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Summary

Residual DNA DSB damage
contributes to late normal
tissue toxicity. Here we
studied the variations in
DNA DSB damage process-
ing along and in the sur-
roundings of therapeutic
proton beams in normal
human cells using the 53BP1
foci assay. Our results indi-
cate a significant induction
of complex DNA damage at
the distal end of the Bragg
peak. Variation in the DNA
repair efficiency is important
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Purpose: To investigate the variations in induction and repair of DNA damage along
the proton path, after a previous report on the increasing biological effectiveness along
clinically modulated 60-MeV proton beams.
Methods and Materials: Human skin fibroblast (AG01522) cells were irradiated along
a monoenergetic and a modulated spread-out Bragg peak (SOBP) proton beam used
for treating ocular melanoma at the Douglas Cyclotron, Clatterbridge Centre for
Oncology, Wirral, Liverpool, United Kingdom. The DNA damage response was stud-
ied using the 53BP1 foci formation assay. The linear energy transfer (LET) depen-
dence was studied by irradiating the cells at depths corresponding to entrance,
proximal, middle, and distal positions of SOBP and the entrance and peak position
for the pristine beam.
Results: A significant amount of persistent foci was observed at the distal end of the
SOBP, suggesting complex residual DNA double-strand break damage induction cor-
responding to the highest LET values achievable by modulated proton beams. Unlike
the directly irradiated, medium-sharing bystander cells did not show any significant
increase in residual foci.
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for optimization of proton

therapy combined with DNA
repair inhibitors.
Conclusions: The DNA damage response along the proton beam path was similar to
the response of X rays, confirming the low-LET quality of the proton exposure. How-
ever, at the distal end of SOBP our data indicate an increased complexity of DNA le-
sions and slower repair kinetics. A lack of significant induction of 53BP1 foci in the
bystander cells suggests a minor role of cell signaling for DNA damage under these
conditions. � 2016 The Authors. Published by Elsevier Inc. This is an open access
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction

Radiation therapy relies on induction of critical levels of
DNA damage in the tumor cells, leading to apoptosis, ne-
crosis, and mitotic cell death (1). Recent technological ad-
vances make it now possible to treat tumors more precisely
than before using spatially and temporally modulated beams
(2). Protons, with their superior depthedose deposition
properties over photons, might offer an advantage for treat-
ment of tumors near critical organs (3). In proton therapy, a
constant RBE (relative biological effectiveness) value of 1.1
is used to design treatment plans (4). This, however, repre-
sents an average, because a rapid drop in the proton energy
and steep rise of the linear energy transfer (LET) are expected
toward the distal end of the Bragg curve, resulting in an
experimentally observed increase in effectiveness and
therefore variable RBE (5). Several investigators, including
our group, have shown the potential clinical impact of the
adoption of a variable RBE (6, 7). Photons induce uniform
damage along the depth, and the total absorbed dose can be
used to define the response, whereas charged particles induce
nonuniform damage along the track: the complexity of DNA
lesions increases with the slowing down of the particle owing
to the clustering of ionization events (8). Linear energy
transferedependent changes inDNAdamage and subsequent
repair have been well reported (9). Although most DNA
damage induced by low-LET radiation can be efficiently
repaired, high-LET radiations are associated with increased
formation of repair-refractory clustered DNA lesions, mis-
repaired double-strand breaks (DSBs), and exchange-type
chromosomal aberrations, leading to increased cellular
lethality (10). Because the LET for protons varies along the
particle path, a simple assumption of uniform DNA damage
and repair similar to that experienced after X ray exposure
may not be justified. Although better dose conformation and
higher precision than with photon beams are the key advan-
tages of using proton therapy, the quality of the DNA damage
induced and its impact on the cell repair efficiency must also
be considered to optimize the treatments (11).

Residual DSB damage (ie, unrepaired DSBs at 24 hours
after irradiation), along with a tissue-dependent cascade of
biochemical processes, plays an important role in late
normal tissue response, and many investigators have high-
lighted the role of persistent DSB foci as late normal tissue
toxicity biomarkers (12-15). Moreover, radiation therapy is
often applied in combination with pharmaceutical agents,
which target the DNA repair mechanisms of cancerous cells
with the aim of increasing radiation effectiveness.
Complexity of DNA lesions has been shown to play a key
role for selection and activation of repair pathways and
tissue response mechanisms (16-19). For monoenergetic
proton beams, the LET values reach>35 keV/mm (20), with
approximately 3% of the total dose delivered by >20 keV/
mm LET component (21). Values exceeding 5 keV/mm are
being considered of potential clinical interest (11). This is of
particular concern because the high-LET dose component is
at the end of the proton path and therefore in close proximity
to healthy tissue (22). Further understanding of the quality
of proton-induced DNA damage is therefore required for the
optimization of the treatment plans, particularly when used
in combination with DNA repair inhibitors and cancer
cellespecific chemical agents (ie, poly ADP ribose poly-
merase and Ape-1/ref-1).

Several investigators have measured the DNA damage
response at various positions in the Bragg curve using
plasmid DNA and mammalian cell lines (23, 24). How-
ever, the depth resolution and positional accuracy reported
is of a few millimeters, which results in an average LET
investigation overlooking the spatial dynamics of the DNA
damage response at the sub-millimeter scale. Data on
DNA damage response within the spread-out Bragg peak
(SOBP) are still needed for evaluating the risk to normal
tissues in close proximity to the irradiated volume. Finally,
radiation-induced intercellular bystander signaling has
been suggested to play an important role that might
significantly affect the outcome of radiation therapy by
extending the range over which the radiation damage is
induced (25, 26).

Here we have quantified the variations in DNA DSB
damage induction and repair along clinically relevant pro-
ton beams. AG01522 cells were placed at precise positions
along 60-MeV proton beams and the DNA repair kinetics
followed up to 24 hours using the well-established phos-
phorylated p53 binding protein 1(53BP1) foci assay (27,
28). Similarly, we also studied the proton-induced
bystander effects in the medium-sharing cells >20 mm
away from the irradiated samples. Data have been analyzed
as a function of dose, particle fluence, and LET obtained
from Monte Carlo simulations. Our findings indicate a
significant enhancement in the residual DNA damage only
at the distal end of the SOBP. On the other hand, nonsig-
nificant 53BP1 foci induction in the bystander cells sug-
gests reduced risk of late normal tissue toxicity in the
nonedirectly exposed surrounding samples.

http://creativecommons.org/licenses/by/4.0/
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Methods and Materials

Cell culture

Normal human skin fibroblast (AG01522B) cells were ob-
tained from the Coriell Cell Repository (Camden, NJ) and
cultured as previously described (29). Cells grown in
the slide flasks were shipped to the experimental beam
line in low serum medium containing 20 mM N-2-
hydroxyethylpiperazine-N0-2-ethanesulfonic acid buffer
and antibiotics. Upon arrival, the cells were incubated at
37�C until being irradiated (>24 hours) and fixed.

Irradiation and dosimetry

Cells in the slide flasks were exposed to 1 Gy of 60-MeV
proton beam generated at the Douglas Cyclotron of the
Clatterbridge Cancer Centre and to 225-kVp X rays in our
center. Dosimetry was carried out using a Markus chamber
as described in reference (30). Details of the irradiation
procedure are provided in the Supplementary Information
(available online at www.redjournal.org). The depth-dose
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Fig. 1. (a) Dose, depth, and linear energy transfer (LET)
profiles for monoenergetic and (b) spread-out Bragg peak
proton beams. The vertical lines represent the sample irra-
diation positions. Relative dose across the depth as measured
using diode dosimetry is shown using solid lines. Dashed
lines indicate linear energy transfer values shown on the
secondary y axis as calculated using the Geant4 toolkit.
profiles are shown in Figure 1, where irradiation positions
are indicated as P1-P6 in SOBP and P1-P2 for pristine
beam. The dose-averaged LET values calculated using the
Geant4 toolkit are shown in Supplementary Table 1
(available online at www.redjournal.org).

53BP1 foci formation assay

As recommended by seminal reports, the residual 53BP1
assay has been used as a method to quantify clustered DNA
damage at the single-cell level (31-36). After irradiation
and incubation for the stipulated time intervals, cells were
washed in cold phosphate-buffered saline (PBS) and fixed
in 4% paraformaldehyde (Sigma Aldrich, St. Louis, MO)
solution in PBS, at room temperature for 20 minutes. Fixed
samples were stored in PBS at 4�C. For staining, cells were
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Fig. 2. 53BP1 foci in AG01522 cells exposed to 1 Gy of
(a) 225-kVp X rays, (b) at the beam entrance position (P1)
and the Bragg peak (P2) of 60-MeV monoenergetic pro-
tons. 53BP1 foci induction and persistence along the
spread-out Bragg peak (SOBP) is shown in red at 30 mi-
nutes and in green at 24 hours of irradiation. The relative
normalized water equivalent dose along the SOBP is shown
in blue. Error bars represent � SEM. Statistical significance
was calculated using a 2-tailed, unpaired t test, with P�.05
considered as significant. NS Z nonsignificant. *Signifi-
cant. For significance analysis for SOBP data, the average
foci numbers of the different positions are compared with
the foci number at entrance. A color version of this figure is
available at www.redjournal.org.
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washed with cold PBS and permeabilized in chilled meth-
anol, washed, and then blocked in 10% goat serum and
0.2% Triton X-100 in PBS, for 1 hour at room temperature.
The cells were then probed with 53BP1 primary antibody
raised in rabbit (Novus Biologicals, Littleton, CO, USA,
Catalog no. NB100-304) at a dilution of 1:1000 for 1 hour
at 37�C. Finally the cells were washed, probed at a dilution
of 1:1000 with goat anti-rabbit Alexa Flour
488econjugated secondary antibody (Invitrogen, Life
Technologies, Carlsbad, CA, catalog no. A11008 and
counterstained with Prolong gold antifade reagent (Invi-
trogen, Life Technologies, Carlsbad, CA) with 6-diamino-
2-phenylindole.

Image acquisition and data analysis

Images were acquired using a Carl Zeiss (Jena, Germany)
Axiovert 200M fluorescence microscope using a �63
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Fig. 3. Subpopulation radiosensitivity analysis using distributi
the directly exposed cells to (a) 225-kVp X rays, (b) entrance (
various depths in the spread-out Bragg peak (SOBP). Range of fo
range of foci is shown on the y axis.
objective. Because of the cell nucleus thickness being
comparable to the objective depth of focus, no Z-stack
analysis was required. For each data point >100 cells were
manually scored randomly in duplicate experiments. The
values plotted in graphs are mean � SEM. Statistical sig-
nificance was calculated using a 2-tailed unpaired Student
t test, and P values �.05 were considered statistically
significant.
Results

DNA DSB induction and kinetics in response to 60-
MeV monoenergetic protons

Figure 2a shows the 53BP1 foci induction in cells directly
irradiated with 225-kVp X rays, entrance (P1), and Bragg
peak (P2) of the pristine proton beam. The unirradiated
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controls showed an average number of 1.4 � 0.19 foci per
cell that increased to 28.9 � 0.37, 27.1 � 1.25, and
31.1 � 1.97 in the cells irradiated with 1 Gy of X rays,
proton entrance (P1), and Bragg peak (P2) position,
respectively, at 30 minutes. No statistically significant dif-
ferences in the number of foci per cell were observed for all
the time points except 24 hours. At 24 hours, although the
average foci number per cell at P1 and X rays was similar
to that for controls, cells irradiated at the Bragg peak
showed significantly (PZ.03) higher foci numbers
(4.6 � 0.6) than controls (1.4 � 0.19). This indicates that
although most of the DNA lesions are repaired, a small but
significant fraction at the Bragg peak position persists
>24 hours after irradiation.
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As shown in Figure 2b, nonsignificant variation in foci
induction at 30 minutes was observed in cells irradiated
along the SOBP. The average number of 53BP1 foci at the
entrance (P1) was 30.2 � 1.10 (1 Gy, fixed at 30 minutes),
and similarly the average foci per cell was 29.1 � 1.7,
29.2 � 1.1, 28.9 � 1.1, 28.4 � 1.2, and 27.6 � 0.6 foci per
cell for the P2-P6 positions, respectively. Twenty-four
hours after irradiation, although data indicate an
increasing foci trend with depth, only cells irradiated at P6
showed significantly (PZ.05) increased (6.04 � 0.65) foci
per cell compared with P1.
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Fig. 4. (a) 53BP1 foci induction in the medium-sharing
bystander cells at the beam entrance (P1) and peak (P2)
position of a 60-MeV monoenergetic beam at various time
points. Error bars represent � SEM of the 2 independent
replicates. (b) Residual damage in the medium-sharing cells
along the spread-out Bragg peak (SOBP) solid bars indicate
the unrepaired foci remaining >24 hours. Statistical sig-
nificance was calculated using a 2-tailed, unpaired t test,
with P�.05 considered as significant. NS Z nonsignificant.
*Significant.
Subpopulation radiosensitivity analysis

Subpopulation radiosensitivity was analyzed using foci per
cell distribution patterns. Controls showed >99% of the
cells with 0 to 4 foci, whereas 30 minutes after 1 Gy x-ray
exposure most of the cells showed approximately 20 to 24
foci (Fig. 3). Foci distribution histograms followed a
Gaussian distribution (Supplementary Fig. 2; available
online at www.redjournal.org), shifting in time toward
lower value of foci per cell. The foci distribution pattern in
cells irradiated at the pristine beam entrance position (P1)
was similar to the x-rayeinduced pattern. However, the foci
distribution for the proton-irradiated samples appeared
wider than for X rays, possibly indicating inhomogeneous
levels of damage at the cellular level despite a very uniform
dose delivery at the macroscopic level. This inhomogeneity
in levels of DNA damage could be associated with the
relatively low number of proton traversals per cell for the
delivery of 1 Gy: the estimated particle fluence at
the entrance is approximately 520 protons per cell, and at
the peak position (P2) is approximately 63 protons per cell
(assuming 133 mm2 for a typical AG01522 nucleus cross-
section and LET value 1.6 and 13.1 keV/mm, respectively,
at the entrance and peak).
DNA DSB in unirradiated medium-sharing
bystander cells

DNA DSB repair in unexposed bystander cells approxi-
mately 2 cm away from the irradiated cells at the entrance
and peak positions was also evaluated. The experiments
aimed to investigate the DNA damage caused by bystander
factors released into the medium by irradiated cells. Using
Geant4 simulations and measurements with Gafchromic
films, the scattered dose was found to be negligible at a
distance of 2 cm from the irradiation field. Sub-confluent
slide flasks were marked into 3 equal parts and one-third
irradiated while the rest of the flask was shielded. Figure 4a
and b shows the kinetics of 53BP1 foci per cell in the
medium-sharing bystander cells. We did not observe any
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statistically significant differences in the average number of
foci in the cells irradiated to 1 Gy of 60 MeV pristine
and SOBP beam, irrespective of the position. The foci
distribution, however, indicates a small fraction of cells
(10%-15%) with bystander foci similar to those observed
with directly exposed X rays (Fig. 5).

Relation between 53BP1 foci induction LET and
cell-killing RBE

Because DNA DSB damage is well evidenced to play a
crucial role in cell killing, we evaluated the relationship
between 53BP1 foci, LET, and the RBE for cell killing.
Linear energy transfer was obtained using the Geant4
simulation kit, and the RBE was calculated using a param-
eterized model (29): RBE Z ((ax

2 þ 4bxDp(ax þ lLET
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parameter from the x-ray exposure, Dp is the proton dose,
and the l parameter for AG01522 cells is
0.0451 mm keV�1 Gy�1. Foci induction kinetics (Fig. 6a, b)
across various depths in the SOBP did not show a particu-
larly good correlation with LET (R2 Z 0.81; where R2 is the
coefficient indicating goodness of fit of a function); however,
a good correlation (R2 Z 0.91) between the residual foci at
24 hours and LET was obtained. Conversely, medium-
sharing bystander cells revealed a good correlation with
LET (R2 Z 0.94) at 30 minutes but not at 24 hours
(Supplementary Fig. 1; available online at www.redjournal
.org). Correlations between foci and RBE are shown in
Figure 6a and b for the directly irradiated samples and in
Supplementary Figure 1c and d (available online at www.
redjournal.org) for the bystander cells.
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Discussion

The debate on variable versus constant RBE in proton
therapy treatment planning is still ongoing. Although a
constant RBE of 1.1 is currently used with satisfactory re-
sults, in vitro and theoretical studies have highlighted the
importance and the impact of using variable RBE to fully
exploit the potentials of charged particles with strategies
such as LET painting of hypoxic areas. Wedenberg and
Toma-Dasu (37) recently reported that disregarding RBE
variations could lead to less-effective dose plans. Several
investigators have also demonstrated a key role of persistent
DNA DSBs in late normal tissue radiation toxicity (12-14)
and the selective role of protein kinases (ie, ATM and
ATR) in the repair of complex DNA breaks (17-19), high-
lighting possible chemical inhibitory strategies for further
modulating the biological response along proton beams.

In this study we have shown that even modest variations
in LET, as along the proton Bragg curve, can result in
different degrees of DNA damage, with cells irradiated at
distal positions showing significant persistent 53BP1 foci
24 hours after irradiation. To further elucidate the rela-
tionship between LET and induction of residual DNA
damage, we studied 53BP1 induction along 6 positions of a
clinical 60-MeV SOBP. The average foci per cell number at
30 minutes did not show a significant difference for any of
the irradiation positions, indicating a negligible overlapping
of foci along the proton track. However, at 24 hours after
irradiation, the distal SOBP positions showed significant
amounts of residual foci (Fig. 2b). The relative foci in-
duction obtained by dividing the average number of proton-
induced foci by the number of x-rayeinduced foci at given
time points for the pristine and SOBP positions is shown in
Supplementary Figure 5 (available online at www
.redjournal.org). Further analysis indicated a linear trend
(R2 Z 0.9) between residual foci and LET (0-30 keV/mm).
Wilkens and Oelfke (38) have reported a linear relationship
between RBE and LET up to 100 keV/mm; in our study the
highest LET value at the distal end of the SOBP was
24.2 keV/mm, and our findings support this linear trend and
highlight the strong link between residual foci and radio-
biological response. It is also interesting to note that the
number of foci per track per cell follows a linear relation-
ship both at 30 minutes and 24 hours after irradiation
(Supplementary Fig. 4; available online at www.redjournal
.org). From these data it is possible to extract the minimum
LET value required to cause residual DNA damage
(LETcrit Z 2.5 keV/mm). As expected, the foci per cell
distribution (Fig. 3) showed a time-dependent shift toward
background values. However, although x-ray data follow a
normal distribution, the proton distributions seem to be
broader and slower for the Bragg peak exposure. This
further supports the hypothesis of significant variation in
the complexity of DNA breaks induction and repair
processes.

The clinical importance of non-targeted or bystander
effects has been well reviewed (25, 26, 39). In our study we
investigated the contribution of factors released into the
medium by directly irradiated cells upon DNA damage in
the nonirradiated cells >2 cm away. This distance was
chosen to exclude damage induced by secondary scattered
particles. Using our current setup we did not detect any
significant increase in 53BP1 foci in the medium-sharing
bystander cells for either monoenergetic (Fig. 4a) or
modulated exposures (Fig. 4b). However, there were dif-
ferences in the foci per cell distribution (Fig. 5). Whereas
the majority (85%-90%) of bystander cells showed 0 to 5
foci, the remaining subgroup showed more than 5 foci per
cell, which decreased to 1 to 2 at 24 hours after irradiation.
This would suggest that DNA lesions caused in non-
directly exposed cells affects only a small subpopulation.
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Synthetic lethality-inducing agents such as gemcitabine
and cisplatins have been effectively used in cancer treat-
ment owing to their ability to inhibit DNA replication,
either by stalling the replication fork or inter-/intrastrand
DNA cross-links in the proliferating tumor cells. As re-
ported by Jones et al (40), stalling replication forks also
affect DNA repair, causing more persistent DNA DSBs.
In vitro (37) and clinical (41) preliminary studies have re-
ported promising results for combined use of cisplatin and
poly ADP ribose polymerase inhibitors with proton beams,
demanding further investigations regarding the link be-
tween quality of damage and the inhibition of repair
pathways. Our findings are in agreement with the earlier
studies reporting a low- and high-LET behavior for proton
beams. The variation of the complexity of DNA breaks
along the proton beam seems to be of a significant level for
the cellular processes and will have to be taken into account
for optimizing proton treatment strategies, particularly in
combination with chemotherapeutic agents.
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