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EEG Correlates of Driving Performance
Thomas G. Simpson and Karen Rafferty, Senior Member, IEEE

Abstract—Techniques for monitoring human performance tra-
ditionally rely on subjective responses and task-specific scoring,
yet research suggests EEG could offer multiple performance
metrics with high temporal resolution and accuracy that could
be leveraged for human-computer interaction purposes. The
objective of the presented work is to investigate which EEG
responses correlate with task performance and evaluate whether
combinations of these produce effective predictive models, fa-
cilitating further understanding of the psychological link to
performance. A user study was conducted with 32 participants
required to negotiate a driving course with the ambition of
learning and improving ability on the course during an EEG
recording session. EEG was filtered and post-processed to find
Power Spectral Density (PSD) in alpha (α), beta (β), delta (δ), and
theta (θ) frequency bands, as well as frontal alpha asymmetry
(FAA). The initial laps were considered a baseline and an average
performance improvement was calculated over the remaining
laps in terms of percentage improvement in duration of track
traversal. Results demonstrate Event Related Desynchronisation
(ERD) with increased task performance in the alpha (p = .000),
delta (p = .000), and theta (p = .000) bands, as well as evidence of a
relationship between overall change in FAA and task efficiency. A
full electrode analysis identifies δF4 as the optimal for predicting
collisions, with efficiency best predicted by a combination of βOz
and δF4 .

Index Terms—electroencephalography, regression modelling,
human performance monitoring

I. INTRODUCTION

MEASUREMENTS of cognitive function have been in-
tegrated into task performance monitoring protocols

in a variety of environments, including medical [1], [2],
military [3], [4], aviation [5], [6], and industrial training
platforms [7], [8]. The demand for enhanced examination
of task performance can be extended generally to training
platforms [9], [10], performance critical industries [11], [12],
and rehabilitation [13], [14]. Analysis of human performance
is important in these domains as it is beneficial to effectively
model improvement in order to enhance pedagogical practices,
guidance, or treatments. Furthermore, adaptive systems could
alter training to accommodate individual requirements during
a task, with the potential for intelligent enhancements based
on user-specific data. EEG metrics reveal key components of
cognitive function such as workload and approach motivation,
yet further research is required to better exploit these mea-
surements for refined implementation into training protocols
for optimised user experiences.

Previous research conducted focuses on driver workloads
[15] and vigilance [16], but little work has been done to assess
the relationship with human task performance. The focus of
this work is hence on monitoring user performance using EEG,
adopting driver training as an instance of an elaborate task
requiring synthesis of complex neural systems for effective
cognitive and motor function. Such insight would allow EEG

signals to be interpreted as an additional performance metric,
improving the understanding of an individuals training profile
and facilitating optimisation protocols. The objective of this
paper is to observe how different EEG features correlate with
performance in a driver training context, and to combine
features for improved predictions while retaining explainable
results. The innovation of the work is the study design which
allows EEG metrics to be related to driving performance using
mathematical models, improving understanding of cognitive
processes for future adoption in pragmatic monitoring im-
plementations. The contributions are the observed relation-
ships between EEG features and driving performance, the
final model’s predictions as a benchmark, and psychological
interpretations of the final models pertinent to driving tasks.

In this study participant performance scores are extracted
from a driver based virtual training environment, along with
EEG recordings where PSD features alpha, beta, delta, theta,
and FAA are extracted in a post-processing phase. The re-
lationship between these features and their combinations are
evaluated against driving performance leveraging regression
modelling for interpretation.

This paper describes the system, experiment design, and
data acquisition, including insight from the literature and con-
textual relevance of the work. The results are then analysed and
discussed with relation to the wider theoretical implications.

II. LITERATURE REVIEW

There are a variety of techniques for measuring transi-
tions in cognitive state, including heart rate variability [17],
oculomotor activity (EOG) [18], pupilometry [19], functional
near infrared imaging (fNIR) [20], and galvanic skin response
(GSR) [21]. Each technique has merits, yet none compete with
the temporal resolution of the EEG, which is able to reflect
subtle shifts in cognitive processes [22]. There is a rich corpus
of literature dedicated to analysing and interpreting EEG
signals both mathematically and in psychological contexts.
Typical applications include measuring cognitive workload
[23], emotion [24], or approach motivation [25], which can
be beneficial for a variety of purposes, including affective
computing, medical understanding, and adapting to a humans
capability.

Within the field of EEG research there are many techniques
for monitoring cognitive states, including Event Related Po-
tentials (ERPs), frequency band PSD, and FAA. Each tech-
nique reveals a different insight into cognitive function and is
involved in various systems throughout the literature.

The PSD of the frequency bands are related to different
psychological responses contingent on the observed band, it is
hence a popular choice for monitoring aspects of neurological
processing. The main features are the frequency bands alpha,
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beta, delta, theta, and the left to right ratio FAA, all of which
are linked to different characteristics of cognitive activity.
These relationships are discussed in further detail in Section
III. D.

There have been various human monitoring system imple-
mentations using these signals. One common criteria mon-
itored is alertness or drowsiness in an individual, which is
useful in a variety of applications to observe human operators,
such as in driving, industrial operation, and other safety critical
environments. This has been accomplished using both support
vector machines (SVM) [26] and artificial neural network
(ANN) [27] classifiers, with some implementations based on
single channel EEG alone [28]. Other techniques include the
Hilbert-Huang transform (HHT), fast fourier transform (FFT),
and continuous wavelet transform (CWT), which have also
been adopted for obtaining frequency information from EEG
signals to assess drowsiness [29]. Furthermore, hybrid based
input systems comprised of both EEG and body movement
data have been shown to increase efficacy, demonstrating
promising results for detection in driver scenarios [30]. Fusion
techniques have been successful for predicting driving charac-
teristics, such as aggressiveness and stability using multiple
EEG feature extraction algorithms combined with driving
features [31].

This technology has also been used in training, adopting
EEG based cognitive recognition to produce pass, fail, and
retrain recommendations in a maritime virtual simulator using
SVMs [32]. Other techniques exist in the literature centred
around recognition of external stimuli, such as utilising ERPs
to identify red, yellow, or green traffic lights with self-
constructing neural fuzzy inference networks (SONFIN) [33].

Another common research approach is to observe driver dis-
traction levels during activity. It has been shown that a second
interference task significantly affects driving performance as
well as judgment capability, finding different features of the
additional task had different effects on the EEG responses [34].
Furthermore, online prediction of driver distraction has been
successfully achieved using adaptive-threshold-based predic-
tion (ATP), which utilises raw continuous EEG signals mon-
itored by a sliding window and converted to pattern clusters
consecutively through a two level feature extraction process
[35]. Self organising maps have also been demonstrated as
effective, achieving a 90% accuracy for recognition of EEG
epochs of distracted and concentrated driving [36].

Other work observes the relationship between EEG and or-
dinary driving behaviours such as acceleration, space headway,
speed, and lane deviations [37]. This has been compared with
amplitude, log-transformed power (LTP), and PSD, observing
that ordinary driving behaviours relate to all four brain regions,
especially temporal, occipital, and frontal regions. It was
further determined that acceleration, speed, and space headway
may have potential correlation with neurological processes.

EEG features have been shown to modulate with increasing
working memory load and during problem solving, integration
of information, and analytical reasoning, leading to interpre-
tations suggesting they are reflective of executive function
[22]; this has led to many efforts towards the monitoring of
cognitive workload using EEG data. These implementations

come in many forms, with both traditional analyses and more
modern deep learning based approaches reported across the
literature. Traditional techniques preserve strength in explain-
ability and are hence often favoured by the neuroscience
community where understanding is considered paramount.
Many modern engineering based approaches involve SVC or
neural networks, which have been demonstrated as viable,
efficient, and effective solutions. For example, SVC’s have
been used to classify different memory workloads, using the
n-back task [38], with excellent results. In addition CNN’s
have been shown to have high classification accuracies for
neuroscience applications, where a typical processing chain
will convert 1-D EEG signals to 3D EEG images and enable
a 3D CNN to learn the spectral and spatial information over
the scalp [39]. However, these techniques are considered to
be black-box techniques, which generally lack transparency
and explainability, limiting psychological interpretations and
often failing to progress the knowledge space, which is a
fundamental requisite of neuroscience.

Human performance monitoring is another significant field
pertinent to EEG research. Advances in this domain would
augment training system implementations with adaptation
functionality capable of accommodating individual ability,
allowing pedagogical protocols to be optimised in myriad
industries. Such skill catalysts contribute to societal practices
in both professional and recreational capacities.

EEG driving studies focus on cognitive workload and en-
gagement, despite suggestions in the theory that a relationship
exists between neurological processes and task performance.
This paradigm is less explored in the literature, yet shows
promise [7], [40] with high classification rates being achieved
from behavioural data and multi-modal approaches.

The objective of this paper is to explore the concept that
task performance is correlated with EEG information in a
driver training scenario, while maintaining the importance
of psychological interpretations in order to contribute further
understanding to the literature. Furthermore, implementations
could be used to monitor performance in real time which has
direct application to modern training, rehabilitation, and safety
critical systems.

III. METHODS

A. System Design
The virtual driver experience was comprised of a soft-

ware implementation with integrated hardware to facilitate
interaction with the participant. The software component was
developed in the Unity Game Engine version 2018.3.1 using
C# scripting, incorporating virtual assets from the Unity Asset
Store, including functional game objects such as the vehicle
that the user would engage with and visual components to give
the illusion of an authentic driving experience such as trees,
barriers, and grass.

The simulation utilised mid-level graphical quality as the
main objective was for research, yet some level of realism
was appropriate. This was displayed on a 46 inch monitor,
setup in front of a Logitech Racing Chair with G920 steering
wheel and pedals, isolated using a curtain to reduce distraction
throughout the study.
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Fig. 1: Driving Simulator

The performance of the virtual vehicle was tuned to meet
the characteristic response expected in a standard road car,
by tuning parameters such as steering control, speed, torque,
and acceleration. Reverse was enabled on the vehicle so that
candidates could continue in the instance of a collision. This
was accomplished with the assistance of a member of the
Queen’s University Belfast Racing Team who had significant
expertise in driving and racing with numerous vehicles. The
course was developed to meet time constraints of the user
study, so that candidates would be able to maintain maximum
attention for as long as possible.

A system was incorporated to give haptic feedback during
the user study, half of the participants were assigned to the
visual-haptic group and hence received this feedback. The
system integrated an Arduino Uno to output vibrations via
four motors with attached inertial masses, using one motor on
each wrist to give steering guidance during training phases,
and one on each ankle to give pedal guidance.

An 8 Electrode Dry EEG cap by Neuroelectrics was used for
EEG recordings throughout the experiment, which facilitates
Bluetooth operation with a sampling frequency of 500Hz.
The electrodes chosen were F3, F4, F7, F8, Fz, Cz, Pz, Oz,
referenced to the right mastoid, as these allow analysis of
frontal, parietal, and occipital lobes which are linked with
activity from the different frequency bands, and allow for FAA
measurements.

For the initial analysis, Oz is excluded to focus on the frontal
and parietal lobes. However, in later full electrode analyses it
is included.

B. Objectives

• To observe relationships between task performance and
EEG features in order to determine the psychological
processes pertinent to performance in this context.

• To exploit EEG relationships with performance to pro-
duce regression models, with an emphasis on model
explainability, feature importance, and predictive quality.

C. Hypotheses

H1: Haptic feedback will modulate with aspects of cognitive
workload, most likely beta PSD as it will likely place
more demand and stress on the user [41], [42].

H2: Alpha band PSD (8-12Hz) will decrease with perfor-
mance increase due to its active role in information
processing, particularly attention [43], [44].

H3: Beta band PSD (12-30Hz) will decrease with perfor-
mance increase due to the link with alertness and stress
[41], [42], [45]–[47].

H4: Delta band PSD (0-4Hz) will decrease with performance
increase due to links with proficiency in task performance
[48], [49].

H5: Theta band PSD (4-8Hz) will decrease with performance
increase due to links with cognitive resource demand
[50], [51].

H6: FAA will decrease with performance increase because
reduced FAA is linked with increases in engagement and
motivation [52].

H7: A multivariate regression model based on the strongest
features from these metrics will be able to make more
insightful predictions than univariate models due to the
explanation of different variances, allowing for a greater
understanding of the psychological processes active.

D. Predictor Variables

The predictor variables are the different frequency bands in
the brain. These have all been linked to a variety of locations
[53] particularly the frontal and parietal cortices, hence this
study observes an average of the results across the brain, with
the frontal cortex being observed by 4 electrodes, and the
parietal cortex being observed by 3, with the occipital lobe
measurement excluded from the initial analysis.

1) Alpha Band Power: Alpha band power traditionally
describes spectral power in the 8-12Hz range [54]. It is
believed to play an active role in information processing and
thought to be closely linked to the suppression and selection
of information, which enable controlled knowledge access and
semantic orientation [55]. Empirically, the alpha band has
been shown to modulate with working memory [43], spatial
attention [44], and to decrease with increased task difficulty
[56], [57].

2) Beta Band Power: Beta band power typically describes
spectral power in the 12-30Hz range [58], [59]. High work-
loads are thought to increase beta activity, and it is also linked
to changes in alertness and stress [45]. Beta activity has been
shown to reflect attention, perception, and more generally,
cognitive function in humans [60].
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(a) Driving Simulator Course Aerial View (b) Driving Simulator Interface

Fig. 2: Driving Simulator

3) Delta Band Power: Delta band power describes spectral
power in the 0-4Hz range [61]. High correlations between the
amount of slow waves present during a task and execution pro-
ficiency have been reported [48], as well as links to working
memory load [62]. It has been suggested that these waves are
representative of ‘Class II Inhibition’, where non-relevant or
inappropriate neural activity are selectively suppressed during
the performance of a mental task [49], enabling concentration
on the salient objectives present in the task.

4) Theta Band Power: Theta band power typically de-
scribes spectral power in the 4-8Hz range [62]. Increases
in theta band power are generally associated with increased
cognitive workload, and has been shown to modulate with
increases in cognitive resource demand [50], time pressure
[63], and the number of concurrent tasks to be processed [51].

5) FAA: FAA is a description of the power ratio between
the left and right frontal cortex. This ratio is believed to signify
an organisms motivational direction, such that greater left
side activity is associated with approach motivation, where as
greater right side activity is linked with avoidance motivation
[52].

E. Dependent Variables

For the first experiment which looks at overall change, the
baseline is defined as the average time taken to complete
the first 2 laps, where the remaining 12 laps are averaged to
produce a final overall score. Laps are sometimes referred to
as phases in this study. The percentage difference is found for
the average improvement over baseline performance by taking
the difference between the two and dividing it by the baseline
score, revealing the average percentage change in performance.

In the second experiment the raw lap time scores are utilised
in the model, as linear mixed models (LMM) support the
violation of independence.

1) Efficiency: This continuous variable measures the effi-
ciency of the participants, using the number of seconds taken
to complete one full circuit of the course. This is interchange-
ably referred to as the course traversal time throughout the
document, as they are effectively the same.

2) Collisions: This variable is a positive integer value that
measures the amount of collisions that occur between the

vehicle and the railing (which can be identified in Fig. 2. (b))
for each phase of the course.

3) Definition of Performance Improvement: Human perfor-
mance improvement is defined in this study as the overall
improvement of a participant from baseline in the two met-
rics of course traversal efficiency, and quantity of collisions.
Course traversal efficiency is measured using the time taken to
complete one circuit, and the quantity of collisions is measured
by counting the amount of physical interactions between the
vehicle and the course railing.

4) Applications: Human performance can be applied to a
variety of different applications, such as sports, education, mil-
itary, and operating performance. Each of these applications
would have a different ground truth, but in this study the course
traversal time is a reasonable metric. If it can be demonstrated
that performance modulates EEG bands, it is possible this will
translate to other areas, if the mechanisms are understood and
if the application domain is similar enough.

F. Participants

32 healthy adults were selected from a department wide
study invitation, where 30 were male and 2 were female. Ages
of participants ranged from 18 to 63, with a mean age of 26.77
years and a standard deviation of 10.81 years. All had normal
or normal-corrected vision.

G. Task

The participant’s objective was to efficiently negotiate the
supplied driving course. There were two different types of
lap in the study. The first was a performance assessment
(non-guided) lap, which is characterised by an absence of
guidance. In this lap participants simply drive around the
course as efficiently as possible, ideally emulating the learned
behaviours from the training phase. The second type of lap in
the study was a training lap, in which the system would guide
participants towards a pre-determined efficient trajectory. The
guidance was designed to improve the understanding and
driver negotiation skills of the participant, by demonstrating
visual manifestations of the suggested optimal route as well
as suggested braking and acceleration timings. In this lap,
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participants were required to drive around the course and
follow the guidance as effectively as possible, which results
in efficient traversal duration when performed correctly.

For the user study, subjects were required to drive 14 laps
in total. This began with subjects driving two non-guided laps.
Upon completion, the vehicle would be reset to the start line
and participants would be required to complete four guided
training laps. Following this, the vehicle would be reset and
two non-guided training laps would be required followed by
four guided training laps. This would then conclude with
a further two non-guided laps, for a total of 14 laps. This
quantity is selected as it allowed substantial data collection
while keeping the total session to an acceptable duration. It
also allowed for a significant guided training component while
retaining a non-guided learning and evaluation phase. Guided
laps were split up with non-guided laps so that individuals
did not become reliant on the guidance and continued to learn
effectively. All laps were completed successfully, with varying
quantities of collisions and traversal times.

H. Protocol

Ethical approval was received from the Engineering and
Physical Sciences (EPS) Faculty Research Ethics Committee
at Queen’s University Belfast, in accordance with the propor-
tionate review process.

Prior to arrival candidates were issued an information sheet
detailing the important information required to make an in-
formed decision on whether to participate. On arrival they were
required to acknowledge the procedure and to give consent for
data usage. A written handout with an explanation of the user
interface was then presented, outlining the responses required
of the users. Understanding of the requirements were then
tested verbally.

The right mastoid was disinfected with solution using tissue
and the EEG headset was fitted to the participant, at which
point impedance values were measured and kept below 40KΩ
as an absolute maximum, but below 25KΩ in most cases.
This was followed by visual inspection for abnormalities in
the datastream using the Neuroelectrics software (NIC) GUI.
Participants were then seated in the racing chair and the pedal
and steering wheel height was adjusted to fit the candidate.
The feedback system was attached to the ankles and wrists of
the visual-haptic group and in-ear headphones were provided
to enable system audio.

I. EEG Analysis

In order to analyse the EEG data, the data was loaded into
EEGLAB [64] for post-processing. The initial data processing
phase required filtering the data with a 0.5Hz high pass filter
and a 30Hz low pass filter to remove DC offset and 50Hz
line noise. The EEG files were divided into epochs at each
lap commencement, giving one epoch per lap for a period
of 60s, to eliminate possible time warping, yielding 14x60s
epochs for each participant. Artefact rejection techniques were
applied to reject low quality data using a moving peak to peak
voltage threshold window with 100µV threshold, 500ms full
width moving window, and 250ms step size. The window was

rejected if an artefact was discovered. PSD was then found
using Welch’s estimation [65] in EEGLAB, on the alpha,
beta, delta, and theta bands. A Blackman-Harris window was
applied with no overlap, because the large amount of averaging
over extensive periods reduces noise, hence the overlap is
unnecessary for this purpose as it is typically used to help
observe signal data with better temporal resolution, which is
not required here. A window length equal to the sampling
frequency of 500 samples per second was applied.

FAA was calculated using the following formula:

FAA = ln(
F 4 + F 8

F 3 + F 7
) (1)

Where F3, F4, F7, and F8 denote the alpha power present in
those electrode locations. In this work Event Related Desyn-
chronisation (ERD) is defined as a decrease of oscillatory
activity related to the ongoing event [66], [67] reflected by
decreases in band power.

J. Regression Modelling
1) Between Subjects: Various techniques were employed to

develop a model for predicting the efficiency and collisions
of individuals from EEG features. Ordinary Least Squares
(OLS) linear regression modelling established the relationships
between performance and the dependent variables described.
Variables were selected for the model with a threshold of p <
.05, as these metrics were considered adequate predictors of
performance. Initially all dependent variables were analysed
independently for hypothesis testing, yielding R2

Adjusted values
and p-values for evaluation of relationship to task performance.
An OLS multilinear regression model was then generated by
combining the most appropriate individual variables to find
the optimal predictive model, while retaining feature impor-
tance information to explain relationships in the psychological
domain.

2) Within Subjects: For within subjects regression analysis
different LMMs were developed allowing different effects
within subjects to be considered. This model structure adopts
both random or fixed slopes, and random or fixed intercepts,
meaning that natural levels of corresponding performance for
frequency band are taken into account as well as the gradient
that relates the two factors. This means intersubject variability
can be tested statistically, as well as testing for fixed effects
with a random intercept to account for individual offset. In
this study two standard LMMs are used: fixed slope with a
random intercept, and random slope with a random intercept.
This is because it is highly likely that each individual will
require a different intercept due to variance in ability among
the demographic; it is not known whether the neurological
processing will vary with the response, which is defined by the
slope. Each model was built with only one predictor variable
as the focus is on the individual relationships which could
have been otherwise masked by multivariate analysis. For all
regression models an auto regressive correlation matrix is used
for the repeated measures, which attempts to model the natural
learning effects throughout the process.

Two different mixed model regression techniques were
adopted in this study, as the dependent variable collisions is an
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integer value it is best modelled using Negative Binomial Re-
gression (NBR), where as course traversal time is a continuous
variable so a standard LMM is adopted.

K. Multivariate Linear Mixed Modelling

A multivariate LMM was then developed for the full elec-
trode spectrum. This aimed to produce an overall model that
only retains the most powerful predictive features. It does
not aim to analyse all of the available electrode relationships,
but instead to combine the optimal set of predictors into one
model, offering insight into which are the most powerful. Six
models were attempted, one fixed model, one random, and one
mixed (collisions and course time). This was produced with
the following methodology: all electrodes from one frequency
band were analysed with the given model type in relation to
the response variable. If the variable had a p-Value of > 0.2,
it was eliminated from the round, with the remaining variables
passing through to keep the model simple. A model was then
built based on the winners of each frequency band, where
the same technique was used to eliminate variables, except
the variable was removed if AIC and BIC increased. This
process was iterated until a fixed and random model had been
produced. The mixed model was created by taking only the
winners of the fixed and random pools, with a subsequent
process of elimination as before.

L. Mathematical Models and Evaluation Metrics

This section outlines the models developed mathematically,
as well as the metrics used to evaluate them.

1) Akaike Information Criterion (AIC): AIC is described
as the following, where k is the number of parameters in
the model, and L̂ is the maximised value of the likelihood
function.

AIC = 2k − 2log(L̂) (2)

2) Schwarz’s Bayesian Criterion (BIC): BIC is described
as the following with the same notation as above, where n is
defined as the number of observations.

BIC = klog(n)− 2log(L̂) (3)

3) Fixed Effects Model: The model accounts for random
intercepts with µi, where εij is the unexplained individual
error. This model is defined as the following, where β is
the estimated coefficient and xij is the feature value for this
participant.

yij = β0x1ij + β1x2ij + ...+ µ0i + ε0ij (4)

4) Random Effects Model: The random effects model al-
lows for random variation in both the intercept and the
slopes. This allows tests for the variability in relationships
of frequency band and performance response, as some indi-
viduals may undergo different neurological processes. Variable
definitions are the same as in the previous section, except each
individual has their own coefficient µi for each variable xij.
This also accounts for random intercepts with µxi.

yij = µ0ix1ij + µ1ix2ij + ...+ µxi + ε0ij (5)

5) Mixed Effects Model: The mixed effects model allows
modelling of both fixed effects and random effects. The
parameters are described in the previous two sections.

yij = β0xf1ij+β1xf2ij+...+µ0ixr1ij+µ0ixr2ij+...+µxi+ε0ij (6)

6) Negative Binomial Regression: Here the same formulas
are used except yij is replaced with log(E(yij|x)) to account
for positive integer data with natural characteristics of right
skew and overdispersion.

IV. RESULTS

The linear regression models presented satisfied the nec-
essary assumptions unless otherwise specified: independence,
heteroscedasticity, normality, and linearity. Independence is
naturally achieved by the experiment paradigm, in which all
observations are obtained from different participants. Het-
eroscedasticity was examined using a scatter plot of residu-
als, and normality was confirmed with a normal predicted-
probability plot and histogram of standardised residuals. Lin-
earity was observed from graphical depiction of the relation-
ships and correlation tests.

The Benjamini-Hochberg adjustment was applied to reg-
ulate the p-values. Each hypothesis was declared prior to
the experiment, decreasing likelihood of a Type I error. All
statistical tests applied are documented here for further inter-
pretation. The p-values are calculated from the Z or F-statistic
unless otherwise stated. The Pearson correlation is applied to
evaluate the linear relationship between the two variables. It
is chosen because it is a popular and powerful parametric test
for correlation and both variables are continuous.

The graphics presented describe the percentage change in
PSD (dB) in the frequency band against the percentage change
in driving performance in terms of course traversal time (s).
These values are relative to observations in the baseline, which
were observed over the first two laps.

Generated models are presented in tables along with the
p-value, AIC, BIC, and other relevant statistics.

Results for between-subjects regression models can be ob-
served in Tables I and II, with a comparison of the multivariate
models in Table IX, and correlations in Table X. Within-
subject regression model results can be observed from Tables
III-VI for both random and fixed effects, and the ANOVA
statistics for PSD and phase are found in Table VII.

A. Haptics
A five-way ANOVA found no statistically significant effects

from the haptic group on any of the variables, including
average course traversal time. The ANOVA model for haptics
with alpha, delta, theta, and FAA, each produced an F-statistic
less than 0.30 and a p-value greater than 0.60 for each
variable. Both beta and traversal times had an F-statistic of
less than 1.80 and a p-value greater than 0.20. To include all
observations and increase statistical power a repeated mea-
sures ANOVA was utilised, finding no statistically significant
differences where all p-values were greater than 0.15 and all
F-statistics are greater than 2.12. There is hence no evidence
to reject the null hypothesis for H1: haptics have had no
statistically significant overall effect on the studied variables.
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(a) Delta band scatter plot with line of best fit (b) Theta band scatter plot with line of best fit

(c) FAA scatter plot with line of best fit (d) Delta x FAA scatter plot with reference line y = x, where proximity
to reference line indicates quality of prediction

Fig. 3: EEG Correlates of Driving Performance

TABLE I: Overall ∆Power ∝ ∆Efficiency

Var. R2
Adjusted Sig. Adj. Sig. dF F-Stat Freq. (Hz)

α -0.012 0.428 0.555 29 0.650 8-12
β 0.006 0.288 0.438 28 1.170 12-30
δ 0.230 0.004 0.013 29 9.950 0-4
θ 0.256 0.002 0.008 29 11.300 4-8
FAA 0.149 0.019 0.044 29 6.152 -

B. Alpha Band

1) Between Subjects: The percentage change in perfor-
mance demonstrated no correlation with the PSD in the alpha
frequency band (F2,29 = 0.650, p = .555), and produced
a model worse than the mean in the regression analysis
(R2

Adjusted = -0.012, RMSE = 7.78). Furthermore a Pearson
test finds minimal correlation (r31 = -0.148). Visual evaluation
demonstrates that the results are not linear, and hence this
assumption is violated. There is no statistically significant re-
lationship with the percentage change in quantity of collisions
and alpha band PSD (F2,29 = 0.356, p = .670), again producing
an insufficient predictive model (R2

Adjusted = -0.022, RMSE =

34.026). Furthermore a Pearson test finds minimal correlation
(r31 = 0.110). No statistically significant relationship between
the change in alpha band PSD and change in course traversal
duration or collision quantity is observed and there is hence
no evidence to support H2 from this experiment.

2) Within Subjects: There is a statistically significant re-
lationship observed between alpha band PSD and course
traversal time (F = 14.344, p = 0.000), as well as with
collisions (F = 68.261, p = 0.000), with a fixed effect and
random intercept specified. The null hypothesis can be rejected
and there is a fixed effect relationship between alpha band
PSD and course traversal time, as well as with collisions.



8 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS , VOL. XX, NO. XX, MONTH YEAR

TABLE II: Overall ∆Power ∝ ∆Collision

Var. R2
Adjusted Sig. Adj. Sig. dF F-Stat Freq. (Hz)

α -0.022 0.555 0.670 29 0.356 8-12
β -0.035 0.859 0.859 28 0.032 12-30
δ 0.241 0.003 0.011 29 10.522 0-4
θ 0.094 0.052 0.096 29 4.106 4-8
FAA -0.028 0.674 0.737 29 0.181 -

TABLE III: LMM: Random Effect with Random Intercept ∝ Efficiency

Var. AIC BIC Var. Est. Z Sig. Adj. Sig.

α 3980.088 3996.380 3.892 0.338 0.735 0.757
β 3978.899 3995.191 6.400 0.936 0.349 0.489
δ 3978.598 3994.890 7.081 1.067 0.286 0.455
θ 3977.756 3994.048 20.749 1.228 0.219 0.383
FAA 3979.178 3995.470 572.828 0.819 0.413 0.556

TABLE IV: LMM: Random Effect with Random Intercept ∝ Collision

Var. AIC BIC Var. Est. Z Sig. Adj. Sig.

α 1209.763 1225.962 0.075 2.200 0.028 0.061
β 1252.134 1268.333 0.020 1.088 0.277 0.462
δ 1236.594 1252.594 0.009 3.678 0.000 0.000
θ 1239.273 1255.472 0.031 2.537 0.011 0.030
FAA 1252.526 1268.725 0.327 0.456 0.649 0.757

TABLE V: LMM: Fixed Effect with Random Intercept ∝ Efficiency

Var. AIC BIC Est. F Sig. Adj. Sig.

α 3964.277 3976.489 4.139 14.344 0.000 0.000
β 3972.434 3984.646 1.685 4.892 0.028 0.061
δ 3912.027 3924.239 5.444 368.435 0.000 0.000
θ 3937.829 3950.041 9.468 190.608 0.000 0.000
FAA 3972.272 3984.484 -3.922 0.357 0.551 0.689

This indicates the alpha band response is related to candidate
performance when accounting for variable subject intercepts.

The random effects model finds no statistical significance
when testing the variation of the slopes with efficiency (Z =
0.338, p = 0.735), meaning that there is not significant random
variability among participants. In contrast, the relationship
between collisions and alpha as a random effect finds a
borderline significant result (Z = 2.200, p = 0.061), indicating
that more evidence is needed, but there is some weak evi-
dence to consider that that there is random variability among
participants in the relationship between alpha band power and
collisions, especially considering the significant result prior to
adjustment, yet this is inconclusive. The fixed effects model

produces the optimal AIC and BIC, suggesting that this model
is a superior fit. Furthermore, a repeated measures ANOVA
uses the course phase as a group to predict the alpha band PSD
as the response variable, finding significance in the alpha band.
This means there is a difference between some of the alpha
frequencies between the laps. Post-hoc testing demonstrates
a difference between phase 4 and phase 10 only. It is not
clear why this is and hence should be interpreted with caution,
though it is possible there is some effect here.

C. Beta Band

1) Between Subjects: The percentage change in perfor-
mance also demonstrated no statistical significance with the
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TABLE VI: LMM: Fixed Effect with Random Intercept ∝ Collision

Var. AIC BIC Est. F Sig. Adj. Sig.

α 1188.329 1200.489 0.261 68.261 0.000 0.000
β 1244.231 1256.387 0.079 5.380 0.021 0.049
δ 1079.041 1091.197 0.090 174.858 0.000 0.000
θ 1098.160 1110.316 0.184 185.260 0.000 0.000
FAA 1250.975 1263.131 0.102 0.125 0.724 0.768

TABLE VII: Repeated Measures ANOVA: Grouped by Phase ∝ Freq. PSD

Dep. Var. F Sig. Adj. G-Geisser Sig.

α 3.091 0.004 0.013
β 5.950 0.000 0.000
δ 2.361 0.038 0.074
θ 1.130 0.345 0.503
FAA 0.700 0.659 0.744

TABLE VIII: Individual Electrode Multivariate LMM Comparison

Model Var. AIC BIC

Collisions

Fixed δF4 1076.122 1088.278
Random αFz βF8 1199.392 1219.617
Mixed F: δF4 R: αFz βF8 1081.798 1102.011

Course Time

Fixed βOz δF4 3868.785 3880.990
Random δF3 3967.003 3983.296
Mixed F: βOz δF4 R: δF3 3870.292 3886.565

Fig. 4: Beta Band PSD vs. Course Phase

beta band PSD (F2,29 = 0.011, p = .918). The regression
analysis yields (R2

Adjusted = -0.034, RMSE = 7.86), however

this result has an extreme outlier which is an impossible
measurement. When this outlier is removed there is still no
statistical significance (F2,28 = 1.170, p = .438) and no expla-
nation of the variance (R2

Adjusted = 0.006, RMSE = 7.83). The
Pearson test demonstrates minimal correlation (r30 = -0.200).
There is no significant evidence for a relationship between
change in beta band PSD and change in collision quantity
(F2,29 = 0.032, p = .859), producing an inadequate predictive
model (R2

Adjusted = -0.035, RMSE = 34.231). Furthermore
a Pearson test finds almost no correlation (r31 = 0.015).
There is no statistically significant relationship observed here
between the change in beta band PSD and change in course
traversal duration or collision quantity, and hence no evidence
to support H3.

2) Within Subjects: There is limited statistical evidence to
suggest a relationship between beta band PSD and course
traversal time (F = 4.892, p = 0.065), as well as with collisions
(F = 5.380, p = 0.049) in the fixed effects model, resulting
in the conclusion that there is possibly a fixed relationship
between beta band PSD and performance within subjects.
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There is no significant random variability found in the
relationship between beta power and efficiency (Z = 0.936,
p = 0.489), or collisions (Z = 1.088, p = 0.462).

The repeated measures ANOVA demonstrates that there are
statistically significant differences in some of the groups (F =
5.950, p = 0.000). Post-hoc tests then demonstrate that there
is statistical significance between: phase 1 and phases 10, 12,
and 14; phase 2 and phases 10, 11, 12, 13, and 14; phase 3
and phases 12 and 14; phase 4 and phase 14. Some of the
earlier phases are significantly different to some of the latter
phases, and on average beta frequency PSD declines as the
phases progress which is depicted in Fig. 4. The fixed effect
relationship between performance and beta power is attributed
largely to the strong relationship between beta and course
phase, which in itself is a powerful predictor of performance.

D. Delta Band

1) Between Subjects: The percentage change in perfor-
mance is demonstrated as having a negative linear correlation
with the PSD of the delta frequency band, which is found to
be statistically significant (F2,29 = 9.950, p = .013). A linear
regression model based on OLS yields (R2

Adjusted = 0.230,
RMSE = 6.78) meaning that this relationship explains 23%
of the variance. The standard deviation of the residuals is
described by the RMSE, which is higher than observed in the
theta band but considerably less than observed in the beta
and alpha models, meaning that the data fits this model better
and is more concentrated around this models predictions. The
Pearson test for correlation demonstrates a medium strength
correlation (r31 = -0.506). There is evidence that the change in
delta band is linked with the change in collision quantity (F2,29
= 10.522, p = .011), producing an effective predictive model
(R2

Adjusted = 0.241, RMSE = 29.325). Furthermore a Pearson
test finds a relatively strong correlation (r31 = 0.516). Change
in delta band PSD modulates with the change in task temporal
performance exhibited by the subject, providing substantial
evidence of H4.

2) Within Subjects: There is a statistically significant rela-
tionship found between delta band PSD and course traversal
time (F = 368.435, p = 0.000), as well as with collisions (F =
174.858, p = 0.000) for fixed effects. There is strong statistical
evidence for a relationship between the delta band PSD and
task performance generally, as in H4.

There is no statistically significant variability between sub-
jects for the relationship with efficiency (Z = 1.067, p = 0.455),
however there is for collisions (Z = 3.678, p = 0.000), meaning
that there is appreciable random variation in the gradients.

A repeated measures ANOVA finds no statistical evidence
for a relationship between the phase and the delta band PSD
(F = 2.361, p = 0.074).

E. Theta Band

1) Between Subjects: The percentage change in perfor-
mance also has a negative linear correlation with the PSD of
the theta frequency band, which is found to be statistically
significant (F2,29 = 11.300, p = .008). A linear regression
model based on OLS yields (R2

Adjusted = 0.256, RMSE = 6.67)

which explains 25.6% of the variance in this relationship.
Pearsons test for correlation yields (r31 = -0.530). There is no
statistically significant relationship between the change in theta
band and change in quantity of collisions (F2,29 = 4.106, p =
.096) although it is quite possible that there is a small effect
size here as the p-value is quite low even after adjustment,
however more results would be required to further interpret
this result. The produced predictive model explains 9.4% of the
variance in the relationship and marginally improves RMSE
(R2

Adjusted = 0.094, RMSE = 32.041). Furthermore, a Pearson
test finds a medium strength correlation (r31 = 0.352). The
RMSE and R2

Adjusted are improvements on the delta band model
for predicting efficiency, but deficit predictions of collision
quantity. These results provide significant evidence for H5.

2) Within Subjects: There is a statistically significant rela-
tionship found between theta band PSD and course traversal
time (F = 190.608, p = 0.000) as well as with collisions (F =
185.260, p = 0.000), for a fixed effect relationship, as in H5.

There is no statistical evidence to suggest that there is within
subject random variability in gradients for efficiency (Z =
1.228, p = 0.383), however there is some evidence of this
for collisions (Z = 2.537, p = 0.030), suggesting the gradients
randomly vary between participants.

A repeated measures ANOVA finds no statistical evidence
for a relationship between the phase and theta band PSD (F
= 1.130, p = 0.503).

F. Frontal Alpha Asymmetry

1) Between Subjects: The percentage change in perfor-
mance has a negative linear correlation with FAA, which is
found to be statistically significant (F2,29 = 6.152, p = .044).
A linear regression model based on OLS yields (R2

Adjusted =
0.149, RMSE = 7.141), explaining 14.9% of the variance in
this relationship. This model has two outliers more than 3
standard deviations away from the mean, however they are
realistic values and should be considered in the analysis. In
the interest of avoiding a Type I error, with these outliers
removed the statistical significance remains (F2,27=6.077, p
= .047), and the linear regression yields (R2

Adjusted = 0.153,
RMSE = 7.142). The outliers do not change the significance,
and have only a minor impact on the model; they are also
realistic values and are hence left in for the graphic. Pearsons
test yields a medium negative correlation between the variables
(r31 = -0.429). There is no statistically significant evidence
for a relationship between FAA and collision quantity (F2,29 =
0.181, p = .737). The produced predictive model is completely
ineffective (R2

Adjusted = -0.028, RMSE = 34.128). Furthermore,
a Pearson test finds minimal correlation (r31 = 0.079). There
is some evidence for H6 in a between subjects condition and
considering the overall course.

2) Within Subjects: FAA was not found to link with any of
the within subject responses of efficiency (Table III and V),
quantity of collisions (Table IV and VI), or phase (Table VII).
There is no evidence that these changes relate to performance
within a subject for either collisions or efficiency, and hence
no evidence here for H6.
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TABLE IX: Model Comparison

Var. δ θ FAA δ & FAA θ & FAA δ & θ δ & θ &
FAA

R2
Adjusted 0.230 0.256 0.127 0.393 0.320 0.280 0.393

RMSE 6.58 6.55 7.00 6.00 6.31 6.38 6.24
MAEMean 5.42 5.64 5.96 4.98 5.53 5.40 5.33
MAEMedian 4.58 4.52 5.69 4.26 4.84 5.07 4.47
Max Error 12.51 12.37 13.02 11.69 11.37 11.81 12.17
δCoefficient -0.502 - - -0.525 - -0.279 -0.404
θCoefficient - -0.529 - - -0.469 -0.349 -0.189
FAACoefficient - - -0.397 -0.422 -0.299 - 0.379

(a) Collisions (b) Course Traversal Time

Fig. 5: Top 10 electrodes and frequency bands by AIC, lower is better

G. Model Comparison

1) Between Subject Regression Model: Regarding the sin-
gle variable models it can be seen that the predictive quality
of theta PSD is superior to delta PSD and FAA, on all metrics
except for MAEMean.

In order to create a multiple regression model to make pre-
dictions about task performance based on EEG components,
the optimal predictors were selected. This was accomplished
by eliminating the alpha and beta frequency band models
as they demonstrated no significant relationship with perfor-
mance.

All of the possible combinations of the remaining models
were tested to find the optimal combination as a correlate of
human task performance, the results can be observed in Table
III. The optimal model combines the delta band PSD with FAA
yielding significant improvements over the univariate models
(R2

Adjusted = 0.393, RMSE = 6.00) and other multivariate
models.

k-Fold Cross Validation (CV) was used to ensure that the
models were not subjected to overfitting, splitting the data
with a metric specific k-Fold and training the model on
the remainder. These results were averaged to give a better

indication of the predictive power of the model and hence
the strength of the relationship. A k-Fold of 10 was used
for all metrics except the maximum error (k-Fold=4) and the
R2

Adjusted (k-Fold=none), because these are not designed to
accommodate larger amounts of folds.

The feature importance was calculated by observing the
coefficients produced when the inputs had been scaled. For the
model that combines all three variables the delta coefficient
(δCoefficient = -0.404, δContribution = 41.55%) was found to be
the most important, with the FAA coefficient (FAACoefficient
= -0.379, FAAContribution = 38.99%) second and the theta
coefficient (θCoefficient = -0.189, θContribution = 19.46%) with
the least impact on the result. Observing the most successful
model (FAA & delta) finds the delta coefficient (δCoefficient =
-0.525, δContribution = 55.44%) to be the most important, with
the FAA coefficient (FAACoefficient = -0.422, FAAContribution =
44.56%) also having a significant impact on the results. It
follows logically that the delta band power is having the largest
impact on the results in the more successful models, where
asymmetry is also contributing; in their presence the theta
bands coefficient is substantially reduced.

Collinearity is observed between the delta band and theta
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band, where the correlation between them is 0.642. In the
model where they are paired, they produce a Variance Inflation
Factor (VIF) of 1.70 and a tolerance of 0.588, which are
both high and low values respectively, given the model size,
suggesting they are explaining some of the same variance
in the relationship. This is also true for the model with all
three variables, producing a high VIF for the model size
(δVIF = 1.811, θVIF = 1.889), and a relatively low tolerance
(δTolerance = 0.552, θTolerance = 0.529). The most successful
model yields a low VIF (FAAVIF = δVIF = 1.003), and a high
tolerance (FAATolerance = δTolerance = 0.997). The correlation
between these two was also low (r31 = -0.051, p = .786),
meaning that they are explaining different variances in the
relationship, which could explain the improvement yielded
from the combination.

There is hence substantial evidence for H7, that integrating
multiple variables can improve model predictive power.

2) Within Subjects Regression Model: This approach ob-
served relationships with the individual electrodes and at-
tempted determine the optimal combination to produce the
most effective model, with both fixed and random effects
considered. The results for this experiment are observed in
Table VIII, with a graphic comparison of variable by AIC
available in Fig. 5a and 5b. For collisions as a response
variable it was found that the optimal model consists of δF4

on its own. Any addition to this appears to reduce the quality
of the model in terms of AIC and BIC. This could be a result
of AIC and BIC favouring a simple model, it suggests that
δF4 has sufficient predictive power on its own, and perhaps
explains a lot of the same variance that the other electrodes
explain.

For the relationship with course time a fixed effects model
containing δF4 and βOz is found to be the optimal. βOz is found
to have limited predictive quality, but it appears to explain a
different variance to δF4 and compliment it. Additional random
effects reduce the model fit as do the extra electrodes observed.
It should be noted that there are possibly better combinations
of electrodes for both models; these are the results determined
using this particular technique, as there are too many possible
electrode combinations to attempt.

TABLE X: Correlation Matrix

Var. δ θ FAA

δ 1 0.642 -0.051
θ 0.642 1 -
FAA -0.051 0.21 1

V. DISCUSSION

A. Haptics

There is no observed overall effect produced by the haptics
which was not anticipated. It is possible there are more
influential variables involved, such as other psychological
processes that modulate the studied variables.

B. Alpha

The observations from this study suggest that there is
some relationship between alpha band power and driving
performance. While there is no relationship observed between
subjects, there is a significant fixed effect relationship between
alpha band power and course traversal time, as well as quantity
of collisions in the within subjects model. The relationship
between course traversal time and alpha band power is weaker
than with delta and theta.

There is no significant random variability in participant
alpha band power in relation to collisions or efficiency,
psychologically this implies that the neurological processing,
described by the relationship between alpha band power and
performance, does not randomly vary among the participants,
although more research efforts would be required to confirm
this.

Alpha band power has been linked with a variety of different
psychological processes, such as attentional operations [68],
[69], working memory and short-term memory retention [70].
This relationship could hence be explained by more efficient
allocation of attentional resources, or by improvements in
working memory, resulting in performance increase, although
these neurological mechanisms are closely linked.

It’s possible that increases in collisions result in heightened
attention levels to help avoid future collisions. Other studies
have linked alpha frequencies with increased task difficulty
[56], [57], which is likely reflected by collision quantity and
could explain why there is a significantly closer relationship
between alpha power and collisions than with efficiency.
Based on the literature, and the evidence supplied here, the
relationship between alpha power and performance could
correspond to either task demands or attentional processes, but
conclusively correlate with task performance in this context.
The relationship with efficiency is not as strong, possibly
because collision quantity has a closer relationship with both
attention and task demands.

C. Beta

There is no evidence of beta band power modulation in
the between subject responses with either collisions or effi-
ciency. There is some evidence of a fixed effect relationship
with efficiency and collisions within subjects, where both are
borderline significant relationships, this is likely explained by
the strong relationship between beta band power and course
phase, which is strongly related to performance. Furthermore,
there is no evidence to suggest that there is significant random
variation in relation to collisions or efficiency meaning individ-
ual neurological processing does not appear to randomly vary
among participants. Beta band power has been linked with
multiple neurological responses such as feelings of anxiety
[71] or stress [41], [42] and vigilance [72], [73] or alertness
[46], [47]. The results from this study demonstrate declines in
beta power as the course progresses, indicating that either the
subjects alertness or stress levels decline throughout the course
of the study. It could be both, and they are related behavioural
mechanisms and likely to be correlated. It is unclear whether
alertness and stress are closely related with performance in
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this context, as beta power is strongly related to the duration
of the task, which is correlated with performance.

D. Delta

There is strong evidence of a link between change in
delta band PSD and change in driving performance for both
efficiency and collision quantity for both between subjects and
within subjects. This could be due to the link between delta
activity and inhibition of certain neural procedures in the brain.
Other studies reflect this result through an association with
learning, motivational processes, and the brain reward system
[74]–[76]. In this experiment, evidence of delta ERD suggests
that selective suppression of neural activity is related to an
improvement in driving performance, echoed by other work
observing mental tasks and task related performance [49], [77].

There is no significant random variability observed in rela-
tion to efficiency but there is for collisions, suggesting that the
neurological processes in response to these events randomly
varies among subjects.

Delta band power is the only band to relate to driving perfor-
mance across all of the experiments. For within subjects delta
power shares the strongest relationship with task efficiency
over frontal and parietal regions. Further breakdown reveals
delta at Oz, F4, F8, Pz, F3, F7, Fz, and Cz are all ranked
in the top 10 by AIC for collisions and F4, F3, Cz, Pz, Oz,
F7, and Fz are in the top 10 by AIC for traversal time. δF4

is especially noteworthy as it appears top on each metric,
suggesting that power at F4 is the strongest in relation to
driving task performance.

Electrode F4 monitors the premotor cortex which is involved
in the preparation and guidance of movement in primates
[78], the relationship between δF4 and task proficiency in this
experiment could hence be thought of as selective suppression
of neural activity related to guidance of movement throughout
a task, which would make it a useful metric for movement
related task performance. Oz is also highly ranked on both
metrics and is located on the occipital lobe which is respon-
sible for visual processing, which is understandably related to
driving performance in this context as visual information is an
important component of the task.

E. Theta

Increases in theta band activity are typically linked with
increases in cognitive resources [50], time pressure [63], and
the number of concurrent tasks to be processed [51]. In this
experiment, evidence of theta ERD suggests a link between
cognitive resource allocation and driving performance. This
is observed between subjects for efficiency but not for col-
lisions, although that is marginally significant and shouldn’t
be discounted hastily. Furthermore, the relationship is evident
for the within subjects experiment, demonstrating a strong
relationship between theta power and both task performance
metrics.

There is no random variability observed among participants
for efficiency, but there is for collisions, finding that there
is some random variation in how subjects process collisions
neurologically in terms of theta activity.

In further detail it can be observed that theta at F4, and
Pz are well ranked for collisions, as well as F3, Cz, and Pz
for traversal time. Electrode location Pz monitors the parietal
lobe, the only location to appear in the top 10 for both
metrics for theta band. This lobe is thought to be specialised
for particular visuomotor actions such as grasping and eye
movements [79], which could be linked to the steering aspect
of driving performance.

F. FAA

The between subjects results demonstrate that candidates
with increase efficiency had a greater increase in left frontal
activity, which is strongly linked to approach motivation and
positive feelings. Equally, right frontal activity is linked with
negative feelings and withdrawal motivation, which the lower
improver’s exhibited.

This relationship explains a different variance to that ex-
plained by the delta and theta power. This would be expected
as FAA is a motivational response unrelated to cognitive
resources reflected by theta band and selective suppression
demonstrated by delta band activity.

FAA does not modulate with any of the within subject
responses. This result is unexpected as it seems as though
the approach motivation and withdrawal motivation would be
linked to aspects of performance, particularly collisions which
would be frustrating and likely induce withdrawal motivation
in candidates. It could be that in this context motivation does
not have a high temporal resolution and only shifts over time,
over prolonged periods of poorer performance, yet research
would be required to confirm this theory.

G. Between Subjects Multivariate Regression

Combining variables enables modelling of different psycho-
logical processes. Theta and FAA can be considered as a com-
bination linking to change in cognitive resources and approach
motivation. While this relationship is an improvement on the
univariate models, as both variables explain different vari-
ances, it is significantly inferior to the delta and FAA model,
which can be thought of as a combination relating to change
in neural inhibition and approach motivation. The theta and
delta model is also slightly superior to the univariate models,
with its representation of change in cognitive resources and
neural inhibition, which explain a lot of the same variance and
hence do not improve one another considerably. The model
utilising theta, delta, and FAA combines the relationships to
change in cognitive resources, neural inhibition, and approach
motivation. This model explains the joint largest amount of
variance, but the k-Fold cross validation confirms that this
relationship is weaker than the delta and FAA model, possibly
because of variance inflation resultant of including correlated
variables in the same model, as there is a moderate correlation
between theta and delta power.

Hence, the strongest relationship observed is the delta
and FAA model, representing neural inhibition and approach
motivation as predictors in the psychological domain. This
particular result is specific to driving performance and should
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not necessarily be applied generally, yet the concept of com-
bining multiple metrics to measure performance in a task with
EEG correlates is here shown to have merit. In real world
applications the optimal combinations are likely to depend
on the requirements of the particular task. It is likely that
approach motivation will normally improve task performance,
simply because there is greater engagement and investment in
the task, but the magnitude of cognitive workload and neural
inhibition will not always modulate with performance. These
results suggest that for complex tasks with large amounts of in-
formation to be processed, suppression of delta band power is
likely to be equated with higher performance. Furthermore, for
certain tasks it is likely that decreases in cognitive workload
can signify improvements in ability, as less cognitive resources
are required to accomplish the task.

H. Within Subjects Multivariate Regression

The within subjects model observes that δF4 and βOz is the
optimal combination for predicting course time, and the δF4

is the optimal for predicting collisions. It should be noted
that the objective of this work is explanation, which is why
simple models are preferred. It is highly likely that this model
can be improved with machine learning techniques leveraging
all inputs as well as interaction effects to optimise predictive
power, especially with more data. Yet this could mask feature
importance and reduce contribution to the neuroscience knowl-
edge base. Overall, in this case it is a simple model that fits
best with δF4 having the strongest relationship to performance
throughout. Evidence for H7 is hence minor, with just one
extra electrode improving the model, and only by a minimal
amount.

VI. CONCLUSION

There are numerous significant findings in this study. The
strong relationship between δF4 PSD and driving performance
has important implications in neurological performance moni-
toring. Other findings include: the relationship between perfor-
mance, delta power, and theta power; an overall relationship
with FAA and performance; and a relationship between beta
band power and course phase. In conclusion, various aspects
of EEG signals modulate with performance. Increased perfor-
mance in certain tasks is associated with decreased cognitive
workload, as well as increased motivation readings. These
can be combined to produce a model capable of estimating a
subjects final performance based on EEG readings, achieving
reasonable levels of accuracy.

This study suggests that delta and theta band activity are
best suited for monitoring performance in training systems of
this nature, where FAA is also useful for interpreting mo-
tivational direction. The between subjects results suggest that
performance can be mathematically modelled as a combination
of neurological processes interpretable from the EEG readings.
Modelling this mathematically significantly increases the vari-
ance explained by the model and reduces RMSE, meaning that
combining EEG features has resulted in improved predictive
performance and allowed for a more general interpretation of

psychological experience undertaken throughout the training
procedure.

Further analysis within subjects finds that there is a re-
lationship between alpha, delta, and theta band power with
the driving performance metrics of efficiency and collision
quantity. Subsequent extensive analysis observed that δF4 has
the strongest relationship with driving task performance of the
electrodes and frequencies available, which could be related
to selective suppression of neural activity related to guidance
of movement. This could potentially translate over to domains
that require skill in movement such as other driving scenarios,
sports, and military applications. Delta and theta frequencies
would be particularly recommended for analysing driving
performance from a neurological perspective, but δF4 is the
salient metric for analysis of this nature according to this
experiment.

VII. LIMITATIONS

The study only analyses 32 individuals, which is a reason-
able sample size but it could be much larger; how well the
interpretations translate over to other samples is unknown.
There are very few females in the study, and most of the
individuals are 18-30, not necessarily reflecting the whole
population. The study is making interpretations based on
assumptions and attributes of the existing literature, hence
the efficacy of these metrics in non-driving environments is
unclear.
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oscillations as a correlate of alertness—changes in aging,” International
Journal of Psychophysiology, vol. 85, no. 1, pp. 62–67, 2012.

[48] T. Harmony, T. Fernández, J. Silva, J. Bernal, L. Dı́az-Comas, A. Reyes,
E. Marosi, M. Rodrı́guez, and M. Rodrı́guez, “Eeg delta activity: an
indicator of attention to internal processing during performance of
mental tasks,” International journal of psychophysiology, vol. 24, no.
1-2, pp. 161–171, 1996.

[49] W. Vogel, D. M. Broverman, and E. L. Klaiber, “Eeg and mental
abilities.” Electroencephalography & Clinical Neurophysiology, 1968.

[50] P. S. Tsang and M. A. Vidulich, “Mental workload and situation
awareness.” 2006.

[51] S. H. Fairclough and L. Venables, “Prediction of subjective states from
psychophysiology: A multivariate approach,” Biological psychology,
vol. 71, no. 1, pp. 100–110, 2006.

[52] N. J. Kelley, R. Hortensius, D. J. Schutter, and E. Harmon-Jones, “The
relationship of approach/avoidance motivation and asymmetric frontal
cortical activity: A review of studies manipulating frontal asymmetry,”
International Journal of Psychophysiology, vol. 119, pp. 19–30, 2017.
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