paper is organized as follows. In section II, we introduce the back- 105

ground and related work in terms of Image Algebra, high-level programming models and 106

different FPGA implementations of image processing algorithms and systems. Section III 107

provides a user’s view of our design approach. In section IV, we describe the architectures 108

and underlying implementations, including our Generic and Function-specific Image Al- 109

gebra based SCPs and how they connect and communicate with each other. In section V 110

we demonstrate how we create a new image processing system using our SCoPeS envi- 111

ronment. In section VI, a comparison between different design approaches for a simple 112

image processing operation is presented for evaluation purposes. 113

2. Background and Related Work 114

2.1. Current Tools for Designing FPGA Custom Cores in a High-level Environment 115

Modern FPGAs are no longer thought of as arrays of gates, but as collections of larger 116

scale functional blocks, integrated using programmable logic. They are still programma- 117

ble but are not restricted to programmable logic (PL), and sometimes come equipped with 118

on-chip ARM processors or embedded GPUs. When implementing an image processing 119

system on FPGAs, the design effort is a critical project requirement. Very large image pro- 120

cessing systems are difficult to design efficiently and require very detailed hardware 121

knowledge. To address this challenge, vendors have released their HLS tools to reduce 122

the design time. The syntax of design description languages has moved up from 123

VHDL/Verilog HDL to C/C++ level because of HLS tools like Vivado HLS and Intel HLS 124

compilers [19,20]. Applications are becoming more complex. System-on-chip solutions are 125

achievable through the hybrid architecture of ARM+PL and the HLS design approach. 126

 There are also some HLS tools from academia, such as LegUp [21], CyberWorkBench 127

[22] , autoBridge [23] and LeFlow [24]. autoBridge is an HLS tool specifically for floor 128

planning and pipelining high-frequency designs on multi-die FPGAs. LeFlow is an HLS 129

tool designed specifically for deep learning inference implementation. LegUp can gener- 130

ate a hybrid system of custom cores and soft processors; the other tools only generate 131

custom cores. In currently available HLS tools, users need to rely on the vendor’s tools to 132

integrate the RTL design into a whole system, which is a non-trivial task. After the HLS 133

stage, there is generally no additional help for users to integrate their resulting system. 134

2.2. Soft processors 135

As an alternative to the inflexible custom core approach, it has become popular to 136

provide cores for simple programmable processors. These allow users to program in high- 137

level languages. A soft processor is achieved by configuring FPGA hardware resources as 138

a processor. Soft processors can reduce the design time through using a high-level lan- 139

guage. They also reduce the hardware knowledge required to design a full system. How- 140

ever, usually single core performance of a soft processor is poor, since soft processors go 141

through the standard fetch-execute cycle for each instruction, and they cannot run at as 142

high a clock rate as normal hard-core processors. For example, Xilinx Microblaze usually 143

runs under 400 MHz, while Intel and ARM processors can run at well over 1GHz [25-29]. 144

 When users program these soft processor systems, they do not normally have to 145

think in terms of the hardware but at a relatively high-level, and potentially get decent 146

performance. Unfortunately, there are no soft processors optimized directly for image 147

processing from vendors like Intel (Altera) and Xilinx. Two soft processors developed 148

J. Imaging 2022, 8, x FOR PEER REVIEW 4 of 18

specifically for image processing are, for example, IPPro [30] and a RISC-V soft processor 149

[31]. These processors require fewer resources than Nios II and Microblaze. 150

 151

2.3. Image Algebra and Pixel Level Abstractions 152

Image Algebra (IA) [32] is a mathematical theory concerned with the transformation 153

and analysis of digital images at the whole image (rather than pixel) level. The main goal 154

is the establishment of a comprehensive and unifying theory of image transformations, 155

image analysis, and image understanding. Basic IA operations can be classified as: point 156

operations, neighborhood operations, and global operations. 157

In point operations (P2P), the same operation is applied at every input pixel position 158

using only pixels at that position. Operations can be binary or unary; they include rela- 159

tional (e.g. ‘>’, ‘=’), arithmetic (e.g. ‘+’, ‘×’), and logical (e.g. ‘and’, ‘or’) operations. Nor- 160

mally one output pixel is generated for each corresponding input pixel position. 161

A neighborhood operation (N2P) is applied to each (potentially overlapping) region 162

of an image. It is most common to use a 3×3 or 5×5 window. A new pixel value will be 163

generated for each window position. The user specifies the matrix of weights for the win- 164

dow which can beis used in calculating the result value. 165

A global operation is a reduction operation which is applied to the whole image and 166

produces a scalar (R2S) or a vector (R2V). For example, the global maximum will produce 167

one scalar value, whereas histogram will produce a 256-element vector (for standard grey 168

level images). 169

2.4. FPGA-based image processing 170

In embedded systems, FPGAs are powerful tools for accelerating image processing 171

algorithms, especially for real-time embedded applications, where latency and power are 172

important considerations. FPGAs can be embedded in the a camera to directly provide 173

pre-processed image streams. In this way, the sensor will provide an output data stream 174

rather than merely a sequence of images [33]. FPGAs can achieve both data parallelism 175

and task parallelism within many image processing tasks. Unfortunately, simply putting 176

a PC-based algorithm onto an FPGA usually gives disappointing results [34]. Also, many 177

image processing algorithms have been optimized for scalar processors. Thus it is usually 178

necessary to optimize the algorithm specifically for an FPGA before implementing. 179

There have typically been three approaches to implementing an image processing 180

algorithm/system on FPGAs: 181

1) Custom hardware designed using Verilog HDL or VHDL and combined with the 182

vendor’s IPs. 183

2) Use high-level synthesis tools to convert a C-based representation of the algorithm 184

to hardware. 185

3) Map the algorithm on to one or a network of soft processors. 186

When users need to implement an algorithm on FPGAs using custom cores, they 187

need to consider the memory mapping, architecture, and algorithmic optimizations. On 188

the other hand, when users try to use soft processors to implement their complex algo- 189

rithm, they will usually be limited by the poor single core performance on the one hand, 190

and resource usage utilization of a multi-core architecture on the other. Thus, balancing 191

programmability, resource utilizations and performance is a key challenge for implement- 192

ing algorithms on FPGAs. 193

2.5. Summary 194

Currently, HLS tools are the key to rapidly implementing FPGA-based image pro- 195

cessing algorithms or systems. HLS tools can even accept different input languages, such 196

as C/C++, Java, Python and LabVIEW. Users need to use Xilinx Vivado or Intel Quartus 197

J. Imaging 2022, 8, x FOR PEER REVIEW 5 of 18

Prime to do the integration. This stage and usually this stage requires detailed hardware 198

knowledge. 199

In terms of the efficiency of implementing image processing algorithms and systems 200

on FPGAs, custom cores have better performance than soft processors, but require users 201

to have detailed hardware knowledge to design efficient accelerators. Soft processors 202

keep the high-level programming model, but single core performance is poor. Users need 203

to use multiple soft processors in order to meet the performance requirements. Fig. 1 in- 204

dicates informally the programmability (easey of use) vs performance (throughput) of the 205

different approaches. Our goal is to move a step closer to achieving both performance and 206

programmability at the same time. For suitable applications, our soft coprocessor ap- 207

proach has seeks to have performance approaching HLS products and HDL custom cores, 208

but even if it is not as programmable or as general purpose as soft processors. 209

 210

 211

Figure 1. Qualitative Rrepresentation ofing Programmability vs Performance 212

 213

To address these challenges and problems, in this paper we present our approach – 214

the soft coprocessor (SCP) approach. This aims to achieve performance closer to custom 215

cores while providing users with a higher-level programming model than the current Vi- 216

vado toolchain. 217

3. User’s View of the Soft Co-Processor Approach 218

3.1. The Concept of Soft Coprocessors 219

For FPGAs, performance and programmability are in conflict with each other. For 220

specific applications such as image and signal processing, it is sometimes possible to pre- 221

sent a higher -level programming model which is less general purpose but can exploit 222

common data access patterns. One of the first uses of coprocessors was in the early days 223

of microprocessor design. For example, the Intel 8086 processor could use a separate 8087 224

coprocessor chip to increase the speed of floating-point calculations with which it was 225

closely integrated [35]. In this case aA coprocessor does not have the usual overhead of 226

the fetch-execute cycle which is a significant overhead for soft processors. We therefore 227

propose the concept of soft coprocessors to try to gain many of the benefits of an applica- 228

tion-specific processor but with the efficiency of a coprocessor. All our soft coprocessors 229

have the following basic properties: 230

• A standard interface for data transfer between soft coprocessors, allowing devel- 231

opers to add a soft coprocessor to a system without having to design custom I/O hard- 232

ware. 233

• Each soft coprocessor can be parameterizable, allowing a degree of programmabil- 234

ity and functional flexibility, but without requiring re-synthesis. 235

• The soft coprocessors should be able to interact with each other, and to be formed 236

into a DFG arrangement, to reduce communication and buffering overheads. This as- 237

sumes a stream-based system approach. 238

J. Imaging 2022, 8, x FOR PEER REVIEW 6 of 18

• Each soft coprocessor should be able to interact with the background control and 239

communication system which controls manages the operation of the whole FPGA-based 240

system. 241

FPGAs have a lot of computing resources but a more restrictive on-chip memory 242

model. The efficient use of memory resources is crucial to system performance. Skilled 243

developers can choose the optimal memory management approach from a vast range of 244

possibilities. However, for application developers, it is difficult to properly arrangefully 245

exploit the precious limited on-chip memory resources using HLS tools. In order tTo pro- 246

vide optimized memory allocation for point, neighborhood and global operations, we 247

provide three fundamental types of soft coprocessor based on the core Image Algebra (IA) 248

operations. 249

3.2. Soft coprocessors for stream-based image processing 250

Stream-based processing using on-chip memory is preferred where possible, since 251

simultaneous access to off-chip memory by multiple coprocessors would be a bottleneck. 252

For a specific application domain such as image processing, we would like a set of 253

SCPs which can be reusedinstantiated, and which cover the common domain operations. 254

A good way to identify such a set is to find an existing algebra for the domain and build 255

on the abstractions which have been identified and used at a mathematical level. In the 256

case of image processing, we have chosen some of the core concepts of Image Algebra 257

(IA). 258

3.3. Single Image Algebra-based SCPs 259

We provide a built-in library of core SCPs which carry out the core operations of 260

Image Algebra. There are four core classes of IA SCPs, plus a fifth type for compound 261

operations: 262

(i) Point operations. We provide two types of SCPs which apply a point function to 263

every pair of pixels in the two streamed input images (or to each pixel and a scalar param- 264

eter), and generates an output pixel stream. The actual function applied is a parameter. 265

The range of point functions include all the standard (integer) arithmetic, logical and re- 266

lational functions. For example, a threshold operation would use the image-scalar SCP 267

with the two parameters (≥, threshold value). Image stream pPixels are implemented 268

usingheld as 8-bit integers, and intermediate values created during the result of addition, 269

subtraction and multiplication are designed according to the worst case of the calculation- 270

are held in higher precision as necessary. 271

(ii) Neighborhood operations. We provide an SCP for each common size of neighbor- 272

hood (3x3, 5x5, etc.). The NxN matrix of weights is supplied as a parameter. A standard 273

neighborhood operation has two functions: the point function which is applied pairwise 274

to each pixel-weight pair in the window; then the reduction operation which reduces the 275

NxN intermediate results to a single pixel result. For example, for a standard convolution, 276

the two function parameters are (×, |Ʃ|). Using this type of SCP a range of common image 277

processing functions are is possible, such as dilation, erosion, convolution-based edge de- 278

tection, and image filtering. 279

 For example, a simple dilation SCP on a binary image would be an instance of the 280

3x3 SCP with the kernel weights [1,1,1,1,1,1,1,1,1] and the functions (×, OR‘or’) (effectively 281

just a neighborhood OR). An erode SCP would use have AND ‘and’ instead of ‘or’OR as 282

a parameter. 283

 For some operations (perhaps involving image reduction), the window can step by 284

more than one pixel: for example, in the convolution layer of a Convolutional Neural Net- 285

work (CNN) [36]. This is achieved by having a stride parameter as part of the neighbor- 286

hood operation SCP. The default stride is 1x1. 287

(iii) Global operations. We provide an SCP which performs a reduction operation on 288

a streamed image. The result is a single value. The available reduction functions include 289

J. Imaging 2022, 8, x FOR PEER REVIEW 7 of 18

Ʃ, |Ʃ|, max, min, count, and average. A second global SCP produces a vector as a result 290

(typically used for finding the image histogram). 291

(iv) Block operations. Sometimes, we need to divide an image into multiple smaller 292

blocks and then apply the same algorithm to each block. For example, for the Histogram 293

of Oriented Gradients (HOG) algorithm, we find a histogram of edge gradients for each 294

block. Thus, we provide a Block-based SCP which provides a Neighborhood operation or 295

other function, for each block separately. 296

(v) Common complex operations. Although the above basic SCPs can be chained to- 297

gether to perform a compound IA-based algorithm, in practice there are certain common 298

patterns of operations which can be more efficiently implemented as a single operation. 299

We therefore provide a number of pattern-specific SCPs. For example, edge-finding and 300

morphological operations sometimes apply a window in several rotated orientations, and 301

have a final reduction stage to produce a single result. We provide a Cycle Neighborhood 302

SCP which takes as its parameters the weight matrix, the number and step angle of rota- 303

tions, the two functions for the neighborhood operation, and the final reduction operation. 304

 For example, suppose we want a complete Sobel edge detection operation using a 305

single complex neighborhood SCP. We supply the kernel (the vertical one, say) and spec- 306

ify two orientations, with a rotation step angle of 90o. The two neighborhood function 307

parameters are “×” and “|Σ|” and the vector of kernel weights is [-1, 0, 1, -2, 0, 2, -1, 0, 1]. 308

The final operation to combine the two window outputs (the vertical and horizontal edge 309

strengths) is ‘+’. (Adding the absolute edge strengths is a common approximation to avoid 310

squaring and adding). The code to create an instance of the complex neighborhood SCP 311

with all these parameters is shown in fig. 4. 312

3.4. Chaining Multiple Core SCPs in a Data Flow Graph 313

Multiple instances of the above generic SCPs can be chained together to implement 314

a compound algebraic expression. The output stream of one SCP is fed directly as the 315

input to the next without buffering the complete intermediate image or without involving 316

the host processor. Synchronization is handled automatically by the SCP framework. This 317

chaining can be represented by a simple Data Flow Graph (DFG). 318

For example, the above Sobel edge detector could have been created using two basic 319

3x3 neighborhood SCPs feeding their results into a third point SCP. 320

3.5. Skeleton SCPs for Function Specific Coprocessors 321

Using generic SCPs is useful during the algorithm experimentation stage, because 322

the hardware does not need to be changed even if different functions are selected. How- 323

ever, once the algorithm is finalized, more efficient function specific coprocessors for com- 324

pound operations can be created. To make this convenient without requiring hardware 325

knowledge, we provide a set of SCP skeletons. These are effectively ‘hollow’ codingss of 326

the above four classes of SCP (point, neighborhood, global and block). The skeletons con- 327

tain HLS code to manage the dataflow patterns of each type of operation. In this way, 328

users need only to supplyies the core pixel-level function in the form of a simple C/C++ 329

function. It is in this C function that the user specifies the arbitrarily complex operation. 330

Users can code detailed optimizations, for example, by embedding constant kernel coeffi- 331

cients. An example we will see later is an SCP specifically for a more efficient implemen- 332

tation of the Sobel edge detector. 333

A new SCP created using our skeletons will need to be synthesized the first time. 334

Once it is added to the SCP library, it is available thereafter. 335

Function specific SCPs are commonly used to replace a chain of SCPs, or they can 336

replace a generic SCP with one which is optimized for the specific purpose. For example, 337

a more efficient dilation SCP could be created using the 3x3 neighborhood skeleton, and 338

encoding a simple OR function which avoids the need to apply the redundant ‘×1’ step. 339

J. Imaging 2022, 8, x FOR PEER REVIEW 8 of 18

Function-specific SCPs will be more area-efficient than their generic counterparts. 340

Each generic SCP must retain the hardware for all the available functions, in case the user 341

wishes to experiment with different functions during development, without resynthesis. 342

Of course, the function specific SCPs are not as functionally flexible. There are also several 343

coding conventions which must be followed, for accessing the parameters. This is one of 344

the necessary trade-offs when working with FPGAs. 345

We now give an example of using a neighborhood skeleton SCP to implement a Sobel 346

Ooperation as a single and efficient function -specific SCP. The code of the Sobel opera- 347

tionfunction, including thresholding, is given in fig.ure 2. 348

 349

 350
Figure 2. The core function for the Sobel oOperation when using a skeleton SCP 351

3.6. Generating SCP Configurations 352

We distinguish between the application program and the hardware configuration it 353

runs on. To avoid frequent re-synthesis, our model is that a (pre-synthesized) configu- 354

ration contains the set of SCPs which are available to the application developer. Pro- 355

vided the application makes use of only these SCPs, then changes to the application can 356

be made without any re-synthesis. There are separate tools for defining both the configu- 357

rations and the application. 358

To speed up the process of getting a runnable FPGA configuration, our SCoPeS en- 359

vironment maintains a library of FPGA configurations which contain different mixes of 360

SCPs from the SCP library. The need for this arises because the developer may not know 361

in advance exactly how many instances of which each type of SCP s will be needed. If 362

the Configuration library does not have the necessary mix for the current project, then we 363

provide a tool which enables the user to create a new SCP configuration. The user can 364

specify the number of each class of SCP, and the Hardware Configuration Generator 365

(HGC) tool will then generate the complete FPGA bitstream, and add it to the Configura- 366

tion library, as shown in Figure fig. 3. Obviously, the required hardware resources of the 367

defined configuration must be able to fit on to the target FPGA. 368

 369
Figure 3. The GUI for creating a new project configuration 370

J. Imaging 2022, 8, x FOR PEER REVIEW 9 of 18

3.7. Text-based DFG Code Generator (TCG) 371

Normally, users could use the default Xilinx SDK to program the Zynq-based hard- 372

ware platform in baremetel mode or use PetaLinux+Xilinx SDK to build a Linux-based 373

application for more complex applications. In this stage, there is no hardware level design; 374

normally users can develop their application in C/C++. Users need to use the HLS-ex- 375

ported driver to create their own initialization function, set all the parameters individu- 376

ally, and invoke them for during the execution. We use the AXI-Stream InterconnectS in- 377

terface for connecting all our coprocessors (see later) to match the user-supplied DFG. This 378

textual DFG specifies the coprocessor instances, their parameters, and their interconnec- 379

tion channels. Our Textual Code Generator (TCG) tool takes the text representation of the 380

DFG and generates the executable C code for the Xilinx SDK. This simplifies and speeds 381

up the development of the final application. 382

As an example, fig.Figure 4a shows the developer’s code (the textual DFG) for an 383

automatic thresholding system using the Otsu method (assuming we have already have 384

written the final Otsu SCP to select and apply the threshold using our skeletons) after an 385

Open operation. Because in the system, wTe fix the entry point as the ‘Streamer’, which is 386

used a block whichto is directly connected to the camera, and which generates a stream 387

with all the parameters and the image data, and the camera is directly connected to the 388

streamer. There is no need to define the input source because in the system we cannot 389

split the stream. Thus, in the code, wWe set theuse ‘Streamer’ to define the first output 390

channel to channel 3. And We then we do the dilation and erosion through neighborhood 391

operations. After that, we do the edge detection, histogram finding and Otsu threshold- 392

ing. The result image stream is returned through channel 2. Fig.ure 4b outlines the gener- 393

ated Xilinx SDK useable code from the DFG in fig.ure 4a. 394

 395

 396
Figure 4a. Example Textual Description of a DFG for Otsu after an oOpen operation 397

 398

J. Imaging 2022, 8, x FOR PEER REVIEW 10 of 18

 399
Figure 4b. Example of the code generated by the TCG tool from the DFG in fig.ure 400

4a. 401

 402

In fig.ure 4b, the first block on the right describes is the output from the first pass of 403

our TCG tool through the text description, generating all the necessary header files based 404

on the names of the functions. The second block shows the generated initialization func- 405

tions. Then the main body of the program is generated based on the text-based DFG. 406

3.8. Using the SCoPeS Development Environment 407

Our SCoPeS development environment includes the tools necessary to build an ap- 408

plication using the SCP library, as mentioned above. It is currently a prototype IDE. The 409

typical design flow for a new project/application is thus as follows: 410

1. Decompose the desired algorithms into IA expressions. 411

2. Select (or create) a suitable configuration from the Configuration library. (We can 412

select a different one later if we run out of instances of a certain type of SCP). 413

3. Define each algorithm as a Data Flow Graph (DFG), and use the TCG tool to set up 414

the system defined by the DCG. 415

4. Experiment with the system, until the functions and parameters and computing 416

tasks are fixedfinalised. 417

5. If necessary, design function specific coprocessors to replace some of the IA-based 418

SCPs selected in step 2. 419

6. If step 5 was utilized, import the function specific coprocessors into the system and 420

resynthesis the system configuration. 421

4. Architectures and Implementations of Coprocessors 422

In this section, we discuss some key implementation aspects of the SCP approach, 423

including the architecture for single IA-based SCPs, hardware skeletons and hardware 424

configurations. 425

4.1. SCP Architectures for Image Algebra Operation Types 426

J. Imaging 2022, 8, x FOR PEER REVIEW 11 of 18

When implementing the SCPs on FPGAs, the use of the internal memory depends on 427

the type of operation. Point operations usually do not need image buffers; neighborhood 428

operations require line buffers to hold the relevant pixels within the window according 429

todepending on the size of the convolution kernel. Some global operations do not require 430

any buffering; but some function-specific global SCPs may need a whole frame buffer to 431

hold the frame untilto the end offrame has been processeding, such as Otsu adaptive 432

thresholding [30]. When creating an instance of one type of SCP, the optimized data han- 433

dling then comes for free. Fig.ure 5 shows how we handle the data flow and buffering in 434

different types of SCPs. Since we are using HLS to implement these SCPs, the detailedde- 435

tails of the architectures are hidden from us, and we only have control over the data flow 436

and buffering. 437

The Point operation SCP reads the next pixel from the input stream and performs the 438

calculation before pushing the result to the output stream. With pipelining, one pixel is 439

output every clock cycle. 440

In the neighborhood operation SCP (e.g. convolution), the example architecture of a 441

generic 3×3 neighborhood operation is shown in Figure fig. 5. As the streamed pixels ar- 442

rive, we use a BRAM-based line buffer to hold two lines and two pixels. When the third 443

pixel of the third line arrives, we have the whole window ready for a neighborhood oper- 444

ation to produce one single output pixel. Then, we increment the window position, and 445

read one more pixel, and do the next neighborhood operation. The neighborhood calcu- 446

lation in our generic operator is divided into two stages. In the first stage, for each position 447

in the window, each image pixel in the window is combined pairwise with the corre- 448

sponding value in the kernel (the matrix of window weights supplied by the users). These 449

intermediate results are then reduced in the second stage. (For convolution, this would be 450

an accumulation operation). 451

As a global operation can reduce a streamed input image to either a scalar result or a 452

vector result, two versions of global SCP, R2S and R2V, are createdavailable. Sometimes 453

the result of a global operation is subsequently used to process the same image (e.g. to 454

threshold an image based on its average pixel value). In this case, it will be necessary to 455

buffer the whole input image in an image buffer. Thus, in the architecture for a global 456

operation SCP (Figure fig. 5), when a streamed image comes from a camera or another 457

SCP or from a file, users can choose if they need a built-in frame buffer or not before push- 458

ing the result pixel. During the buffering or streaming of the input frame, the calculation 459

for the global operation can be done at the same time, since the global SCPs are fully pipe- 460

lined. Supported operations include Min, Max, Σ, |Σ|, Count, and Global Average, and 461

are applied to give either a scalar or vector result. An image histogram can be obtained by 462

selecting the R2V SCP and specifying the address in BRAM where the vectorit will be 463

stored so that subsequent SCPs can access the result directly. However, when internal 464

memory allocation such as a frame buffer is needed, re-synthesis may be required. 465

 466
Figure 5. Data flow and buffering for the four different Ooperation tTypes 467

(clockwise: Global, Neighborhood, Block and Point operations) 468

 469

J. Imaging 2022, 8, x FOR PEER REVIEW 12 of 18

The Block Operation can be regarded as a special neighborhood operation which op- 470

erates on a stream of blocks. This requires an outer level of processing to extract blocks in 471

order, and to stream each block to the neighborhood operation. For each block, we can do 472

any neighborhood-based operation. When performing a neighborhood operation (e.g. 473

3x3) on a block, we must allow for the edge effect at block boundaries. Therefore, the block 474

buffer is one column larger (for a 3x3 operation) than the original block (see Figure fig. 5). 475

Also, the buffering hardware will handle any block stride length dynamically in SCPs as 476

it is sometimes useful to experiment with different block strides at runtime. 477

Complex SCPs which perform a neighborhood operation with a kernel in different 478

multiple orientations avoid the need to replicate the line buffer. Using the complex 479

neighborhood SCP, and supplying the appropriate kernel plus the rotation parameters, 480

we can do these operations in a single pass of the stream. This solution uses only a single 481

line buffer. 482

4.2. Communication between Coprocessors 483

To allow users to change the DFG interconnections between SCPs without re-synthe- 484

sis, we use AXI-stream Interconnect (a Xilinx provided IP core) to connect SCPs instead 485

of using naïve FIFOs. Each SCP has a ‘TDEST’ input to indicate where its output stream 486

goes in the AXI-stream interconnect system. 487

When there are many SCPs in the application, there will be many parameters to be 488

sent to the various SCPs, so it is crucial to find an efficient way of distributing these pa- 489

rameters. We also need would like parameter distribution to be dynamic (in the sense 490

that they can be changed while the program is running). Our solution is to send the pa- 491

rameters as part of the header package for every new frame. It would be possible to send 492

them using the ARM processor through the AXI bus using the AXI-Lite interface [32] by 493

enabling the data stream [33], but the ARM has would have to work sequentially in send- 494

ing all the parameters every frame, which is time-consuming when there are many SCPs 495

involved. This is why our approach is to group the command and data together by ap- 496

pending the parameters to the front of each frame in the image data stream. 497

The parameter stream is illustrated in Figure fig. 6. The parameter stream comprises, 498

for each SCP, the ID of the SCP, its various parameters, and the output channel (TDest- 499

EST). Because we fix the entry point of the system to be the streamer, in this particular 500

case we only need to define the output channel of each SCP. (More generally, of course, 501

both the input and output channels would be defined). Each SCP receives the complete 502

parameter stream for all SCPs; it extracts only those parameters relevant to it, passes the 503

parameter stream on to the output SCPchannel (the next SCP), and then starts processing 504

the image data which followsing the parameter section. 505

4.3. Coding SCPs behind the Scenes 506

We created the Image Algebra-based soft coprocessors using Xilinx Vivado HLS. For 507

interoperability of SCPs, the way of interfacing any coprocessor to the rest of the system 508

is always the same. 509

When the developer introduces a new SCP instance in the textual DFG description, 510

behind the scenes one of the free instances of the SCP will be acquired from those still 511

available in the user-selected configuration. The parameters in the DFG are used by the 512

TCG tool to generate and set the various properties of the SCP in an object-oriented fash- 513

ion. Code is also generated to form the connections via the channels in the AXI inter-con- 514

nection scheme described above. This code is for the Xilinx SDK after the hardware plat- 515

form has already been defined and synthesized. For example, Figure fig. 7 shows the TCG- 516

generated generated code for the Xilinx SDK to set up a complex SCP (of type NeighOP2) 517

followed by a thresholding SCP (of type PointOP) for the Sobel operation outlined previ- 518

ously, based on a two-step rotating kernel. 519

J. Imaging 2022, 8, x FOR PEER REVIEW 13 of 18

When implementing designs using Xilinx Vivado HLS, directive settings (or prag- 520

mas) can have a significant effect on hardware utilization and performance. Optimization 521

using well-designed directives can be several times more effective than an un-optimized 522

design. To master these directive settings takes a lot of time and requires a deeper under- 523

standing of how the hardware works. We therefore developed our own internal library of 524

reusable macros and reserved variables which we used to simplify and standardize the 525

HLS coding of all the IA SCPs. These macros are also available to the developer when 526

creating skeleton-based function specific SCPs and when writing the low-level C function. 527

This library is not normally required to be visible to the developer, but we mention it as a 528

valuable approach to simplify the retargeting of our HLS coding of SCPs and skeletons to 529

another types of FPGA type of our HLS coding of SCPs and skeletons. This internal library 530

includes: 531

• Interface settings 532

• Pipelining directives 533

• Buffer settings 534

• Special data types and hardware-level signal handling 535

 536

 537

Figure 6. Stream-based Parameter Distribution 538

 539

 540

 541
Figure 7. From Text-based DFG to Hardware Platform through Xilinx SDK 542

5. Evaluation and Comparisons 543

In this section, we present some details of the performance and hardware utilization 544

of the SCPs. We use the Xilinx Zedboard with an I2C OV7670 camera module as the test 545

platform. The OV7670 camera can produce a 640×480 8-bit greyscale video stream and 546

can be connected to the Zedboard. The Zedboard is equipped with an XC-7Z020 FPGA, 547

which has programmable logic (PL) and an ARM processor. We use the Xilinx Zedboard 548

to implement our designs and evaluate two different versions of our IA-based SCPs: the 549

Minimum Area mode, and Maximum Performance mode (these have to be separately 550

synthesized). We compare example operations using SCPs with equivalent implementa- 551

tions using the image processing soft processor, IPPro. Finally, we also compare the use 552

of a generic (complex) single SCP formulation of a Sobel operator with an equivalent func- 553

tion-specific SCP created using a neighborhood skeleton SCP. 554

5.1. Performance and Hardware Utilization 555

J. Imaging 2022, 8, x FOR PEER REVIEW 14 of 18

Table 1 shows the SCPs’ hardware utilization and performance (in frames per sec- 556

ond) on a Virtex FGPA running at 150MHz in Minimum Area mode. This is compared 557

with the utilization and performance of the soft processor-based solution using a multi- 558

core IPProRO. The comparison is for four basic SCP operations (point, neighborhood, 559

complex and global). Table 2 shows the equivalent figures using Max Performance mode 560

for the SCPs. In both cases, the image size is 512×512 and in the neighborhood operation 561

SCP, the kernel is a 3×3 matrix. 562

Table 1 Comparison Between SCP (in Min Area mMode) and IPPRO Approach 563

in Utilization and Performance 564

SCPs FFs LUTs BRAMs DSPs FPS

Point 1659 2015 0 3 186

Neighborhood Basic 1104 1404 5 9 127

Neighborhood Complex 4963 7141 5 72 125

Global 622 998 0 0 189

IPPRO [15] FFs LUTs BRAMs DSPs FPS

Point (8 core)IPPRO [15]
12279FF

s

10941LUT

s

18.5BRAM

s

8DSP

s

120FP

S

Point (8 core) 12279 10941 18.5 8 120

Neighborhood Basic (6 core) 13202 11826 32.5 6 76

 565

Table 2 SCP The Utilization and Performance (in Max Performance mMode) 566

SCPs FFs LUTs BRAMs DSPs FPS

Point 3346 2965 0 3 556

Neighborhood Basic 2309 1963 5 9 380

Neighborhood Complex 9862 12368 5 72 374

Global 1432 1353 0 0 568

 567

The first observation is on the difference between Min Area Mmode and Max Perfor- 568

mance Mmode. Max Performance Mmode is roughly three times as fast, but takes twice 569

as much area, as Min Area Mmode. However, in practice there may be no advantage in 570

being able to process at nearly 400 FPS, and so the Min Area Mmode is often to be pre- 571

ferred. 572

To make comparison with various IPPro configurations easier, Table 3 shows the 573

normalized inverse ratios of performance and resources (to one decimal place) based on 574

the data in tables 1 and 2 (first for min usage area and then for max performance). Note 575

that, in the performance ratio, a value greater than 1 in the IPPro rows indicates the degree 576

to which SCP outperforms IPPro is worse than SCP. And in the utilization part, a value 577

below 1 indicates the degree to which SCP uses fewer resources than IPPro. Thus ine 578

mMax pPerformance mMmode SCPs process 4.63 times faster than IPPros in point oper- 579

ations and 7.31 times faster in neighborhood operations, while using less hardware than 580

IPPro. This is partly because the IPPro has to go through the standard fetch-execute cycle. 581

In the min resources modeMin Area Mm,ode, the SCP performance is comparable a little 582

faster thanto the IPProRO, yet uses only 20% of the resources (apart from DSPs) as Table 583

3 shows. 584

To illustrate the benefit of using a function-specific SCP, we choose Sobel for our final 585

comparison. We compare the generic complex SCP with a function-specific SCP in doing 586

a Sobel operation in Table 4. 587

 Table 3 Inverse Ratios for SCP over to IPPro for Performance and Utilization (>1 is worse) 588

J. Imaging 2022, 8, x FOR PEER REVIEW 15 of 18

 589

 590

To illustrate the benefit of using a function -specific SCP, we choose Sobel for our 591

final comparison. We compare the generic complex SCP with a function-specific SCP in 592

doing a Sobel operation, in Table 4. 593

 594

 Table 4. Comparison between a Generic and a Function -specific SCPs 595

 FFs LUTs BRAMs DSPs FPS

Generic 9862 12368 5 72 125

SkeletonFunction-

specific

932 1107 2 3 128

 596

Interestingly, the generic SCP approach and the function specific SCP have very sim- 597

ilar performance (around 125 FPS for a 640×480 video stream). However, the skeleton 598

approach is clearly much more area efficient (by a factor of approximately 310), because 599

it removes all the unused function logic which is part of the generic SCP. 600

6. Conclusion 601

In this paper, we have presented several concepts and tools which are intended to 602

make it easier for application developers to achieve design FPGA-based acceleration of 603

image and video processing systems while designing at a high level. By ‘high - level’, we 604

do not mean merely using the syntax of a high-level language; we mean designing sys- 605

tems with no, or as little as possible, hardware knowledge. Where it becomes necessary 606

to drop down into hardware design, we have introduced approaches and customizable 607

components intended to abstract away many of the hardware-aware details. 608

Our main specific conclusions are as follows: 609

1) We propose the concept of soft coprocessors, which are single-instruction proces- 610

sors which can be parameterized to support a range of different functions. SCPs can be 611

assembled into a DFG for efficient stream-based processing. 612

2) The SCPs allow users to conveniently design and experiment with an image pro- 613

cessing application by chaining SCPs together. We use AXI-Stream Interconnect to con- 614

nect all the SCPs in the system in a way which reflects the algorithm’s Dataflow Graph 615

(DFG). In this way, we provide users with a flexible system which can be programmed as 616

a textual DFG. Users do not need to re-synthesize when they change the DFG. 617

3) We provide reusable hardware SCP skeletons to allow developers to create effi- 618

cient function - specific soft coprocessors without needing to know (much) about hard- 619

ware structures. 620

Min Area Operation
Performance UsageUtilization (>1 is worse)

Freq FPS FFs LUTs BRAMs DSPs

Point
SCP 150 MHz 1 1 1 1 1

IPPro (8 core) 150 MHz 1.54 0.147.4 0.185.4 --- 0.3752.7

Neighborhood
SCP 150 MHz 1 1 1 1 1

IPPro (6 core) 150 MHz 2.43 0.088.0 0.115.9 0.15--- 1.52.0

Max

Performance
Operation

Performance Usage

Freq FPS FFs LUTs BRAMs DSPs

Point
SCP 150 MHz 1 1 1 1 1

IPPro (8 core) 150 MHz 4.63 0.263.7 0.273.7 --- 0.3752.7

Neighborhood
SCP 150 MHz 1 1 1 1 1

IPPro (6 core) 150 MHz 7.31 0.175.7 0.166.0 0.15--- 1.50.7

J. Imaging 2022, 8, x FOR PEER REVIEW 16 of 18

4) We have provided a set of generator tools which comprise the SCoPeS environ- 621

ment – a prototype IDE to support the SCP concept. 622

5) Overall, we conclude that the soft coprocessor approach has the potential to deliver 623

better performance than the soft processor approach,, and can improve programmability 624

over dedicated HDL cores for domain specific applications while achieving competitive 625

real time performance and utilization. 626

However, our work also has the following main limitations: 627

1) Our current work is designed only for image and video processing development, 628

and is not a general-purpose tool. However, as a general rule, the coprocessor approach 629

is suited to any application area which has an associated under-pinning algebra. 630

2) Our implementation currently only supports relatively simple DFGs. 631

3) Our tools do not yet support image partitioning for greater parallelism, which can 632

be a useful additional approach technique for accelerating image processing applications. 633

Updating our tools to include this option of a multi-core approach is a valuable promising 634

future development. 635

Acknowledgement 636

This work was sponsored by the China Scholarship Council. 637

J. Imaging 2022, 8, x FOR PEER REVIEW 17 of 18

References 638

 639
1. Hong, D.; Han, Z.; Yao, J.; Gao, L.; Zhang, B.; Plaza, A.; Chanussot, J. SpectralFormer: Rethinking hyperspectral image 640

classification with transformers. IEEE Transactions on Geoscience and Remote Sensing 2021. 641
2. Wu, T.; Yang, Z. Animal tumor medical image analysis based on image processing techniques and embedded system. 642

Microprocessors and Microsystems 2021, 81, 103671. 643
3. Khasanova, A.; Makhmutova, A.; Anikin, I. Image Denoising for Video Surveillance Cameras Based on Deep Learning 644

Techniques. In Proceedings of the 2021 International Conference on Industrial Engineering, Applications and Manufactur- 645
ing (ICIEAM), 2021; pp. 713-718. 646

4. Kalinowska, K.; Wojnowski, W.; Tobiszewski, M. Smartphones as tools for equitable food quality assessment. Trends in 647
Food Science & Technology 2021. 648

5. Nguyen, M.T.; Truong, L.H.; Le, T.T. Video surveillance processing algorithms utilizing artificial intelligent (AI) for un- 649
manned autonomous vehicles (UAVs). MethodsX 2021, 8, 101472. 650

6. Aslan, S.; Güdükbay, U.; Töreyin, B.U.; Çetin, A.E. Deep convolutional generative adversarial networks based flame detec- 651
tion in video. arXiv preprint arXiv:1902.01824 2019. 652

7. Arvin, R.; Khattak, A.J.; Qi, H. Safety critical event prediction through unified analysis of driver and vehicle volatilities: 653
Application of deep learning methods. Accident Analysis & Prevention 2021, 151, 105949. 654

8. Siska, J.; Jaeschke, T.; Wagner, J.; Pohl, N. FPGA-Accelerated Multispectral Ultra-High Resolution SAR-Imaging with Wide- 655
band FMCW Radars. In Proceedings of the 2019 IEEE Radio and Wireless Symposium (RWS), 2019; pp. 1-4. 656

9. Attaran, N.; Puranik, A.; Brooks, J.; Mohsenin, T. Embedded low-power processor for personalized stress detection. IEEE 657
Transactions on Circuits and Systems II: Express Briefs 2018, 65, 2032-2036. 658

10. Chen, X.; Tan, H.; Chen, Y.; He, B.; Wong, W.-F.; Chen, D. ThunderGP: HLS-based graph processing framework on fpgas. 659
In Proceedings of the The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2021; pp. 69- 660
80. 661

11. Yuan, H.; Ding, D.; Fan, Z.; Sun, Z. A Real-time Image Processing Hardware Acceleration Method based on FPGA. In 662
Proceedings of the 2021 6th International Conference on Computational Intelligence and Applications (ICCIA), 2021; pp. 663
200-205. 664

12. Xiao, Z.; Chamberlain, R.D.; Cabrera, A.M. HLS Portability from Intel to Xilinx: A Case Study. In Proceedings of the 2021 665
IEEE High Performance Extreme Computing Conference (HPEC), 2021; pp. 1-8. 666

13. Winterstein, F.; Bayliss, S.; Constantinides, G.A. High-level synthesis of dynamic data structures: A case study using Vi- 667
vado HLS. In Proceedings of the 2013 International Conference on Field-Programmable Technology (FPT), 2013; pp. 362- 668
365. 669

14. Liu, S.; Lau, F.C.; Schafer, B.C. Accelerating FPGA prototyping through predictive model-based HLS design space explo- 670
ration. In Proceedings of the 2019 56th ACM/IEEE Design Automation Conference (DAC), 2019; pp. 1-6. 671

15. Coussy, P.; Gajski, D.D.; Meredith, M.; Takach, A. An introduction to high-level synthesis. IEEE Design & Test of Comput- 672
ers 2009, 26, 8-17. 673

16. O'Loughlin, D.; Coffey, A.; Callaly, F.; Lyons, D.; Morgan, F. Xilinx vivado high level synthesis: Case studies. 2014. 674
17. Gaide, B.; Gaitonde, D.; Ravishankar, C.; Bauer, T. Xilinx adaptive compute acceleration platform: VersalTM architecture. 675

In Proceedings of the Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 676
2019; pp. 84-93. 677

18. Chatarasi, P.; Neuendorffer, S.; Bayliss, S.; Vissers, K.; Sarkar, V. Vyasa: A high-performance vectorizing compiler for tensor 678
convolutions on the Xilinx AI Engine. In Proceedings of the 2020 IEEE High Performance Extreme Computing Conference 679
(HPEC), 2020; pp. 1-10. 680

19. Kathail, V.; Hwang, J.; Sun, W.; Chobe, Y.; Shui, T.; Carrillo, J. SDSoC: A higher-level programming environment for Zynq 681
SoC and Ultrascale+ MPSoC. In Proceedings of the Proceedings of the 2016 ACM/SIGDA international symposium on field- 682
programmable gate arrays, 2016; pp. 4-4. 683

20. Domingo, R.; Salvador, R.; Fabelo, H.; Madronal, D.; Ortega, S.; Lazcano, R.; Juárez, E.; Callicó, G.; Sanz, C. High-level 684
design using Intel FPGA OpenCL: A hyperspectral imaging spatial-spectral classifier. In Proceedings of the 2017 12th In- 685
ternational Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), 2017; pp. 1-8. 686

21. Canis, A.; Choi, J.; Fort, B.; Syrowik, B.; Lian, R.L.; Chen, Y.T.; Hsiao, H.; Goeders, J.; Brown, S.; Anderson, J. Legup high- 687
level synthesis. In FPGAs for Software Programmers; Springer: 2016; pp. 175-190. 688

22. Wakabayashi, K. CyberWorkBench: integrated design environment based on C-based behavior synthesis and verification. 689
In Proceedings of the 2005 IEEE VLSI-TSA International Symposium on VLSI Design, Automation and Test, 2005.(VLSI- 690
TSA-DAT). 2005; pp. 173-176. 691

23. Guo, L.; Chi, Y.; Wang, J.; Lau, J.; Qiao, W.; Ustun, E.; Zhang, Z.; Cong, J. AutoBridge: Coupling Coarse-Grained Floorplan- 692
ning and Pipelining for High-Frequency HLS Design on Multi-Die FPGAs. In Proceedings of the The 2021 ACM/SIGDA 693
International Symposium on Field-Programmable Gate Arrays, 2021; pp. 81-92. 694

J. Imaging 2022, 8, x FOR PEER REVIEW 18 of 18

24. Noronha, D.H.; Salehpour, B.; Wilton, S.J. LeFlow: Enabling flexible FPGA high-level synthesis of tensorflow deep neural 695
networks. In Proceedings of the FSP Workshop 2018; Fifth International Workshop on FPGAs for Software Programmers, 696
2018; pp. 1-8. 697

25. Hebbar SR, R.; Milenković, A. SPEC CPU2017: Performance, event, and energy characterization on the core i7-8700K. In 698
Proceedings of the Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering, 2019; pp. 699
111-118. 700

26. Beutel, J.; Trüb, R.; Forno, R.D.; Wegmann, M.; Gsell, T.; Jacob, R.; Keller, M.; Sutton, F.; Thiele, L. The dual processor 701
platform architecture: demo abstract. In Proceedings of the Proceedings of the 18th International Conference on Infor- 702
mation Processing in Sensor Networks, 2019; pp. 335-336. 703

27. Bellemou, A.; Benblidia, N.; Anane, M.; Issad, M. Microblaze-based multiprocessor embedded cryptosystem on FPGA for 704
elliptic curve scalar multiplication over F p. Journal of Circuits, Systems and Computers 2019, 28, 1950037. 705

28. Shamseldin, A.; Soubra, H.; ElNabawy, R. Performance of DSP operations implemented using a soft microprocessor: a case 706
study based on Nios II. In Proceedings of the 2021 International Conference on Microelectronics (ICM), 2021; pp. 66-69. 707

29. Mplemenos, G.-G.; Papaefstathiou, I. Mplem: An 80-processor fpga based multiprocessor system. In Proceedings of the 708
2008 16th International Symposium on Field-Programmable Custom Computing Machines, 2008; pp. 273-274. 709

30. Siddiqui, F.; Amiri, S.; Minhas, U.I.; Deng, T.; Woods, R.; Rafferty, K.; Crookes, D. Fpga-based processor acceleration for 710
image processing applications. Journal of Imaging 2019, 5, 16. 711

31. Kimura, Y.; Kikuchi, T.; Ootsu, K.; Yokota, T. Proposal of Scalable Vector Extension for Embedded RISC-V Soft-Core Pro- 712
cessor. In Proceedings of the 2019 Seventh International Symposium on Computing and Networking Workshops (CAN- 713
DARW), 2019; pp. 435-439. 714

32. Wilson, J.N.; Ritter, G.X. Handbook of computer vision algorithms in image algebra; CRC press: 2000. 715
33. Liu, G.; Luo, Q.; Liu, B.; Lu, B.; Guo, P. Embedded intelligent camera algorithm based on hardware IP. In Proceedings of 716

the Tenth International Symposium on Precision Engineering Measurements and Instrumentation, 2019; p. 110533T. 717
34. Bailey, D.G. Image processing using FPGAs. 2019, 5, 53. 718
35. Palmer, J.F. The Intel® 8087 numeric data processor. In Proceedings of the Proceedings of the May 19-22, 1980, national 719

computer conference, 1980; pp. 887-893. 720
36. Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: analysis, applications, and prospects. 721

IEEE Transactions on Neural Networks and Learning Systems 2021. 722
 723
 724
 725
 726
 727
 728
 729
Bio 730
 731
Tiantai Deng received his PhD from Queen’s University Belfast, MSc from the University of Manchester and BEng from Harbin 732
Institute of Technology. He is currently a lecturer at the University of Sheffield. Prior to his career as an academic, he was a 733
senior engineer at HiSilicon, Huawei. His main research focus is on hardware acceleration for image processing, deep learning 734
and high-level design environments. 735
 736
Danny Crookes received the BSc and PhD degrees from Queen’s University Belfast in 1977 and 1980 respectively. He was ap- 737
pointed to the Chair of Computer Engineering at Queen’s University Belfast in 1993, where he was the Head of Computer Science 738
from 1993 to 2002. He has published over 260 scientific papers in journals and international conferences. His current research 739
interests include medical image processing, hardware acceleration, and speech enhancement and separation. 740
 741
Roger Woods received the BSc and PhD degrees from Queen’s University Belfast in 1985 and 1990 respectively, and is currently 742
a professor and Dean of Research with in the university. He has also formed Analytics Engines Ltd., and acts as their chief 743
scientist. His research interests include heterogeneous programmable systems and design tools for data, signal and image pro- 744
cessing, and telecommunications. 745
 746
Fahad Siddiqui received the BSc degree in Electronic Engineering from Sir Syed University of Engineering and Technology, 747
Pakistan in 2007, the MSc degree in Electronic Engineering from the Polytechnic University of Turin, Italy in 2012, and the PhD 748
degree from Queen’s University Belfast in 2018. His research interests focus on FPGA- based programmable architectures with 749
an emphasis on hardware acceleration. He is currently Senior Hardware Security Architect at NVIDIA, Belfast, UK. 750
 751

