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Abstract

Wind energy installations require precise study of land area available and pre-

vailing nearby atmospheric conditions. The power captured from wind resource

is dependent on wind speed at the site. Optimal placement of wind turbines

in a wind farm to yield maximum power capture in presence of wind wakes is

a major challenge. In this paper, a bilateral Gaussian wake model based ap-

proach is formulated using Gaussian variations of well established Jensen’s and

Frandesen’s model. This proposed model is such that the incident wind speed

on a downwind turbine due to wake effect from upwind turbines is minimized.

The proposed model is compared with benchmark analytical models for single

and multiple wake scenarios. Furthermore, short-term wind speed forecasting

in presence of wakes is carried out for two wind farm layouts considering bench-

mark wake models and our proposed model. The significant upwind turbines

are identified for two wind farm layouts using Grey relational analysis, and the

forecasting accuracy is evaluated for the proposed model and benchmark wake

models.
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Abbreviations

ABL Atmospheric Boundary Layer

ARMA Autoregressive Moving Average

ARIMA Autoregressive Moving Integrated Moving Average

ANN Artificial Neural Network

CFD Computational Fluid Dynamics

GRA Grey Relational Analysis

LES Large-eddy Simulation

RMSE Root Mean Squared Error

SVR Support vector regression

WFLOP Wind Farm Layout Optimization

1. Introduction

Growing energy demands are rapidly facilitating the wind turbine installa-

tions globally in the form of large wind parks. Wind turbines are installed in

large land mass to convert the energy available from moving air to electrical

energy. Due to constrained land area and cost of the equipment one has to

design a proper wind farm layout for the required energy generation [1]. Wind

power capture by wind turbine is affected by many factors like wind speed, wind

direction and optimal turbine spacing [2].

In a wind farm terrain, wind turbines must be placed at an optimal op-

erating distance from each other to avoid potential derating caused by wind

wakes. Wind wake is an aerodynamic phenomenon leading to (a) reduction in

wind speed magnitude at the downwind turbine, and (b) increased air turbu-

lence causing mechanical loading on the turbine structure [3]. Wind wakes can

be classified as near-end wakes and far-end wakes, former extends up to a dis-

tance of one to three rotor diameters where the flow is dependent on the turbine
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geometry [4]. Early wake models were developed in 1980’s with N.O. Jensen

proposing single wake model describing wind speed deficit caused by a single

upwind turbine on downwind turbine. Various analytical models like Ainslie’s

model [5], Larsen’s model [6] and Frandsen’s model [7] have been used. Most

commonly used model is the Jensen’s model that assumes linear wake expan-

sion after the hub. Ainslie’s wake model considers a numerical wake model with

symmetric Reynolds equation to compute wake development and found that

wake deficit decays monotonically with increasing downstream distance (exper-

imentally 4D) [8]. However the computation time of Ainslie’s model was found

to be large [9]. A new 2-D Jensen wake model is proposed by Tian et al. that

incorporates the variable wake decay rate rather than a constant one. Numeri-

cal simulations are performed for computing the wake deficit and are compared

with field measurements. Results reveal that the proposed 2-D Jensen wake

model generally underestimates for near-wake regions [10]. Ishihara et al. have

presented an analytical model that encapsulates the effect of thrust coefficient

and air turbulence on the wake deficit [11]. The numerical simulations are

compared with a test carried out in wind tunnel and results of the proposed

analytical model are in good agreement with experimental analysis. In terms of

Large-eddy simulation (LES), the wake flow is studied in neutral atmospheric

boundary layer, where the aerodynamic effects acting on the rotor body and

blade element are modeled separately in order to assess the power losses inside

wind farms [12, 13, 14].

Computational fluid dynamics (CFD) based wake models have been used

actively over past years to model the far-end wake characteristics typically for

a HAWT configuration. Rethore et al. have discussed a canopy model for mod-

elling the atmospheric turbulence where the kinetic energy lost in aerodynamics

is transferred into turbulence [15]. The performance of analytical model is found

superior to that of standard k − ω model. Further, Stergiannis et al. have pre-

sented CFD simulations of two turbines placed at a longitudinal distance of

2.77D, 5.17D and 9D, where D=0.89m is the rotor diameter, are carried out

[16]. Three test conditions are generated with low turbulence intensity uniform
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flow, high turbulence intensity uniform flow and high turbulence shear inflow.

A uniform velocity of 11.5 m/s is maintained at test inlet. Results reveal that

Actuator disk model under- predicts the wake velocity for k − ω and k − ε

turbulence models.

Wind wakes causing power loss for an individual wind turbine leads to de-

tailed study of wind wakes and hence over the years many analytical and field

models have been developed to study the same [17]. Experimental results have

shown that due to wake interference the downwind turbine experiences up to

40% of power loss and 80% of increased dynamic loading on the turbine structure

[18] where in wind turbine with rotor diameter 0.9 m is placed 4 rotor diame-

ters from the wind inlet section, and wake velocity distribution is measured at

a downstream distance of 0.6D and 3D. Jensen’s wake model is validated and

tested for accommodating the power losses in wind and the losses are found to

be in acceptable range [19, 20, 21]. Wake study also plays an important role in

Wind Farm Layout Optimization Problem (WFLOP) where optimal placement

of the wind turbines leads to to minimum wake effect and maximum power

capture [22].

Wind being stochastic in nature, its accurate forecasting is a major challenge

in power industry. Wind speed forecasting has become an essential component

to ensure power system security and reliability as increased wind power pen-

etration will lead to an unreliable operation [23]. It also serves the purpose

of market clearing operations and efficient load dispatch planning. Wind fore-

casting is broadly categorized on the basis of prediction horizon, that is, very

short-term (few seconds to 30 minutes), short-term (30 minutes to 6 hours),

medium term (6 hours to 1 day) and long-term (1 day to 1 week) wind forecast-

ing [24]. Okumus et al. have reviewed recent forecasting schemes that include

hybrid methods for improving the accuracy of prediction [25]. Among these

the most used forecasting methods are a combination of two or more machine

learning methods combined with a time-series model (ARMA and ARIMA).

Further on the basis of time-series based forecasting models like that of Autore-

gressive Moving Average (ARMA), Autoregressive Integrated Moving Average
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(ARIMA) methods are employed for short-term wind speed and power fore-

casts. Wind speed time-series poses non linearity in its nature which makes

it difficult for statistical models to capture the trends. For the same reason,

machine learning techniques like Artificial neural network, Support vector re-

gression and Extreme learning machines are used [26]. The accuracy in wind

speed prediction determines the dependency on the storage systems to outlay

the economic blueprint for the entire system. Various hybrid techniques have

been employed recently to study short-term wind forecasting for wind farms.

Signal decomposition methods like wavelet transform and empirical mode de-

composition are commonly used for studying the stochasticity in wind speed.

Wavelet decomposition along with neural networks is studied by Du et al. and

related works where the prediction accuracy has been enhanced with a multi-

objective optimization of hyperparameters [27, 28, 29, 30, 31]. The model is

then compared with benchmark methods like Persistence method, ARIMA and

Generalized neural network. Results reveal that multi-objective optimization

based neural network models outperform the benchmark model and are reliable

for handling the short-term wind forecasting needs.

Forecasting wind speed in presence of wind wakes is an uphill task. Wind

wakes cause reduction in power captured from wind resource, thus optimal place-

ment of wind turbines in a farm will lead to efficient land area usage. In case

of a wake affected downwind turbine, the most significant upwind turbines will

affect the forecasting accuracy of the downwind turbine. Here, most significant

upwind turbines refers to a set of turbines whose wake effect causes maximum

power deficit at a downwind turbine. The major contributions of this paper are

1. A bilateral Gaussian wake model comprising Jensen and Frandsen compo-

nent is proposed and is tested for single wake and multiple wake scenarios

considering two artificial wind farm layouts for two wind speed datasets.

2. Short-term wind speed forecasting is studied considering the wake effects

and significant upwind turbines are identified using Grey relational analy-

sis. Forecasting accuracy is analyzed for proposed bilateral Gaussian wake

model and benchmark models.

5



This paper is divided as follows. Section 2 describes various wind wake mod-

els, that is, Jensen’s, Frandsen’s and proposed bilateral Gaussian wake model.

Section 3 discusses the individual methodologies for short-term wind speed fore-

casting in presence of wakes. In Section 4 results and in Section 5 discussions

are presented followed by Conclusions in Section 6.

2. Wind Wakes

As discussed in previous section wind wakes lead to reduction in velocity

at the downwind turbine in a wind farm. Wake affected wind turbine also

suffers from the problem of increased mechanical loading on the turbine struc-

ture. Apart from analytical wake models cited in literature like Jensen’s model,

Ainslie’s model, Larsen’s model and Frandsen’s model, many field models like

2D and 3D field models based on Computational Fluid Dynamics (CFD) have

also been put into wake modeling. However due to computational uncertainly

and time consumption analytical wake models are a preferred choice over field

models [7]. We now discuss various analytical models for single wake and mul-

tiple wake conditions in a wind farm layout.

2.1. Jensen’s and Frandsen’s single wake model

N.O. Jensen [32] proposed a single wake model based on the assumption that

the wake cone extends linearly with the downwind distance as shown in Figure

1. The free stream wind speed u0 is an expected wind speed to be received by

the downwind turbines, but due to wake effect a velocity deficit is observed at

these turbines. Based on the conservation of momentum of fluid across the wake

cone, the radius of wake affected wind turbine at a distance x from the upwind

turbine can be expressed as

rx = r0 + αx, (1)

where r0 is the rotor radius of the wind turbine, α represents the rate of wake

expansion behind rotor and x is the downwind distance as shown in Figure. 1.
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Figure 1: Wind turbine layout for Jensen’s single wake model

The choice of value of α depends on the wind farm terrain (surface roughness,

hub height) and atmospheric conditions (air turbulence). An empirical estima-

tion of wake expansion constant α is

α = κ

[
loge

( h
z0

)
− ψm(h/L)

]−1
(2)

where κ = 0.4 is the von Karman constant, h, z0 are the hub height of turbine

and surface roughness length. The factor ψm(h/L) determines the local atmo-

spheric stability correction at a given hub height [33]. The effective wind uj

speed at the downwind turbine located at a distance x due to wake effect of a

single upwind turbine as per Jensen’s model is given as

uj = u0

(
1 + (

√
1− Ct − 1)

( r0
rx

)2)
, (3)

where Ct = a(2 − a) is the thrust coefficient with induction factor a = 1 − uj
u0

as per Actuator disk theory.

Frandsen et al. [7], have described the wake expansion immediately after

rotor as rectangular profile compared to trapezoidal profile in Jensen’s model.

The wind speed uf at a downwind distance x as per Frandsen’s model is

uf = u0

(
1

2
± 1

2

√
1− 2Ct

( r0
rx

)2)
. (4)
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An empirical result was obtained in order to estimate the relationship between

rx and Ct, α and r0 which is given as

rx = r0(β + αx/2r0)1/2, (5)

β = 0.5

(
1 +
√

1− Ct√
1− Ct

)
. (6)

In (4), the ‘+’ sign is applicable for a ≤ 0.5 and ‘−’ sign for a > 0.5.

2.2. Proposed model for wind wakes

The velocity deficit estimated by Jensen and Frandsen are based on the top-

hat like velocity distribution. Several wind tunnel experiments have shown that

the velocity deficit in transverse direction for a far-wake region follows a Gaus-

sian distribution [11]. Wu and Porté-Agel [34]. have studied turbulence effect

on stand-alone turbine wakes based on large-eddy simulation (LES) framework.

The velocity deficit at the far-wake end assumes a Gaussian distribution [35]

such as

u = u0

(
1−A(x)e

−r2

2σ2

)
, (7)

A(x) = 1−

√
1− Ct

8(σ/2r0)2
(8)

where u0 is the free-stream wind speed, A(x) is the maximum normalized ve-

locity deficit caused at each downstream position x and σ is the wake width for

each downwind distance x.

However, the mass flow rate between the wind turbines is not constant as

certain percent of incoming kinetic energy of wind is lost due to air turbulence.

Another wake model proposed by Larsen was used to determine the speed of

wind in wake affected area downstream but due to high computational require-

ments it is not preferred here. Based on the Gaussian variation of Jensen’s

and Frandsen’s wake models, we propose a bilateral Gaussian wake model as

shown in Figure 2 where two wind turbines are placed apart “x” rotor diameter

and the velocity deficit assumes a Gaussian distribution at the far-end. The
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wake expands linearly with downstream distance x and is dependent on atmo-

spheric conditions in terms of stability factor measured by ψm(h/L) and terrain

conditions in terms of surface roughness length (z0).

Figure 2: bilateral Gaussian wake model

Boundary lines Y1, Y2 and Y3 are the regions where the wake effect is analyzed

based on Jensen’s and Frandsen’s original wake scenario. According to Jensen,

in the boundary Y2 and Y3, the law of conservation of mass holds true which

can be mathematically expressed as:∫ ∞
r2

ρu02πrdr +

∫ r2

0

ρu22πrdr =

∫ ∞
0

ρu2πrdr, (9)

u2 = (1− 2a)u0, (10)

where r2 is the radial distance from wake centerline at downstream distance x1,

ρ is the density of incompressible fluid (here air), u2 is the wind speed just after

the rotor. According to actuator disk theory, u2 is related to u0 as (10), where

a is the induction factor. Substituting (10) and (7) in (9), we get

A(x) =
a

(σ/r22)
(11)

where σ is a linear function of downstream distance x and its estimation [36] is

σ =
r√
2

=
r0 + αx√

2
, (12)

9



Thus Jensen’s gaussian distribution wake model is given as

u = u0

(
1− a

(σ/r22)
e
−r2

2σ2

)
. (13)

Further, Frandsen’s Gaussian version of wake model assumes that mass flow

rate through the control tube Y1Y3 is not constant. Based on the conservation

of momentum,

T =

∫ ∞
0

ρ(u0 − u)2πrdr =
1

2
ρA0(u20 − u2), (14)

where T is the net thrust in presence of wake flow speed u. Further, substituting

(11) and (7) in (14), we get

A(x) = 1−

√√√√(1− Ct

2(σ/r0)2

)
, (15)

σ =
r

2
=
r0 + αx

2
, (16)

where A(x) is the maximum normalized velocity deficit caused in wakes, σ is

the wake width for a given downstream distance x. We now propose a bilat-

eral Gaussian wake model based on Jensen’s and Frandsen’s Gaussian wake

approach, mathematically it can be expressed as

u = u0

(
1−Q(x, r)

)
, (17)

Q(x, r) = Aj(x, r)Af (x, r), (18)

σj =
r0 + αx√

2
, σf =

r0 + αx

2
, (19)

Aj(x, r) =
a

(σj/r22)
e
−r2

2σ2
j , (20)

Af (x, r) =

(
1−

√(
1− Ct

2(σf/r0)2

))
e
−r2

2σ2
f

where Aj(x, r) and Af (x, r) are the respective Jensen and Frandsen Gaussian

components for a given downstream distance x and radial distance r which is

a function of wake expansion factor α and downstream distance x. Further

σj and σf are the wake width as a function of x for Jensen and Frandsen
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model respectively. The motivation behind multiplying Jensen’s (Aj(x, r)) and

Frandsen’s (Af (x, r)) component comes from the individual advantages of the

two models. Jensen’s model is time-saving whereas Frandsen’s model holds good

approximation for far-wake region (5D0−7D0). The proposed bilateral Gaussian

wake model was tested against benchmark Jensen’s and Frandsen’s wake model

for single wake and multiple wake scenario and its results are presented in next

subsection. In case of our proposed model the wake velocity u is calculated for

a fixed radial distance for a given wake expansion factor α as listed in Table 1.

Table 1: Turbine specifications for wake model calculation

Parameter Value

Rotor radius (r0) 38.5 m

Thrust coefficient (Ct) 0.88

Wake constant (α) 0.05

Hub height (h) 61 m

2.3. Case study for single wake model

In this paper, two analytical models, that is, Jensen’s and Frandsen’s sin-

gle wake model are discussed. In order to analyze the performance of these

individual models, the wind speed data for a wind site WBZ (earlier known

as Westinghouse Broadcasting,radio station in Boston) Tower Hull located in

Boston Harbor, Massachusetts is collected from September 1, 2006 to Septem-

ber 30, 2006. Wind speed was measured every 10 minutes at a hub height of 61

meters by a cup anemometer with an accuracy of ±2%. The wind speed series

chosen for 250 data points has maximum and minimum wind speed of 13.05

m/s and 1.5 m/s respectively and a mean wind speed of 7.58 m/s. The wake

growth constant (α) is calculated using empirical relationship (2) for given hub

height (h) and surface roughness length (z0). Since the wake effect is analyzed in

neutral atmospheric boundary layer, the atmospheric stability correction factor

(ψm(h/L)) is considered zero. Similarly, for Ct, the value 0.88 is chosen based

on the assumption that every turbine in a wind farm is operating at Betz limit
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where the coefficient of power is 0.58, which occurs at a =0.33, where a is in-

duction factor. For a neutral atmospheric boundary layer (ABL) operation the

value of Ct is found to be higher for increased power output [37]. The wake flow

behind the upwind turbine is dependent on the wake growth constant α and

that in turn depends on the topographical features (surface roughness length)

of the wind farm land.

Consider a single wake wind turbine layout in Figure 1. Wind turbine 1

(WT1) is upwind turbine and wind turbine 2 (WT2) is downwind turbine. The

wind speed for WBZ tower Hull varies in the range of 1.5 m/s to 13.05 m/s,

given that the ABL is not stratified (density variation of air in vertical direction

is zero) pressure drop at hub of each wind turbine in the farm is constant, the

thrust coefficient (Ct) remains constant for wake stream flow. The effective

wind speed observed is simulated using (3) and (4) and Root Mean Square

Error (RMSE) and Coefficient of determination (R2) were calculated to assess

the model performance for a single wake model. Table 2 depicts performance

metrics and Frandsen’s single wake model outperforms Jensen’s model in terms

of RMSE and R2. The proposed and benchmark models are tested for different

downwind distances (x = 2.5D0, 3D0 and 5D0).
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Figure 3: Wake effect on WT2 due to WT1 based on benchmark models and proposed model.

Figure 3 shows the effective wind speed observed at wind turbine WT2 due

to wake effect of WT1 for Jensen’, Frandsen’s and proposed bilateral Gaussian

wake model for a downwind distance of 2.5D0 and u0 refers to the freestream
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Table 2: Performance indices for single wake scenario

Model Metric 2.5D0 3D0 5D0

Jensen RMSE 3.7865 3.5461 2.7769

R2 0.8628 0.8683 0.8605

Frandsen RMSE 1.0668 0.9375 2.7769

R2 0.8885 0.8780 0.8964

Proposed RMSE 0.7148 0.7146 0.7169

R2 0.8976 0.8823 0.8971

wind speed. Based on root mean squared error (RMSE), the proposed bilateral

Gaussian wake model outperforms Jensen’s model by 81.11% and Frandsen’s

model by 32.99% for a downstream distance of 2.5D0.

2.4. Multiple wake model

This study can be further extended for wind wakes due to multiple upwind

turbines. Due to shadowing effect created by wind turbines placed at different

locations, the effective wind speed in presence of wakes using Jensen’s model

[38] is

u = u0

(
1−

N∑
i=1

(
1−

√
1− Ct

( r0
rij

)2Ash,i

A0

))
, (21)

where Ash,i is the overlap area experienced by wind turbine under shadow from

upwind turbine, and

Ash,i = r20 cos-1

(
d2ij + r20 − r2ij

2dijr0

)
+ r2ij cos-1

(
d2ij + r2ij − r20

2dijrij

)

−1

2

√(
(r0 + dij)2 − r2ij)(r2ij − (r0 − dij)2

)
(22)

and based on Frandsen’s wake model the effective wind speed during multiple

wake scenario is given as

u = u0

(
1

2
± 1

2

√√√√1− 2Ct

( r0
rij

)2(Ash,i

A0

))
, (23)
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where dij , r0, rij are the horizontal distances between upwind turbine WTi and

downwind turbine WTj , rotor radius for all turbines in wind farm, radius of the

downwind turbine WTj due to wake effect of WTi and N are the total number

of wind turbines causing shadowing effect.

Figure 4: Shadowing effect in case of multiple wake scenario

Figure 4 shows the overlap area experienced by downwind turbine. Based on the

overlap area, the degree of shadowing is calculated for multiple wake scenario

where a wind turbine receives wind wakes from more than one upwind turbine.

For our proposed bilateral gaussian wake model, the effective wind speed at

WTj due to N upwind turbines WTi, where (i = 1, 2, . . . , N) is given as

u = u0

(
1−

N∑
i=1

Qij(x, r)
)
, (24)

Qij(x, r) = Aij(j)Aij(f)Do,i,

Do,i =
(Ash,i

A0

)
, (25)
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where N are the total number of upwind turbines causing shadowing on down-

wind turbine WTj , Do,i is the degree of overlap due to shadowing, Aij(j) and

Aij(f) are the Jensen and Frandsen component calculated using (20). To test

Jensen’s and Frandsen’s model for multiple wake condition, a 5 turbine Wind

Farm Layout (WFL) is chosen in Figure 5. In order to study the multiple wake

effect following assumptions were made:

A1 All the wind turbines in the wind farm have same rotor diameter D0.

A2 After a downwind distance of 10D0 − 12D0 the wake effect due to wind

turbine WT1 disappears.

Figure 5: Wind farm layout consisting 5 wind turbines

The multiple wake condition based on Jensen’s model and Frandsen’s model

is tested on a 5 wind turbine layout as shown in Figure 5. The effective wind

speed observed at WT4 and WT5 due to multiple upwind turbines are calculated

using (21) and (23). The effective wind speed at WT4 and WT5 due to multiple

wake effect is shown in Figure 6.

From Figure 6 we can observe that Frandsen’s model for multiple wake out-

performs Jensen’s model. Further, as the distance xij between upwind and
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Figure 6: Effective wind speed at WT4 due to wake effect of WT1 and WT2

downwind turbines increases, the wake effect diminishes. The performance of

Jensen’s and Frandsen’s model multiple wake conditions is tested for wind tur-

bines WT4 and WT5 for a 5-turbine wind farm layout.
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Figure 7: Effective wind speed at WT5 due to wake effect of WT1,WT3 and WT4

The performance metric, that is, RMSE for the benchmark models and proposed

model was evaluated. For WT4, the RMSE is found to be 46.70% using Jensen’s

model and 15.88% using Frandsen’s model. Similarly for WT5, the RMSE based

on Jensen’s model is 142.91% and based on Frandsen’s model it is 50.81%.

Compared to benchmark models the RMSE values based on proposed model

for WT4 and WT5 are found to be 3.85% and 7.56% respectively. The velocity

distribution at the far-wake end complies well with experimental results [39].
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Further, the proposed wake model is validated by testing for multiple wake

scenario for a dataset D2. The wind speed data is obtained for a wind farm

Sotavento, Spain. Hourly wind speed data was measured from March 1, 2018

to March 30, 2018 by a cup anemometer placed at a height of 61 meters. Out of

this dataset, first 250 data points are chosen for testing multiple wake scenario.

The descriptive statistics for dataset D2 are umax= 17.3 m/s, umin= 0.35 m/s,

umean=7.625 m/s and standard deviation of 2.677. For wind turbine WT4,

RMSE is found to be 33.87% using Jensen’s model, 11.72% using Frandsen’s

model and 2.344% using proposed model. For wind turbine WT5, the RMSE

for Jensen’s model is 111.44% and 39.2% using Frandsen’s model. Compared

to benchmark model the proposed model recorded RMSE of 4.2%. Figure 8

shows the wake velocity for WT4 and WT5 based on Jensen’s , Frandsen’s and

Proposed wake model.
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Figure 8: Effective wind speed at WT4 and WT5 due to wake effect of (WT1,WT2) and

(WT1,WT3 and WT4) for dataset D2
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3. Wind forecasting considering wake effect

Wind forecasting is an essential step in terms of planning and operating a

wind farm which is tied to a utility grid. Various methods based on time-series

method like Auto regressive Integrated Moving Average (ARIMA) and intel-

ligent learning algorithms like Artificial Neural Networks (ANN) and Support

Vector Regression (SVR) are preferred for wind forecasting [40]. Here we study

the forecasting in presence of wind wakes. In a particular wind farm, not all

wind turbines receive the wind speed at same magnitude and direction. Also

for a multiple wake condition, a wind turbine experiences wake due to multiple

upwind turbines but not all wind turbines cause significant wake effect and tur-

bulence on the downwind turbine. Since not all upwind turbines cause velocity

deficit, to identify the significant upwind turbines on a particular downwind tur-

bine, Grey Correlation Analysis (GRA) is performed. The following subsection

discusses the various steps involved in Grey correlation analysis.

3.1. Grey correlation analysis

Grey correlation analysis or grey relational analysis (GRA) is an important

financial tool often used in system analysis technique [41]. The central idea of

GRA is to establish degree of closeness among various decision making sequences

and a reference sequence. The forecasting accuracy considering wake effects from

multiple upwind turbines is greatly affected by the results of GRA. Further, once

the GRA is done, only those variables which have higher grey correlation degrees

are chosen as inputs for the wind speed forecasting model. Grey correlation

analysis is done as follows:

1. A reference sequence with length same as that of decision making se-

quences is chosen as X0 = (x01, x02, . . . , x0n), and decision sequences are

expressed as a matrix L representing all the decision sequences along
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with the reference sequence X0, where Xi = (xi1, xi2, . . . , xin), where

i = 1, 2, . . . ,m.

L =


x01 x11 . . . xm1

x02 x12 . . . xm2

...
...

. . .
...

x0n x1n . . . xmn

 . (26)

2. Next, all the sequences are standardized either through transforms such as

initial value transform, average value transform or polar difference trans-

form. After this procedure, the matrix L is transformed as

L
′

=


x
′

01 x
′

11 . . . x
′

m1

x
′

02 x
′

12 . . .
′

x
′

m2

...
...

. . .
...

x
′

0n x
′

1n . . . x
′

mn

 (27)

3. After standardization, calculate the absolute difference of the correspond-

ing elements of reference sequence and decision sequence, i.e., ∆ik =

|x′0t − x
′

ik|, where i = 1, 2, . . . , n and k = 1, 2, . . . ,m.

4. Calculate gg = min(∆ik) and hh = max(∆ik).

5. Compute relational coefficient between reference sequence x
′

0t and decision

sequence x
′

it using

r(x
′

0t, x
′

it) =
gg + ρ× hh
∆it + ρ× hh

(28)

where ρ ∈ (0, 1) is called the distinguish coefficient. Usually ρ = 0.5 is

taken for all the calculations.

6. Compute the grey relational degree using following equation

r(X0, Xi) =
1

n

n∑
i=1

r(x
′

0t, x
′

it), i = 1, 2, . . . ,m. (29)

7. The grey relational degree is ordered in descending order and the first jth

inputs are selected for forecasting wind speed in presence of wakes.
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In this study, Grey relational analysis is used to identify the upwind turbines

that significantly affect the given downwind turbine. The wake wind speed due

to individual upwind turbine is treated as decision sequence and freestream

wind speed u0 is treated as reference sequence X0. The short-term wind speed

forecasting is carried without GRA and with GRA and the forecasting results

in terms of RMSE are then compared for the proposed bilateral Gaussian wake

model and benchmark models.

3.2. Wavelet-Support vector regression for wind forecasting

Wind forecasting is primarily done by forecasting wind speed or wind power.

Recently machine intelligent algorithms like Artificial neural networks (ANN),

Support vector regression (SVR) [42] and Extended learning machine (ELM)

[43] are used for wind forecasting. Further hybrid methods that involve decom-

position methods (Wavelet transform, Empirical mode decomposition) are also

used in combination with individual methods to obtain better forecast accuracy

[44]. Liu et al. [45] have proposed an improved SVM method for wind fore-

casting by optimizing hyperparameters by using simulated annealing (SA). Here

to forecast wind speed in presence of wakes we use a hybrid method based on

wavelet-SVR. Firstly, the wavelet transform filters the wind speed time-series

from potential stochastic variations, then the inputs to the SVR model are

chosen based on Grey correlation analysis. The forecasted wind speed is then

compared with actual wind speed and various performance indices are computed

to evaluate forecasting model.

Introduced by Moret et al., Wavelet transform was first put into use for

analyzing seismic waves [46]. Wavelet transform is a multi-resolution method

used to fragment a signal into subsequent approximate (low frequency) and

detail (high frequency) components. The wavelet transform for an input signal

z(t) is given as

W (pz, qz) = 2−pz/2
N−1∑
t=0

z(t)φ

(
t− qz.2pz

2pz

)
, (30)
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where N represents the signal length, scaling and translation parameters are

the functions of pz and qz which are integers. φ(t) is chosen as mother wavelet.

Daubechies (db4) wavelet transform is applied to the wind series. A 5-level

signal decomposition is done and its results are shown in Figure 9 with five

detail signals and one approximate signal (a5) which are used as input feature

set for short-term wind forecasting in presence of wind wakes.
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Figure 9: 5-level db4 wavelet decomposition for wind speed time series

Support vector regression is a machine learning algorithm developed by Vap-

nik [47]. The idea of support vector regression using Support vector machine

(SVM) is based on structural risk minimization theory. Consider input-output

pair (xi, yi), where xi ∈ X, X ∈ Rn and y ∈ R. Here xi for i = 1, 2, . . . , n

are the set of features that are taken as input for the SVR model. The SVR

problem is based on convex optimization of a risk functional represented by a

linear regressor

fSV R(x) = wTx+ b,with w ∈ X, b ∈ R, (31)

where x is the input feature set, w is the weight coefficient vector and b is the

bias term correction, and can be expressed as a minimization problem

min
1

2
‖ w ‖2 +γ(eT ξ + eT ξ∗), (32)

subject to y − wTx− eb ≤ eε+ ξ, ξ ≥ 0, (33)

wTx+ eb− y ≤ eε+ ξ∗, ξ∗ ≥ 0,
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where γ is the regularization factor that trade-offs the flatness of regressor

fSV R(x) and the maximum acceptable deviation ε. The variables ξ, ξ∗ are

the slack variables introduced as a soft margin to the acceptable error ε and

e is the vector of ones of appropriate dimensions. For non-linear regression

problems, kernel functions which satisfy Mercer’s theorem such that k(xi, xj) =

〈φ(xi), φ(xj)〉, where K denotes the kernel matrix with elements Kij = k(xi, xj)

are used. In its dual form, the SVR problem may be extended as

min
1

2

n∑
i,j=1

(χi − χ∗i )T k(xi, xj)(χj − χ∗j ) + eT ε

n∑
i=1

(χ+ χ∗)−
n∑

i=1

yi(χ− χ∗),

s.t. eT
n∑

i=1

(χi − χ∗i ) = 0, 0 ≤ χ, χ∗ ≤ γe, (34)

where χ and χ∗ are the Lagrange multipliers such that χiχ
∗
i = 0 , i = 1, 2, . . . , n.

The regressor fSV R(x) is given as

fSV R(x) =

n∑
i=1

(χi − χ∗i )k(xi, x) + b. (35)

4. Results

This section throws light on the framework for short-term forecasting in

presence of wind wakes for two wind farm layouts, that is, 5-turbine wind farm

layout (Figure 3) and 15-turbine wind farm layout (Figure 13). Wind speed

data is collected for two data sets a wind farm WBZ tower Hull, Boston Harbor,

Massachusetts and another one located in Sotavento, Galicia, Spain. Table 3

shows the descriptive statistics for the two wind farms with their sampling time.

Table 3: Descriptive statistics for wind speed for WBZ tower Hull, MA and Sotavento, Spain

Wind Farm Dataset Max Min Mean Std Dev

(m/s) (m/s) (m/s)

WBZ tower, MA D1 10.14 0.36 4.4966 2.3143

Sotavento, Spain D2 17.53 0.35 7.1768 2.8009

Figure 10 shows the wind speed time-series for the two wind farms WBZ

tower Hull and Sotavento, Galicia. Each of the two datasets D1 and D2 have
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different sizes 500 data points and 720 data points respectively. The data points

for dataset D1 were obtained at every 10 minute and for dataset D2 the points

were obtained at every hour from March 1, 2018 00:00 hrs (GMT) to March 30,

2018 00:00 hrs (GMT), that is, 24 observations each day and 720 observations

for the entire month.
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Figure 10: Wind speed time-series (a) WBZ tower Hull, MA (b) Sotavento, Galicia, Spain.

The short-term wind speed forecasting, that is (10 minutes for D1) and 1 hour(

for D2), is analyzed on the basis of standard metrics like Root mean squared

error (RMSE), Sum of squared residuals (SSR) and Sum of squared deviation

of testing samples (SST). Mathematical expressions for these metrics are

RMSE =

√√√√ 1

N

N∑
i=1

(X̂i −Xi)2 × 100%

SSR/SST =

∑N
i=1(X̂i − X̄)2∑N
i=1(Xi − X̄i)2

(36)

where X̂i, Xi, X̄ are the predicted, actual and mean values of the N testing

samples. Lower the RMSE and value better the forecasting model. A high

SSR/SST ratio indicates a good agreement between actual and estimated values

of testing samples.

4.1. Forecasting results for 5-turbine wind farm layout

The forecasting process involves first calculating wind speed received by the

downwind turbine under wake effect from individual upwind turbines. The wind
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farm layouts for 5-turbine wind farm and 15-turbine farm are selected. In case of

wind farm layout with 5 turbines, wind farms WT4 and WT5 are the downwind

turbines. The wake flow speed for both the wind turbines is calculated using

Jensen’s and Frandsen’s model. The turbine parameters for both the wind farm

layouts are chosen same for simplicity, and are listed in Table 1. Wind turbine

WT4 experiences wake from WT1 and WT2, whereas wind WT5 experiences

wake from WT1, WT3 and WT4. The distance xij between upwind (WTi)

and downwind turbines (WTj) is listed in Section 2.4. After calculation of wake

flow speed using (3) and (4), the wake flow speed time-series is analyzed for grey

correlation analysis by comparing it with a reference sequence X0 (freestream

wind speed u0 here). The grey correlation degree (GCD) r(u0, uij) obtained

thereafter is arranged in descending order of its magnitude and first jth. In case

of 5-turbine layout the GCD was found for wind speed series u15, u35 and u45 to

select inputs for forecasting wind speed for turbine WT5. The Grey correlation

analysis results for u15, u35 and u45 are highlighted in Table 4.

Table 4: Grey correlation degree and its ranking for 5-turbine layout for dataset D1 and D2

Grey correlation degree D1 D2

Value Rank Value Rank

r(u0, u15) 0.7074 3 0.5867 3

r(u0, u35) 0.8529 1 0.6748 1

r(u0, u45) 0.8234 2 0.5940 2

The GCD in descending order is r(u0, u35) > r(u0, u45) > r(u0, u15). Thus,

we select u35 and u45 as inputs to the SVR model to forecast wind speed for

turbine WT5. Further the wind speed for turbine WT5 is also forecasted without

considering grey correlation analysis, that is, selecting all the wake causing wind

turbines as input to the SVR model. The effective wind speed is decomposed

into approximate signal (a5) and detail signals (d1, d2, d3, d4, d5) using 5-

level daubechies 4(db4) wavelet transform. The forecasting is done using SVR

model where the data is divided as training set (first 80%) and testing set (

remaining 20%). The SVR model uses Radial Basis Function (RBF) as kernel
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function. The SVR hyperparameters are chosen from the set 2i|i = −9,−8, ...10.

This choice of search space enables one to determine optimal parameters from

finite set of real numbers and leads to fast computation. We selected RBF

kernel function for SVR forecasting and its bandwidth chosen was σ = 25 and

regularization constant γ was taken as 22 [48]. Tables 5 shows the forecasting

results for wind turbine WT5 based on Jensen’s and Frandsen’s wake model for

the two datasets D1 and D2.

Table 5: Forecasting results for wind turbine WT5 for dataset D1 and D2

Dataset Metric Jensen’s model

without GRA with GRA

D1 RMSE (%) 6.53 5.84

SSR/SST 1.0897 1.0124

D2 RMSE (%) 12.93 11.86

SSR/SST 1.0483 1.0488

Frandsen’s model

without GRA with GRA

D1 RMSE (%) 3.68 3.31

SSR/SST 1.0986 1.0928

D2 RMSE (%) 9.02 6.43

SSR/SST 1.0552 1.0578

Proposed model

without GRA with GRA

D1 RMSE (%) 2.86 2.56

SSR/SST 1.1087 1.1902

D2 RMSE (%) 7.33 4.91

SSR/SST 1.0270 1.0020

From Table 5, we find that wind forecast accuracy for Frandsen’s model

outperforms Jensen’s model. Using our proposed model, short-term wind fore-

casting is carried out for datasets D1 and D2 and results are studied with respect

to benchmark models. For dataset D1, the RMSE is found to be less than than
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Jensen’s and Frandsen’s model. For dataset D1, without GRA, the RMSE is

2.86%, and for dataset D2, the RMSE is 7.33%. For dataset D1, the RMSE value

without GRA based Jensen’s model is 6.53% and based on Frandsen’s model is

3.68%. The SSR/ SST ratio for Jensen’s model is 1.0897 and using Frandsen’s

model is 1.0986. Further by incorporating GRA in our forecasting model, the

RMSE for Frandsen’s model is 3.31% and for Jensen’s model it is 5.84%. The

SSR/SST ratio for Frandsen’s model is found to be better than Jensen’s model

thus suggesting better wind speed forecasting based on this model. A high

SSR/SST ratio implies good agreement between actual and estimated values.
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Figure 11: Wind forecasting for WT5 with and without GRA for dataset D1.
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Figure 12: Wind forecasting for WT5 with and without GRA for dataset D2.

Similarly for dataset D2, the effective wind speed for wind turbine WT5 is

calculated based on Jensen’s and Frandsen’s model and GRA analysis is done.

Here the Grey correlation analysis results for u15, u35 and u45. Based on the

GCD rankings we select u35 as the input to the SVR model along with de-

composition signals using wavelet transform. The RMSE values for dataset

D2 without GRA based on Jensen’s model is 12.93% and based on Frandsen’s

model is 9.02%. The SSR/SST ratio for Jensen’s model is 1.0483 and using
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Frandsen’s model is 1.0552. A high SSR/SST ratio implies that the regressor

extracts maximum statistical information from the data. A wake model esti-

mating lower velocity deficit yields higher Annual Electricity Production (AEP),

thus ensuring better wind speed forecast and reliability.

Figures 11-12 show the short-term wind speed forecasting results for WT5 in

presence of wakes based on Jensen’s, Frandsen’s and proposed model for datasets

D1 and D2 respectively. The short-term forecast was done using hybrid method

wavelet-SVR for which 80% (400 data points) of data was used for training and

20% (100 data points) for testing.

4.2. Forecasting results for 15-turbine wind farm layout

Next, we discuss short-term wind speed forecasting in presence of wind wakes

for a 15-turbine wind farm layout with turbines arranged asymmetrically as in

Figure 13.

Figure 13: Schematic for a 15-turbine wind farm layout.

The wind turbineWT12 is affected from wakes by upwind turbinesWT3,WT4,WT5,

WT7,WT9 and WT10. The effective wind speed due to upwind turbines is cal-

culated using (21) and (23) for Jensen’s and Frandsen’s model respectively.

u12eff = u0

(
1−

N∑
i=1

(
1−

√
1− Ct

( r0
rij

)2Ash,i

A0

))
, (37)

where u12eff is the effective wind speed at WT12 due to wake effects of upwind

turbines. The overlap area Ash,i due to upwind turbine WTi is calculated using
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(22). The wind speed series ui,j due to upwind turbine WTi, i = 3, 4, 5, 7, 9, 10,

based on Jensen’s, Frandsen’s and proposed model, is calculated. In Table 6,

we calculate the Grey correlation degree r(u0, ui,j), with u0 (freestream wind

speed) as reference, using GRA for dataset D1 (WBZ tower Hull, Boston, MA)

and dataset D2 (Sotavento, Galicia).

Table 6: Grey correlation degree and its ranking for 12-turbine layout for datasets D1 and D2

Grey correlation degree D1 D2

Value Rank Value Rank

r(u0, u3,12) 0.8218 3 0.6644 5

r(u0, u4,12) 0.8529 1 0.6748 4

r(u0, u5,12) 0.7809 5 0.7065 3

r(u0, u7,12) 0.7228 6 0.8246 1

r(u0, u9,12) 0.8234 2 0.5940 6

r(u0, u10,12) 0.7917 4 0.7260 2

The SVR model is trained for 80% of the data and tested for remaining 20%

of data. RBF kernel function with bandwidth (σ = 25) is used. For dataset

D1, the inputs to the SVR model are wavelet decomposition signals of effective

wind speed u12eff (a5; d1, d2, d3, d4 and d5) and wind speed series uij due to

upwind turbines WTi, where (i = 3, 4, 5, 7, 9, 10).

The short-term wind speed is forecasted for turbine WT12 once without

GRA analysis, that is, all the inputs and once with GRA analysis, that is, only

selected inputs (u5,12;u7,12;u10,12) based on their rankings are used to forecast

the effective input at WT12. Table 7 shows the performance metrics for short-

term wind speed forecasting based on Jensen’s, Frandsen’s and proposed model.

For dataset D1, the RMSE for short-term wind forecasting without GRA is

5.86% with Jensen’s model and 4.78% with Frandsen’s model. With GRA, the

RMSE for Jensen’s model is 4.66% and for Frandsen’s model it is 4.38%. The

SSR/SST ratio was found better when wind forecasting in presence of wakes

is done with GRA than without it. The performance metrics indicate that
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Table 7: Forecasting results for wind turbine WT12 for dataset D1 and D2

Dataset Metric Jensen’s model

without GRA with GRA

D1 RMSE (%) 5.86 4.66

SSR/SST 0.9866 1.0224

D2 RMSE (%) 8.06 6.86

SSR/SST 1.0519 1.2934

Frandsen’s model

without GRA with GRA

D1 RMSE (%) 4.78 4.38

SSR/SST 1.0933 1.0818

D2 RMSE (%) 6.38 6.21

SSR/SST 1.0297 1.3603

Proposed model

without GRA with GRA

D1 RMSE (%) 4.82 2.56

SSR/SST 1.0599 1.0190

D2 RMSE (%) 5.52 4.72

SSR/SST 1.0363 1.0150

wake modeling and wind forecasting based on Frandsen’s model outperformed

Jensen’s model. Figures 14 and 15 show the forecasting results for wind turbine

WT12 based on Jensen’s, Frandsen’s and Proposed model for datasets D1 and

D2. Similarly for dataset D2, the RMSE without GRA for Jensen’s model are

8.06%, while for Frandsen’s model it was are 6.38%. With GRA, the RMSE

for Jensen’s model is 6.86% whereas for Frandsen’s model it is 6.21%. It can

be seen that RMSE for Frandsen’s model is smaller than Jensen’s model thus

implying a better forecast in presence of wind wakes for turbine WT12. The

SSR/SST ratio is consistent for Jensen’s and Frandsen’s model and shows good

agreement between actual and estimated values.
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Figure 14: Wind forecasting for WT12 with and without GRA for dataset D1.
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Figure 15: Wind forecasting for WT12 with and without GRA for dataset D2.

Based on our proposed model, we find that GRA analysis provides signifi-

cantly better forecasting performance in terms of RMSE. The RMSE for dataset

D1 is 4.82% without GRA and 2.56% with GRA. Similarly for dataset 2, the

RMSE is 5.52% without GRA and 4.72% with GRA. For a 15-turbine wind

farm layout the wind forecasting carried out for WT12 and we found that our

proposed model yields better forecasting performance in presence of wind wakes.
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5. Discussion

This paper discusses the short-term wind forecasting in presence of wakes by

considering two different wind farm layouts and number of wind turbines. The

wake effect is studied based on models proposed by Jensen and Frandsen. For

single wake scenario, proposed bilateral Gaussian wake model is compared with

Frandsen’s and Jensen’s model for different downwind distances. In a wind farm

a downwind turbine experiences wakes due to multiple turbine thus creating a

shadowing effect. Multiple wake scenario is tested for a 5-turbine wind farm

layout and our proposed model outperformed Frandsen’s model by 75.75% and

Jensen’s model by 91.75% in terms of RMSE. The short-term wind forecasting

is carried out using a hybrid method based on wavelet decomposition and SVR.

The inputs for the forecasting model are selected based on grey correlation

degree and only significant inputs, that is, upwind turbines are selected as inputs

to forecast wind speed for the downwind turbine. Based on our study we find

that for both the wind farm layouts, with GRA, our proposed model outperforms

Frandsen’s and Jensen’s model in terms of RMSE and choosing only significant

upwind turbines as input to the SVR forecasting model we get much better

forecast accuracy. The significance of grey correlation analysis in identifying

wind turbines that actually cause velocity deficit, will lead to an efficient micro-

siting of wind farms.

Limitations

Wind forecasting carried out in presence of wake interactions is studied.

GRA is used to select input features for Support vector Regression based pre-

diction model. SVR based forecasting however results in overestimating the

wind speed predictions as indicated by SSR/SST index greater than 1. The

over-fitting scenario of SVR can be possibly overcome by using improved vari-

ants of SVR like Least square support vector regression (LSSVR) and Twin

support vector regression (TSVR).
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6. Conclusion

A GRA based framework is use to study wind forecasting in presence of wind

wakes. Benchmark wake models like Jensen’s, Frandsen’s models are tested

against a novel Bilateral Gaussian wake model. The proposed wake model is

based on Gaussian variation of Jensen’s and Frandsen’s models. The model is

tested for two datasets D1 and D2 considering single wake and multiple wake

scenario. The proposed model outperforms Jensen’s and Frandsen’s model. Fur-

ther, forecasting is carried out where the wind speed time-series is decomposed

into approximate and detail signals using daubechies wavelet with a 5-level de-

composition. Wavelet transform removes the noise components present in the

series and SVR is used to forecast wind speed. GRA is used as an important

tool to identify the upstream turbines significantly contributing to wake effect.

Results reveal that, for both the wind farm layouts, GRA improves the forecast

accuracy.
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