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A Balancing Current Ratio based State-of-Health
Estimation Solution for Lithium-ion Battery Pack

Xiaopeng Tang, Furong Gao, Kailong Liu, Member, IEEE, Qi Liu, and Aoife M. Foley, Senior Member, IEEE

Abstract—The inevitable battery ageing is a bottleneck
that hinders the advancement of battery-based energy stor-
age systems. Developing a feasible health assessment
strategy for battery pack is important but challenging due
to the joint requirements of the computational burden,
modelling cost, estimation accuracy, and battery equalisa-
tion. This paper proposes a balancing current ratio (BCR)-
based solution to achieve reliable state-of-health (SoH)
estimations of all series-connected cells within a pack while
significantly reduce the overall reliance on cell-level battery
models. Specifically, after employing BCR to describe the
properties of the balancing process, the voltage-based ac-
tive balancing is combined into the SoH estimator design
for the first time, leading to a weighted fusion strategy to ef-
fectively estimate SoHs of all cells within a pack. Hardware-
in-the-loop experiments show that even if a parameter-fixed
open-circuit-voltage-resistance (OCV-R) model is used for
modelling, the typical estimation error of our proposed
solution can still be bounded by only 1.5%, which is 70%
lower than that of the benchmarking algorithms. Due to the
model-free nature of the integrated voltage-based balanc-
ing, the robustness and flexibility of the proposed pack SoH
estimation solution are also significantly improved.

Index Terms—Electric Vehicle, Lithium-ion Battery Pack,
State-of-health Estimation, Balancing current ratio

I. INTRODUCTION

Lithium-ion (Li-ion) battery is regarded as a key energy
storage source to promote the development of transportation
electrification, with the overall capacity exceeding 170GWh
in 2020 [1]. Though rechargeable, Li-ion batteries still suffer
from inevitable ageing during their cyclic or even storage
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mode [2], [3]. The aged batteries, in general, exhibit reduced
performance in capacity, power, and reliability [4], [5]. With-
out precise information on the battery’s degradation, users’
anxieties on vehicle’s driving range, transient performance,
and safety will increase, posing challenges to the populari-
sation of transportation electrification [6]. In light of this, an
effective approach to evaluate the battery’s ageing status is
imperative [7].

In general engineering applications, battery ageing status
is commonly described by the state-of-health (SoH), defined
as the percentage of the actual battery capacity to its rated
capacity [8], [9]. Although the rated capacity is commonly
provided by the battery manufacturer, the actual capacity of
the battery cannot be directly measured as it is difficult to
fully charge or discharge electric vehicles in daily applications
[10], [11]. Therefore, battery SoH is indirectly estimated from
some available measurements for online applications. From
the application point of view, the estimate can be categorised
into two levels, namely, 1) cell-level and 2) pack-level.

There are multiple types of methods for estimating the SoH
of a single battery [12]. One popular solution is developing
a model that maps the ageing-related features to the SoH
values and then uses this well-developed model for real-time
SoH estimation. For example, the electrochemical features
such as electrochemical impedance spectroscopy (EIS) [13]
and geometry features like the vertical slope at the corner of
constant-current (CC) charging curve [14] can be mapped to
the SoH through Gaussian Process Regression (GPR) models.
Similarly, the features extracted from the incremental capacity
(IC) curves are also mapped to SoH through polynomial
fittings [15], [16] or complicated data-driven networks [17].
Another popular solution is the state-of-charge (SoC)-based
SoH estimation. Specifically, this solution relies on the nor-
malised value of differential capacity over differential SoC
( ∆Q
∆SoC/Qnom). As SoC itself is also an important internal state

within the battery management system, joint SoC and SoH
estimators with different strategies have been developed [4].
Given that ∆SoC is in the denominator and could directly
affect SoH estimation results, the high-performance parameter-
adaptive SoC estimators are preferable [18], [19].

When it comes to the pack-level, the situation becomes
significantly different for battery health assessment. First,
multiple cells need to be handled simultaneously, resulting in
a significantly increased computational burden. In this context,
complicated models or algorithms would be improper for all
cell estimations within a pack [20]. Second, batteries within a
pack usually suffer from cell-to-cell inconsistency. That is, the
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parameters of each cell could become different [21]. In such
cases, equipping each cell with an accurate model would bring
high modelling cost. Besides, adopting parameter-adaptive
models for each cell would become computationally complex,
while employing parameter-fixed models would inevitably
reduce the accuracy of SoH estimation. Moreover, for pack
applications, balancing is generally required to handle the
inconsistency of cells. Noting that the output current and
energy efficiency of battery balancing hardware are gener-
ally not measured in real applications due to the additional
hardware cost and increase system complexity [22], [23],
the accurate current measurements for each cell in the pack
are not always available. The employment of the additional
sensors would increase costs, while the lack of current mea-
surement, on the other hand, would reduce the accuracy of
the related SoH estimation. To handle these issues, multiple
researches have been carried out. For examples, polynomial
fittings are developed to estimate the SoH of each cell in
a LiFePO4 battery pack through analysing the IC curves
[24]. The method is accurate and computationally effective,
but the influence of the balancing on the calculation of IC
trajectory is not considered. Hua et al. considered the passive
equalisation when estimating the SoH for pack applications
[25], but the computational burden of their nonlinear multi
time-scale framework for SoH estimation would be increased.
Liu et al. used a simple parameter-fixed open-circuit-voltage-
resistance (OCV-R) model to estimate the SoH of a pack
through a low computational Vmin extended Kalman filter
[26], at the cost of reducing the estimation accuracy. The
’leader-follower’ strategy could be applied to balance the
computational burden and accuracy of pack SoH estimation
[27], where the states of the ’leader’ are accurately determined,
while those of the ’followers’ would be calibrated based on
the voltage difference to save computation. In this strategy,
the estimator of the ’followers’ would be sensitive to the
voltage noise. Advanced machine-learning algorithms such as
particle swarm optimisation-genetic algorithm [28] or support
vector machine [29] could be applied to achieve high-fidelity
pack SoH estimations, but the high computational burden still
hinders their wider applications.

Based upon the above discussions, estimating the SoH
for all cells within a battery pack is a key but challenging
research topic, primarily caused by the difficulties in battery
modelling. Specifically, providing each cell with an accurate
model could significantly increase the offline modelling cost;
using parameter-adaptive approaches could be computationally
costly for large-scale pack applications; and using parameter-
fixed model for the entire pack would inevitable reduce the
estimation accuracy, even if this solution does not require
heavy modelling work or online calculations. In addition, the
influence of the balancing hardware is also rarely considered
in the relevant research works. To handle this bottleneck
engineering issue, a new solution for SoH estimation based on
parameter-fixed OCV-R model is proposed in this study. By
introducing the converged controlling parameters of the model-
free voltage-based active balancing into the SoH estimator
design, the reliance of the resulted estimator on the battery
modelling can be significantly reduced, leading to better

robustness and generalisation of cell SoH estimations within
a pack. In this context, even using a parameter-fixed OCV-
R model (denoted as ’static model’ in the remainder of this
paper) could achieve satisfactory SoH estimation performance.
To be specific, the main contributions of this study can be
summarised as follows:

• The concept of BCR is introduced into the field of
cell SoH estimations within a pack for the first time.
The feasibility of using BCR for SoH estimation is
analytically derived. A weighted fusion strategy based
on the BCR information is further proposed for SoH
estimation.

• When using a parameter-fixed OCV-R model to imple-
ment the proposed SoH estimation for each cell within
the pack, the maximum error of designed SoH estimator
can still be well-controlled within 1.5%, which is 70%
better than that of the conventional ones.

• By introducing the BCR into the estimator design, the
reliance of the SoH estimator on the battery model can
be significantly reduced, leading to better robustness and
generalisation of cell SoH estimations within a pack.

The remainder of this paper is organised as follows: Sec-
tion II introduces the related experimental platform. A brief
description of the conventional SoC-based SoH estimation
is given in Section III, followed by the detailed analysis of
the proposed solution. Hardware-in-the-loop experiments and
the result analysis are presented in Section IV. Section V
summarises this paper.

II. DESCRIPTION OF EXPERIMENTAL PLATFORM

Since the controlling parameters of the active balancing are
utilised in the design of the SoH estimator, the implementation
of our algorithm has to rely on a specific hardware system. For
the purpose of facilitating the following descriptions and also
ensuring the repeatability of the experiments, the specifications
of the experimental platform are introduced here.

Host PC
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Voltage 

Sensor

D
C

-D
C

BMS

Battery Pack

MCU

Switch 

Array

CS

CS

Temperature Sensors

MCU

Switch Array

 ≈ 72%

I pack

i nom

Room Temperature @ 25℃
(a)

(b)

(c)

Fig. 1. Illustration of the experimental platform. (a): Photo of the overall
experimental platform; (b): Photo of the utilised battery management
system; and (c): simplified topology of the balancing circuit.

Fig. 1 illustrates our experimental platform. It contains
a host PC, a battery testing system (BTS), a battery pack,
and a battery management system (BMS). In our experiment
design, the BTS is utilised to generate the driving current
of the batteries, and the BMS is applied to implement the
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algorithms/functions such as sensing/estimation, active balanc-
ing, and communication. Some key data, such as the voltage,
current, and efficiency, are sent back to the host PC for further
analysis. Specifically, the BTS is produced by Guangdong East
Star Technology Co., Ltd with an operating range of 0∼100V
and −20∼+20A. The battery pack contains 18 SONY VTC5
batteries with different ageing degrees, whose rated capacity
is 2.5Ah. The experimental methods for obtaining these aged
cells are detailed in [30]. These batteries are connected with a
6-series-3-parallel (6S3P) configuration. Following the general
engineering practice [31], each parallel group would be treated
as a ‘big cell’ with the nominal capacity of 7.5Ah in the fol-
lowing study, unless otherwise specified. The actual capacities
of these batteries are listed in Table I.

The real-time measurement and control of the batteries
are implemented by our BMS. In this BMS, the DC-DC
converter for active balancing is implemented with the LT8584
controller and NA6252 transformer. Its nominal output current
is −2.7A, while the typical efficiency η is 72%, counting in
the ohmic loss on connectors, wires, and additional current
sensors. In this way, the typical balancing current of the battery
being operated is −2.376A, while the value for the remaining
batteries is 0.324A1. The voltage measurement is implemented
by the LTC6810 sensor with an equivalent 14-bit analogue-to-
digital converter (ADC), whose total maximum error under
25 ◦C can be limited within 1.8mV. The pack current and
the balancing current are measured by INA260 current-meters,
which is a shunt-based −15 ∼ +15A sensor with guaranteed
accuracy of 0.15% under 25◦C. The resistance introduced
by each sensor is 4.5mΩ. Here, the balancing current is
experimentally measured to facilitate the calculating of the
’referenced SoC’ of the single batteries. Typical values of
the balancing current (-2.376A and 0.324A) are used when
implementing the proposed algorithm to simulate the real-
life scenarios where balancing currents are not measured.
The temperature is measured by the LM35D sensors, whose
accuracy is 0.5◦C. All the above sensors are calibrated by
an Agilent 34401A digital multimeter, whose accuracy can
achieve 6 1

2 bits. All experiments are carried out under a stable
room temperature of 25 ◦C.

TABLE I
CAPACITIES OF THE SELECTED BATTERIES (IN AH).

No. 1 2 3 4 5 6
Actual capacity 6.524 6.855 6.873 7.450 7.382 7.215

The operating mode of our hardware platform is illustrated
in Fig. 2. Here, ∆T = 1000ms is set as the sampling time and
controlling interval, and the balancing hardware (if not halted)
will work for approximately ∆t = 950ms in each operating
cycle, leaving 50ms to stabilise the terminal voltage, sampling,
calculations, and necessary communications of the batteries.

III. TECHNIQUE

This section details our proposed solution for effective
cell SoH estimations within a pack. The basic concepts and

1Cell voltages of a well-balanced pack are assumed to be similar.

950ms 950ms 950ms

Voltage & current sampling

1000ms 1000ms 1000ms

Voltage-based active balancing

Fig. 2. Illustration of the hardware operations.

definitions are firstly introduced, followed by the descriptions
of the conventional SoC-based SoH estimation approach. In
Section III-C, the proposed solution is detailed. Benchmarking
algorithms are finally introduced for comparison purposes.

A. Concepts and definitions
As our method enhances the conventional SoC-based SoH

estimator with the BCR extracted from the battery equalisation
process, to facilitate the following discussions, the related
concepts are introduced in this subsection.

1) State-of-charge: For series-connected batteries within a
pack, the SoC of cell j at the sampling step k is defined by:

SoCj(k) = SoCj(0) +

l=k∑
l=0

[
Ipack(l) ·∆T + ibal

j (l) ·∆t
]

Qj
(1)

where SoCj(0) means the cell’s initial SoC, Ipack stands for
the pack current introduced by the external loads as illustrated
in Fig. 1, and ibal represents the balancing current. These two
currents are defined to be positive if they tend to charge the
battery cell. Qj is the cell’s actual capacity.

2) State-of-health: For cell j, its SoH is defined as the ratio
between Qj and the nominal capacity Qnom provided in the
battery datasheet. Consequently, there exists:

SoHj = Qj/Qnom (2)

3) Batches: Before defining batches, the operating state of
a battery pack is distinguished by an approximated averaging
current derived from the low-pass filter:

Iavg(α, k) = α · Iavg(α, k − 1) + (1− α) · Ipack(k) (3)

where α ∈ (0, 1) is the filtering factor to compensate for the
influence of dynamic load profiles. Here, the value of α is
suggested to be 0.995. Then, the operating mode of the battery
pack can be defined as:

• Refuelling mode, if Iavg(α, k) > δ
• Working mode, if Iavg(α, k) < −δ
• Idling mode, if −δ ≤ Iavg(α, k) ≤ δ

where δ is a small positive real number used to compensate
the uncertainties caused by current sensor drifting and noise,
whose value is 0.1A in this paper. With the well-defined
operating modes, a batch can be defined based on the shifting
of the operating modes [22]. To be specific, the refuelling
batch is defined as a time period, whose starting point is
defined as the time when the battery’s operating mode switches
from the other modes into the refuelling mode, and its end
point is defined as the time when the operating mode switches
from the refuelling mode into the other modes. Similarly, the
working batch is defined as a time period, whose starting point
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is defined as the time when the operating mode switches from
the other modes into the working mode, and its end point is
defined as the time when the operating mode switches from the
working mode into the other modes. The idling batch, again,
is defined as a time period, whose starting point is defined
as the time when the operating mode switches from the other
modes into the idling mode, and its end point is defined as
the time when the operating mode switches from the idling
mode into the other modes. It is worth mentioning that these
definitions are general and suitable for both constant-current
and dynamic profiles.

4) Balancing current ratio (BCR): BCR reflects the ratio
of the average balancing current to the average pack current
[22]. For cell j, its BCR at time step k is defined as:

BCRj(k) =

(
k∑

l=0

ibal
j (l)·∆t

)
/

(
k∑

l=0

Ipack(l)·∆T

)
(4)

Some comments need to be considered for this definition as:
1) The definition of BCR is only valid for refuelling and

working batches. BCR is not defined for the idling
batches because the denominator is generally zero or very
close to zero.

2) The BCR is usually calculated within only one batch,
even though this definition might work for multiple
batches from the mathematical point of view. For in-
stance, when considering a process with a working batch
followed by a refuelling batch, two BCRs for these two
batches are preferred to be defined, respectively.

3) Although the balancing current is not measured in most
commercial BMSs, a nominal balancing current sug-
gested by the manufacturer can be used to approximately
calculate (1) and (4), at the cost of slightly sacrificing the
estimation accuracy.

B. Conventional algorithms
The proposed method is established upon the conventional

SoH estimation algorithms. For research completeness, a
widely used conventional SoC-based SoH estimation solution
is detailed here.

From the definitions in (1) and (2), one of the most
simple and straightforward method for SoH estimation is to
inversely calculate the actual capacity Qj based on accurate
SoC estimation and capacity measurement from time k1 to k2,
and then normalise this value with the nominal capacity Qnom
as:

SoHk1→k2
j =

∑k2

l=k1
[Ipack(l)∆T + ibal

j (l)∆t]

SoCj(k2)− SoCj(k1)

/
Qnom (5)

Obviously, to implement this SoH estimator, online SoC es-
timations for single cells are required. Here, an SoC estimator
based on the typical extended Kalman filters summarised in
Algorithm 1, in which a simplified OCV-R model is adopted
to describe the battery’s dynamic as [32]:

SoCj(l) = SoCj(l − 1) + (Ipack(l)∆T + ibal
j (l)∆t)/Qj (6a)

Vj(l) = f(SoCj(l), I
pack(l)) = Voc(SoCj(l)) + Ipack(l)·Rj

=
∑5

n=0
{aj,n · [SoCj(l)]

n}+ Ipack(l)·Rj (6b)

where aj,n with n ∈ [0, 5] are the model parameters to
be identified for cell j, Rj is the ohmic resistance of cell
j, which should also be determined in advance, Vj means
the terminal voltage of battery j, and Voc(·) is a function
describing the OCV-SoC relationship of the batteries. The
model’s identification can be implemented with direct-least-
square algorithm, readers may refer to our previous work Ref
[33] for details.

Algorithm 1 ŜoCj = EKF
(
Vj , i

bal
j , Ipack

)
1: Initialise P0,Q,R,A = 1,D = R, ŜoCj(0)
2: for l = 1, 2, · · · do
3: ŜoC

−
j (l) = A · ŜoCj(l − 1)

+(Ipack(l) ·∆T + ibal
j (l) ·∆t)/Qj

4: Ck = ∂f(x,y)
∂x |

x=ŜoC
−
j (l)

5: P−
k = A ·Pk−1 ·AT +Q

6: Kk = P−
k ·CT

k · (Ck ·P−
k ·CT

k +R)−1

7: ŜoCj(l) = ŜoC
−
j (l)+K·[Vj(l)−f(ŜoC

−
j (l), I

pack(l))]
8: Pk = (I−Kk ·C) ·P−

k

9: end for

There are three reasons for selecting the OCV-R model in
our study. First, the computational burden is low. The EKF
algorithm with OCV-R model does not involve the calculation
of matrix inverse (P, Q, R, A, B, C, D, K, and I are all
scalar), making it more suitable for embedded applications.
Second, when accurate model parameters are not available,
complex models may not necessarily exhibits better accuracy.
Lastly, with fewer parameters, the robustness and reliability of
the OCV-R model is usually higher than that of the complex
ones when model mismatch exists.

C. Proposed BCR based solution

With the well-defined SoC, SoH, BCR, and their conven-
tional estimation schemes, this subsection details our designed
solution. It should be known that when the ideal SoC-based
balancing is applied, the SoC of each cell within a battery
pack remains the same at any time step, and the maximum
available capacity of this pack can be directly calculated by
averaging the cell capacities. Therefore, when the pack SoC
changes from z1 to z2 during the time k1 → k2, the capacity
change of the pack can be calculated by:

∆Qk1→k2

pack =

k2∑
l=k1

Ipack(l) ·∆T =

N∑
j=1

Qj ·
(z2 − z1)

N
(7)

For cell j, its capacity change from time k1 to k2 is caused
by the joint effort of pack current and balancing current

∆Qk1→k2
j = Qj · (z2 − z1)

=

k2∑
l=k1

Ipack(l) ·∆T +

k2∑
l=k1

ibal
j (l) ·∆t (8)
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The difference between ∆Qk1→k2

pack and ∆Qk1→k2
j is caused by

the additional active balancing:

∆Qk1→k2
j −∆Qk1→k2

pack =

k2∑
l=k1

ibal
j (l) ·∆t (9)

After substituting (7), (8), (9) and (2) into (4), the BCR of
cell j can be expressed by2:

BCRj =

∑k2

l=k1
ibal
j (l) ·∆t∑k2

l=k1
Ipack(l) ·∆T

=
∆Qk1→k2

j −∆Qk1→k2

pack

∆Qk1→k2

pack

=
N ·Qj · (z2 − z1)

(Q1 +Q2 + · · ·+QN ) · (z2 − z1)
·

1
Qnom

1
Qnom

− 1

= (N · SoHj)/(
∑N

i=1
SoHi)− 1 (10)

Therefore, the relationship between batteries’ SoH and BCR
can be established as:

BCR1 = (N · SoH1)/(
∑N

i=1 SoHi)− 1

BCR2 = (N · SoH2)/(
∑N

i=1 SoHi)− 1

...

BCRN = (N · SoHN )/(
∑N

i=1 SoHi)− 1

(11)

There are N sub-equations in (11), but the overall degree-
of-freedom here is only N − 1, implying that the SoH values
cannot be directly observed from the measured BCR values
[34]. However, this relationship can still be used for enhancing
the cell SOH estimation performance within a pack.

We here denote the BCR calculated from (4) by using the
nominal balancing current as B̃CR, and the SoH estimated
from the conventional approach as S̃oH. Then, with all BCR
information B̃CR1:N and the one accurate SoH estimation
S̃oHj∗ available, the SoH of the remaining N − 1 batteries
in this pack could be readily calculated as:

ŜoHj =
(

B̃CRj + 1
)
/
(

B̃CRj∗ + 1
)
· S̃oHj∗ (12)

where j ∈ [1, N ], j∗ ∈ [1, N ].
From (12), the estimation accuracy of single-cell SoH is

directly determined by the accuracy of the selected SoH
estimation, S̃oHj∗ . As it is difficult to ensure all S̃oH1:N are
accurate when a static battery model is applied for SoH estima-
tion, an additional method that can pick the best estimate(s)
is required. Noting that the SoH in this paper is calculated
from the differential capacity over differential SoC from time
k1 → k2, the quality of SoH estimation can be indirectly
evaluated by checking the voltage accuracy within this period.
For cell j, the residual of the voltage estimation is defined by:

Ek1→k2
j =

√∑k2

l=k1
||Vl − f (x̂l, Ij(l))||22
k2 − k1 + 1

(13)

In our framework, a typical EKF-based algorithm is utilised
for the SoC estimation. If the selected battery model accurately
matches the actual system, the residual will be an approxi-
mated zero-mean Gaussian white noise series. Therefore, the

2With ideal balancing, the BCR value is only associated with SoH of
the cells, and will not change with the time k.

adaptiveness factor ωj of the jth conventional SoH estimator
can be defined from the following Gaussian function [35]:

ωj =
1√
2πσ

exp

{
−
||Ek1→k2

j ||22
2σ2

}
(14)

After normalising the adaptiveness factor by:

ω̄j = ωj/

(∑N

i=1
ωi

)
(15)

a set of weighting factors suggesting the confidence of the
conventional SoH estimation can be obtained. In other words,
we believe that the accuracy of S̃oHj is likely to be higher
than S̃oHi if ω̄j > ω̄i.

With the above weighting factors, the estimation of cell SoH
within a pack can be derived by the following weighted fusion
strategy as:

ŜoH = [ŜoH1 ŜoH2 · · · ŜoHN ] = ω̄ · (ΛS̃oH · ΓB̃CR) (16)

where ω̄ = [ω̄1 ω̄2 · · · ω̄N ], ΛS̃oH = Diag([S̃oH1, S̃oH2,

· · · , S̃oHN ]), and

ΓB̃CR =



B̃CR1+1

B̃CR1+1

B̃CR2+1

B̃CR1+1
· · · B̃CRN+1

B̃CR1+1

B̃CR1+1

B̃CR2+1

B̃CR2+1

B̃CR2+1
· · · B̃CRN+1

B̃CR2+1

...
...

. . .
...

B̃CR1+1

B̃CRN+1

B̃CR2+1

B̃CRN+1
· · · B̃CRN+1

B̃CRN+1


.

In this way, the accuracy of ŜoH will be determined by the
best available S̃oH in this pack, while the large estimation
error of the specific batteries caused by the mismatch of the
static model can be alleviated.

It is worth noting that the above SoH estimation method
(16) is established upon perfect SoC-based balancing. How-
ever, such balancing with accurate SoC information could
be difficult to carry out. The main reasons are threefold:
first, the balancing current and the efficiency of the converter
are, in general cases, not measured. Only nominal values
suggested by the manufacturer are available. Second, without
reliable information on battery ageing, it is difficult to obtain
high-fidelity SoC estimations. Third, giving each battery a
parameter-adaptive model for SoC estimation, though the-
oretically appropriate, is still complex for real engineering
applications. In summary, this strategy is not suitable for low-
cost embedded microprocessors.

Given the reasons above, an alternative solution, voltage-
based balancing, is selected to achieve efficient balancing. By
defining V = {V1, ..., VN}, the balancing procedure can be
summarised in Algorithm 2.

Algorithm 2 VOLTAGEBAL(V)
1: for k = 1, 2, · · · do
2: δV (k) = max{V(k)} −min{V(k)}
3: if δV (k) ≥ 2.5mV then ▷ Threshold
4: Discharge the cell with the highest voltage
5: else Halt the balancing hardware
6: end if
7: end for
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If the assumption ’batteries with the same SoC share the
same terminal voltage’ holds, the voltage-based balancing
in Algorithm 2 is equivalent to the SoC-based balancing
[22]. Since the key assumption here may be violated, the
controlling accuracy of the voltage-based balancing would
generally be inferior to that of the SoC-based balancing.
However, it should be noted that the voltage-based balancing is
model-free. Therefore, when using the converged controlling
parameters (BCR in our case) to enhance the conventional
SoH assessment, the new estimator can inherit the advantages
of the model-free control, such as better reliability, enhanced
robustness, and good generalisation performance.

It should also be pointed out that when using voltage-based
balancing (especially for dynamic load profiles), ‘repeated
operations’ may happen. That is, in the entire battery operating
process, the hardware may discharge all cells and lead to some
unnecessary and repeated operations. When the balancing
hardware is ‘perfect’ with 100% energy efficiency, there will
be no additional energy loss. However, when the influence of
the energy loss cannot be neglected, it will affect our SoH
estimation strategy as the summation of the BCR of all cells
could be positive, rather than zero or close-to-zero. A quick
calibration strategy here is to use the zero-mean BCR, B̂CR,
to replace the B̃CR in ΓB̃CR of (16) as:

B̂CRj(k) = B̃CRj(k)−
1

N

N∑
i=1

B̃CRi(k) (17)

The resulted ΓB̂CR matrix could be defined as
[
ΓB̂CR(i, j)

]
=

B̂CRj+1

B̂CRi+1
accordingly, where ΓB̂CR(i, j) represents the element

in the ith row, jth column of the ΓB̂CR matrix.
Based upon the above clarifications, the overall flow of our

derived SoH estimation algorithm can be summarised in Fig. 3.

Battery pack EKF Algorithm

Static model

𝑉 = 𝑉𝑜𝑐(SoC) + 𝐼 ⋅𝑅

ൗ∆𝑄
∆SoC → Matrix

RMSE→Gaussian

Active Balancing

𝑉1:𝑁

𝐼1:𝑁
SoC1:𝑁
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Matrix Form
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𝐼1:𝑁 , 𝑉1:𝑁
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ഥ𝝎

Proposed SoH estimatorActive balancing and BCR calculation

Conventional SoC-based SoH estimator

𝚲෫𝐒𝐨𝐇

Fig. 3. The block diagram of the proposed method.

D. Benchmarks and algorithm configurations
For the purpose of comparing and highlighting the supe-

riority of the proposed method, two typical benchmarking
algorithms are introduced, together with the configurations of
the proposed algorithm and the referenced SoH.

1) Benchmark 1: Conventional SoH estimators with ac-
curate models: For the first benchmarking algorithm, the
conventional SoH estimators following (5) are applied. Here,
the model parameters in (6) are identified respectively for each

cell within a pack. These cells’ capacities are set to be the
actual value when estimating the SoC using Algorithm 1.
With all modelling parameters available, benchmark 1 is
expected to achieve the best performance under the selected
SoH estimation framework. In the following text, ’AM’ will
be used to represent the ’accurate model’ when necessary.

2) Benchmark 2: Conventional SoH estimators with static
model: In the second benchmarking algorithm, the conven-
tional SoH estimators following (5) are also applied. Here, it
is assumed that the accurate model parameters for all batteries
cannot be obtained, and a static model with fixed parameters
is applied. To be specific, two cases are tested in this paper,
where the model parameters in (6) are obtained from cell 1
and cell 4 in Table I, corresponding to the oldest and newest
cell, respectively. The capacity of the static models is set to
be the nominal one (7.5Ah here). In the remainder of this
paper, ’SM1’ will be used to denote the static model whose
parameters are obtained from cell 1, but the capacity is set to
the nominal value. Similarly, ’SM4’ will be used for cell 4.

3) Configurations of the proposed algorithm: In this case,
the same configurations as that of benchmark 2 are utilised,
and the BCR extracted from the balancing process will be used
to enhance the conventional SoH estimations following (16).

4) Referenced values: The actual capacities of the selected
18 batteries are offline measured under 25◦C with constant-
current-constant-voltage (CCCV) charging and CC discharg-
ing profiles under 0.2C rate, with the cut-off conditions
of 4.2V, 2.75V, and 0.05C. The capacities of the parallel-
connected battery groups described in Table I are obtained
by adding the capacities of related candidates together. The
referenced SoC is obtained from the Ah-counting method with
accurate sensors, while the referenced SoH is derived from (2).

IV. RESULTS AND DISCUSSIONS

This section presents the results and discussions. After ex-
amining the results of conventional SoC-based SoH estimation,
the performance of our proposed SoH estimator is evaluated
and compared with the benchmarking algorithms.

A. State-of-charge estimations

As the performance of the SoH estimators here highly relies
on the related SoC estimations, this subsection first analyses
the results of each cells’ SoC estimation within the battery
pack. For the EKF-based SoC estimation, P0 = 0.25, Q =
6.25·10−6 and R = 1 are selected. The initial SoC is assumed
to be known. Load profiles used for modelling and testing are
detailed in Fig. 4-(a), respectively.

In this study, the EKF algorithms with the same parameter
configurations but different models are used to estimate the
SoC of each single cell. The comparisons between giving each
cell an accurate model (AM, described in benchmark 1 of
Section III-D) and giving all cells the same parameter-fixed
model (SM1 and 4, described in benchmark 2 of Section III-D)
are shown in Fig. 5, with the estimating errors given in
Table II. As expected, the results corresponding to the accurate
models are better than those with static models. When accurate
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Fig. 4. Current and BCR. (a): Illustration of the current profiles for
modelling and testing; (b): The estimated zero-mean BCR values of the
six cells.

models are available, even though a low-computational OCV-
R model is applied, the RMSE of the SoC estimation can still
be limited within 3%. However, when it comes to cases with
static models, the error would inevitably increase. In both cases
(SM1 and SM4), the root-mean-square error (RMSE) of the
estimations exceed 3%. However, note that only a parameter-
fixed OCV-R model is available, and also the fact that the
difference between the referenced and actual capacity of some
batteries can exceed 10%, the estimation presented here is still
reasonably good.
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Fig. 5. Comparison of SoC estimation results. (a): results of cell 1; (b):
results of cell 2; (c): results of cell 3; (d): results of cell 4; (e): results of
cell 5; and (f): results of cell 6. Here, ‘REF’ is short for ‘referenced’.

B. State-of-health estimations
With each cell’s SoC estimation available, the conventional

and proposed SoH estimation solutions can be readily im-
plemented on each single cell. To be specific, when calcu-
lating the SoH with (5), we start with a common case that

TABLE II
ROOT-MEAN-SQUARE-ERRORS OF THE SOC ESTIMATIONS (IN %).

No. 1 2 3 4 5 6
EKFAM 2.71 2.37 2.78 1.99 1.87 2.78
EKFSM1 2.92 3.32 3.29 3.27 3.26 3.34
EKFSM4 3.01 3.36 3.33 3.29 3.27 3.36

SoCj(k1) = SoC(k1) = 80% and SoCj(k2) = SoC(k2) =
30%, where SoC stands for the average SoC of the cells in
this pack. When calculating the adaptiveness factor in (14),
σ =

√
Q = 0.0025 is selected.

In this section, the conventional SoC-based SoH estimator
with SoC obtained from AM (benchmark 1), the conventional
SoC-based SoH estimator with SoC obtained from SM1 and
SM4 (benchmark 2), and the proposed method in which the
SoC values are obtained from SM1 and SM4 are experi-
mentally compared. The related SoH estimation results are
shown in Fig. 6, while their errors are listed in Table III.
Some interesting observations could be made: First, as ex-
pected, if accurate models for SoC estimation are available,
the corresponding SoH estimation results could be highly
accurate. As described in Table III, the maximum absolute
error can be well-controlled within 1.5%. However, when we
do not have accurate models for SoC estimation and have to
use a static model for all batteries, the resulted SoH error
will significantly increase, exceeding 4%. The accuracy of
the proposed method is at least 70% better than that of the
conventional benchmark 2, and is competitive to that of the
state-of-the-art algorithms with complex models or algorithms
[4], [36]–[38]. It is interesting to see that even if the capacity
of the two static models are all set to be the rated one when
the model parameters are selected from the oldest cell (cell 1),
the largest SoH estimation error lies in the newest cell (cell
4), and vice versa. This result implies that the static model
can significantly affect the accuracy of SoH estimation. It
is also worth noting that none of the SoC error approaches
4% in our test, but the largest error of the SoC-based SoH
estimation could exceed this value. This result implies that
the SoC estimation error would be amplified to SoH since
the differential SoC is put in the denominator. Further, the
complexity of our method is almost the same as that of the
benchmarks. When tested with Matlab 2021a using a laptop
equipped with Core i7-8550 CPU and 8G RAM, the operating
time of the proposed method is 18.0704 seconds for all six
cells for the entire load profile lasting for 26950 seconds, while
the that of the benchmark 2 is 18.0679 seconds, the difference
is lower than 0.1%.

TABLE III
ERRORS OF THE SOH ESTIMATIONS (IN %).

No. 1 2 3 4 5 6
Benchmark 1 -1.03 -0.63 -1.01 1.17 1.13 0.70
Benchmark 2 SM1 -1.21 1.23 1.74 4.33 3.25 2.69
Benchmark 2 SM4 -4.03 -1.84 -1.31 1.15 0.07 0.48
Proposed SM1 -1.05 -0.44 0.26 0.85 -0.32 -0.31
Proposed SM4 -0.84 -0.22 0.48 1.08 -0.09 -0.08

When it comes to the proposed solution, it can be found
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Fig. 6. SoH estimation results. (a): SoH estimation results with SM1;
(b): SoH estimation results with SM4; (c): Absolute SoH estimation error
with SM1; (d): Absolute SoH estimation error with SM4; (e): Weighting
factors for fusion with SM1; (f): Weighting factors for fusion with SM4.
Here, ‘REF’ is short for ‘Referenced’, ‘BK 1’ is short for ‘benchmark 1’,
‘BK 2’ is short for ‘benchmark 2’, and ‘PPSD’ is short for ‘proposed’.

that the error of the SoH estimation can be well-controlled
within 1.5%, even if the error of the conventional approach
(benchmark 2) can achieve 4%. As described in (16), the
value of ŜoHj relies on the weighted combination of S̃oH1:N .
Here, when SM1 is used, the weighting factor of cell 1, as
illustrated in Fig. 6-(e), is the highest. When the ’SM4’ is
used in the proposed method, it is interesting to note that the
weighting factor corresponding to batteries 5 and 6 are also
high. From the posterior point of view, this result agrees that
the accuracy of the conventional SoH estimations for cell 5
and 6 are also high, with errors lower than 0.5%. For both two
cases, as illustrated in Fig. 6-(e) and (f), the weighting factors
corresponding to batteries with large SoH estimation error are
negligible, and their side effects are therefore minimised. This
result verifies the effectiveness of the proposed data fusion
strategy in (16).

In addition, it is interesting to note that in Fig. 4-(b), the
BCR values of the batteries can quickly converge to a stable
value. As detailed in Table IV, with the joint influence of
uncertain balancing efficiency, variable balancing current, and
sub-optimal voltage-based balancing control, the difference
between the zero-mean BCR (calculated from (17)) and the
referenced BCR can still be bounded within 1.5%. An accurate
yet reliable BCR is the basis of using active balancing to
calibrate the existing SoH estimations.

Noting that in the conventional SoH estimation framework

TABLE IV
BCR OF THE BATTERIES (IN %).

No. 1 2 3 4 5 6
Referenced BCR -7.46 -2.76 -2.51 5.68 4.71 2.34
BCR from (17) -6.51 -2.47 -2.96 4.59 4.87 2.49
Error -0.95 -0.30 0.45 1.09 -0.15 -0.14

described by (5), the values of SoC(k1) and SoC(k2) may
also change with the specific applications. To further verify
the generalisation of the proposed method, the influence of
the two SoC values is examined by recording the maximum
absolute SoH estimation error of the six cells. The results are
given in Fig. 7.
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Fig. 7. The distribution of the maximum SoH estimation errors when dif-
fernet values of SoCk1

and SoCk2
are applied, where SoCk1

> SoCk2
.

(a): Error distribution of benchmark 1 with AM. (b): Error distribution of
the proposed method with SM1; (c): Error distribution of benchmark 2
with SM1; (d): Error distribution of the proposed method with SM4; and
(e): Error distribution of benchmark 2 with SM4. Here, the area coloured
with lightyellow represents that the corresponding maximum SoH error
can be bounded by 2.5%, while 5.0% for lightgreen, and ≥ 5.0% for the
lightblue.

As illustrated in Fig. 7, the SoH estimation performance can
change with the algorithm’s specifications. Generally, when
∆SoC is smaller than 20%, it is unlikely to obtain accurate
SoH estimations. Further, by comparing the proposed method
under the SM1 and SM4 situations (Fig. 7-(b) and (d)), it
can be found that the selection of ’static model’ can also
influence the estimations. For instance, when the SoC(k2)
lies between 15%∼25%, the proposed method with SM1 is
obviously inferior to that with SM4. This result agrees with
the fact described in Fig. 5 that the SoC estimation accuracy
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of cell 1 with SM1 is lower than that of cell 4 with SM4
in this specific range, with considerable local fluctuations.
When comparing the proposed method with benchmark 2,
our approach can obtain better results in more testing cases,
implying that the proposed method is more robust than the
conventional SoH estimators with static models. Actually, our
performance is competitive to that of benchmark 1, where
all model parameters are known. Compared with benchmark
1 where six models are required to achieve precise SoH
estimations, the model reliance of the proposed method is
reduced by 83% due to the utilisation of only one parameter-
fixed model.

C. Further discussions
The proposed method is highly extensible. By checking the

deriving process of (16), it can be found that our method has
no restrictions on the model type. If some higher accuracy but
more complex models such as parameter-adaptive RC models
can be used for SoC estimation, the overall accuracy of the
proposed SoH method can be further improved. In addition, if
a ‘leader-follower’ strategy is applied for the battery pack SoC
estimation, so that the estimated SoC of a specific battery j∗

within the pack is more reliable than others. According to this
prior knowledge, the weighting factor ω̄ can be determined.
For example, by setting ω̄j=j∗ = 1 and ω̄j ̸=j∗ = 0, the overall
calculation can be further simplified to facilitate practical
applications in cost-sensitive scenarios such as electric bikes
or backup energy storage systems, where simple models and
low-cost processors are more preferred. Besides, our method
has no restrictions on the balancing hardware. The proposed
method can work for both active and passive balancing if the
cells’ balancing currents could be real-time obtained. Further,
with accurate SoH estimators, the lifetime prediction will also
be considered as an interesting future research direction.

V. CONCLUSION

Designing reliable pack-level battery ageing assessment
strategy is a key but challenging issue when considering
the joint requirements of computational burden, modelling
cost, estimation accuracy, and pack equalisation. This paper
presents a balancing current ratio (BCR)-based solution that
can effectively balance all these requirements when estimating
the SoHs of all series-connected cells within a pack. To be
specific, the concept of BCR is first introduced to describe
the ratio of the average balancing current to the average pack
current. Its relationship with SoH for the ideal balancing
process is then strictly derived, on the basis of which a
weighted model-fusion strategy is further developed to update
the conventional SoH estimations with the approximated BCR
extracted from voltage-based balancing processes. Hardware-
in-the-loop experiments are carried out to verify the proposed
method, and our SoH estimation error can be bounded by
1.5% when using only the parameter-fixed OCV-R model,
which is 70% better than that of the benchmark solution.
Compared with the conventional estimators, the reliance of the
proposed solution on the cell-level battery models is reduced
by at least 83% due to the integration of the model-free

balancing control. Given the reduction in modelling cost and
improvement in algorithm robustness, the proposed method
can meet the requirement of general pack applications and
provide good balance between the computational burden and
estimation accuracy, paving way to the advancement of the
cost-sensitive applications.
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