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Abstract:

Future distribution grids are expected to face an increasing penetration 
of electric vehicles (EVs) and heterogeneous distributed energy 
resources (DERs). This demands a distributed energy management (EM) 
to manage power generation and delivery of energy sources to maintain 
power quality under the impact of EV charging, to save operating costs, 
and to enhance resiliency. However, the global optimality of the 
distributed EM's optimization problem is still an issue in existing work 
because of the non-convex nature of the optimization problem. In this 
paper, a distributed EM strategy for grid-connected distribution networks 
is proposed. In particular, the EM strategy is composed of two steps. In 
the first step, some conditions of the EM optimization task are relaxed to 
apply an algorithm converging to the global optimality. The results of the 
first step are used to reconfigure constraints of the full optimization 
problem in Step 2. The proposed scheme is validated by implementing 
the real-time controller-hardware-in-the-loop (CHIL) experimentation on 
the IEEE 33 bus system. To study the impact of EV charging, EV data is 
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collected from the market and the literature to generate realistic EV load 
profiles to demonstrate the effectiveness of the proposed strategy on 
saving operating costs and maintaining power quality. 
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Abstract—Future distribution grids are expected to face an in-
creasing penetration of electric vehicles (EVs) and heterogeneous
distributed energy resources (DERs). This demands a distributed
energy management (EM) to manage power generation and
delivery of energy sources to maintain power quality under the
impact of EV charging, to save operating costs, and to enhance
resiliency. However, the global optimality of the distributed EM’s
optimization problem is still an issue in existing work because
of the non-convex nature of the optimization problem. In this
paper, a distributed EM strategy for grid-connected distribution
networks is proposed. In particular, the EM strategy is composed
of two steps. In the first step, some conditions of the EM
optimization task are relaxed to apply an algorithm converging
to the global optimality. The results of the first step are used to
reconfigure constraints of the full optimization problem in Step 2.
The proposed scheme is validated by implementing the real-time
controller-hardware-in-the-loop (CHIL) experimentation on the
IEEE 33 bus system. To study the impact of EV charging, EV
data is collected from the market and the literature to generate
realistic EV load profiles to demonstrate the effectiveness of the
proposed strategy on saving operating costs and maintaining
power quality.

Index Terms—Electric vehicles, distributed energy manage-
ment, distribution grid, controller-hardware-in-the-loop, real-
time simulation.

NOMENCLATURE

n,m Bus index
r, s Region index
N,R Number of buses and regions, respectively.
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N ,R Set of all buses and set of all regions in the
network, respectively.

Rr Set of buses in region r.
Nr Set of neighboring regions of region r.
MG,MT,PV Main grid, microturbine, and photovoltaic

system, respectively.
EV,L Electric vehicle and non-EV load, respec-

tively.
MT Set of buses which contain a microturbine.
a, a Upper and lower limits of a, respectively.
Vn, V ren , V imn Complex bus voltage at bus n, its real part,

and its imaginary part, respectively.
V rer,n, V imr,n Real part and imaginary part of bus voltage

at bus n optimized at region r, respectively.
PAn , QAn Active and reactive power generated, sup-

plied, or consumed by A at bus n, respec-
tively.

PDr Dispatchable active power of region r.
PSn Sum of non-dispatchable active power and

active load at bus n.

I. INTRODUCTION

EVs are widely considered as a replacement for internal
combustion engine vehicles because they are environ-

mentally friendly and beneficial to sustainable energy goals.
However, the increasing of EV penetration and EV charging
capacities negatively impact distribution grids. For example,
it is shown in [1] that a distribution grid fails to maintain
required voltages when the EV penetration level reaches 30%.
Besides, it is expected that distribution grids will be popu-
lated with heterogeneous DERs [2]. Therefore, a distributed
EM coordinating dispersed energy sources to gain economic
objectives while maintaining power quality under the impact
of EV penetration is valuable.

A. Literature Review

EM is one of the constituents of future distribution grids’
control and management system [3]. The primary function of
EM is to optimally allocate power generation and delivery
to sources of energy in a well-defined sense while adhering
to system constraints [4–10]. Distributed EM is considered
superior to the centralized counterpart in terms of resiliency

1
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and scalability. Yet, the global optimality of the distributed
EM’s optimization problem is still an issue.

The alternating direction method of multipliers (ADMM)
[11] is a popular method to solve the EM’s optimization
problem [10, 12–14]. The popularity of the ADMM is at-
tributed to its efficiency and straightforwardness as it is applied
to various applications with three clear updating steps. It is
worth noting that the theoretical guarantee of convergence
of the ADMM is confined to convex optimization problems.
However, the EM’s optimization problem for AC networks
is known to be non-convex that the ADMM fails to deliver
the convergence guarantee [10]. Recently, the authors in
[15] apply the augmented Lagrangian alternating direction
inexact Newton method to the EM’s optimization problem.
The method overcomes the convergence issue for non-convex
problems, yet global optimality is still not ensured. In addition,
each iteration of the method generally has higher complexity
and computation than the ADMM. There are papers that do
not consider the bus voltage constraints and power limits on
transmission lines in the EM’s optimization problem [16].
However, it is likely that these constraints are violated with
the adoption of DERs and EVs.

Realistic representation of EV charging demand is needed
to accurately examine the effectiveness of innovative EM
approaches. The studies in the literature are mainly based
on either direct use of charging profile data collected from
field demonstrations [17] or deterministic charging scenarios
built on general assumptions [18]. However, these conven-
tional methodologies have some drawbacks. Charging data
from a field pilot usually has limited representation (due
to a low number of participants, short testing period, and
cars from a few brands and constrained availability to other
researchers. Furthermore, assumptions about using the same
charging demand and energy storage capabilities, considering
starting and ending times from a limited time period of the
day, straightforward determination of the number of charging
sessions, initial and final State of Charge (SoC) values, dis-
tinguished consideration of slow and fast charging profiles are
considerably far from observations in the field [19].

For a better representation of the EV charging demand of
a large group of customers, a novel and easily replicable
methodology is developed and used in this paper. It is based
on the combined use of characteristics of a wide range of cars
available on a country level, charging starting and ending time
probabilities, SoC value probabilities, and driving statistics.
A unique feature of the methodology is consecutive relations
built between slow and fast charging sessions.

B. Statement of Contributions

In this paper, a two-step distributed EM scheme is proposed.
The first step is to search for the global optimum by relaxing
some constraints in the EM’s optimization problem to reduce
it to a convex one. In doing so, an algorithm that secures
globally optimal solutions can be applied. Its optimized results
are used to reconfigure dispatchable active and reactive power
constraints in the second step in which the full problem is
considered. Reconfiguring the active power constraints makes

an ADMM-based algorithm in the second step seeks solutions
in a narrowed region around the global optimality. Besides, the
reconfiguration of the reactive constraints ensures power factor
(PF) requirements are satisfied. EV charging load profiles, gen-
erated through a novel approach for a realistic representation
of daily cases in EV integrated distribution grids, are used
to test the proposed strategy. Slow and fast charging sessions
of a large number and a wide range of cars available in the
US market are considered together in the explored scenarios.
Based on a thorough literature review, there is no existing
work implementing distributed EM via a CHIL setup. This
work is one step further as a CHIL experiment is constructed
and real-time experimental evidence is shown.

C. Paper Organization

The remainder of this paper is organized as follows. In Sec-
tion II, the EM problem is derived and formulated. For ease of
understanding, common notations are presented in the section.
Section III is dedicated to present the two-step distributed EM
strategy. The CHIL demonstration of the proposed scheme is
discussed in Section IV. Section V concludes the paper and
discusses future directions.

II. PROBLEM FORMULATION

Consider a grid-connected radial distribution network con-
sisting of heterogeneous DERs dispersed over the network:
microturbine(s) (MT), wind turbine(s) (WT), and photovoltaic
(PV) system(s). It is desired that the grid 1) operates at
economically optimal points, 2) maintains voltage satisfaction
for all the buses, and 3) adheres to power generation and
delivery capacity limits while meeting the power balance
constraint.

A. System Modeling and Notations

Let an undirected graph (N , E) represent the grid, where
N = {1, ..., N} is the set of nodes and E = {(n,m)} ⊆
N × N is the set of lines. The terms bus and node are used
interchangeably in this paper. The bus connecting directly with
the substation is indexed 1. LetMT ⊂ N be the set of nodes
that have MTs installed. The system is divided into R regions;
each has a dispatchable source of energy, either a substation
or an MT. Assume that each bus in a region does not have
more than one connection with buses outside the region. Let
R = {1, ..., R} and Rr be the set of nodes in region r. Denote
Nr as the set of neighboring regions of region r.

Let Tr(.), (.)∗, (.)T , and (.)H be the trace operator, complex
conjugate, transposition, and complex conjugate transposition
operators, respectively. Let [aij ]l×k be a l×k matrix. Through-
out this paper, there are some common notations. P and Q
accordingly indicate active and reactive power. Subscripts m
and n are the bus index and subscripts r and s are the region
index. Moreover, superscripts re, im, MG, MT , EV , PV ,
and L accordingly indicate the real part, the imaginary part,
the main grid, MT, EV, PV, and non-EV load. For example,
with these notations, PMT

n and QMT
n are active and reactive

power generated from an MT at bus n, respectively. Overline

2
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and underline indicate lower and upper limits of a quantity,
respectively. Let Vn = V ren + jV imn be the bus voltage at bus
n. The sign of active power Pn (reactive power Qn) at node n
is defined as follows: if Pn > 0 (Qn > 0), then node n injects
active (reactive) power to the network, otherwise it absorbs
active (reactive) power.

B. Cost Functions

The active power of the dispatchable sources can be adjusted
to gain economic objectives formed in the following function:

f1(PMG
1 ) +

∑
n∈MT

fn(PMT
n ) (1)

The first term in (1) is the cost of buying power from the
main grid which is a multiplication of the market price cMG

($/kWh) and the amount of active power supplied from the
main grid. The second term is the cost of power generated by
the MTs which has the following form

fn(PMT
n ) =cF

(
αn(PMT

n )2 + βnP
MT
n + γn

)
, αn > 0 (2)

where cF ($/gallon) is the cost of fuel.

C. EV Charging

A probabilistic charging profile generation methodology that
combines characteristics and statistics from a range of data
resources is employed. The profile generator builds relations
between slow and fast charging sessions to represent the EV
charging profile of a large number of cars, including residential
and public charging cases.

In the first stage, characteristics of the 23 cars that are
available in the US market over the last decade are considered
based on the information available in [20] and [21]. Slow
and fast charging demand and time, energy storage capability
and energy consumption per kilometer are imported into the
charging profile generation methodology as the main car
characteristics. The slow charging demand of the considered
cars ranges between 3.6 to 16.5 kW with 3 to 14 hours full
charging time. The fast charging demand of the considered
EVs ranges between 22 to 110 kW with 20 to 80 minutes
charging time up to around 90% SoC level. Depending on the
number of customers defined in a scenario, a random EV from
the determined pool of cars is assigned to each customer.

In the next stage, probabilities for slow charging sessions are
defined based on [19]. The detailed probabilities are available
in the cited publication. These consist of the overall share of
customers who charge their car at least once a day, proba-
bilities of charge starting time (in 15-minute ranges), initial
and final SoC values (in 8.33% ranges -due to SoC recording
resolution used in the considered field pilot-, depending on
the period of starting time, called as morning peak between
06:00 AM and 09:00 AM, evening peak from 03:00 PM to
09:00 PM and the rest of the day). After a range is selected
for a customer’s charging session, a random number inside
that range is chosen as the exact starting time. A similar
approach is followed to assign initial and final SoC values
for the considered sessions. Using the assigned initial and

final SoC values and charging times from car characteristics,
the charging duration for each car is calculated. Taking into
account the assigned charge starting times and the calculated
charging durations, charge ending times are derived. Addi-
tional idle waiting times/parking times are assigned based on
the statistics provided in [22]. A charging model that is based
on the constant current charging up to around 90% SoC, and
then the linear limit of power for most of the vehicles provided
in [23] is used as part of the profile generation tool. The details
of this model can be found in the reference. A transitional
period follows the slow charging session, considering only the
cars that are charged more than once a day. During this period,
cars are driven, spend the energy stored in their batteries, and
park based on the comprehensive statistics provided in [24] on
distance traveled and time spent between charging sessions.

The fourth stage is fast charging in public charging stations.
Considering the departure times from the previous charging
session and adding on the time spent during the transitional
period, fast charge starting times are calculated. In a similar
manner, considering the final SoC values from the previous
charging sessions and the energy spent/SoC reduced (calcu-
lated according to the distance traveled and energy consumed
per kilometer) between two charging sessions, the initial SoC
values for the fast charging session are derived. Since full fast
charging times (ranging from 20 to 80 minutes, with around
40 minutes on average) are below typical charging durations,
all the cars are assumed to be fully charged up to 90% SoC
in fast charging sessions. Considering the derived fast charge
starting times, initial SoC values, and minimum charging up to
90% SoC, fast charge ending times are calculated. As in stage
2, an additional time for parking or idle waiting is assigned,
and departure times are calculated.

Fig. 1. EV load profile generation methodology.

If a charging session ends on the next day, all the hours
with charging demand in the next day are also considered.
This is required to make clear comparisons between the cases
without and with distributed EM. Random assignment of cars
to each customer and random selection of the exact charge

3
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starting times and exact initial SoC values for the first slow
charging session allow generation of different individual and
aggregated daily charging profiles at each run.

D. Constraints

An MT unit has lower and upper generation capacity limits
on both active and reactive power as

PMT
n ≤ PMT

n = (Pn − PLn − PEVn ) ≤ PMT
n (3a)

QMT
n ≤ QMT

n = (Qn −QLn −QEVn ) ≤ QMT
n (3b)

Similarly, the main grid is imposed these constraints as

PMG
1 ≤ PMG

1 = (P1 − PL1 − PEV1 ) ≤ PMG
1 (4a)

QMG
1 ≤ QMG

1 = (Q1 −QL1 −QEV1 ) ≤ QMG
1 (4b)

For a node that has a PV installed, the sum of all injections
and withdrawals at the bus equal 0; that is,

Pn − (PPVn + PLn + PEVn ) = 0 (5)

It is assumed that PV systems actively participate in regulating
bus voltages by adjusting reactive power, which is confined in
following range:

QPVn ≤ QPVn = (Qn −QLn −QEVn ) ≤ QPVn (6)

WTs are similar to PVs as

Pn − (PWT
n + PLn + PEVn ) = 0 (7a)

QWT
n ≤ QWT

n = (Qn −QLn −QEVn ) ≤ QWT
n . (7b)

Let bus 1 be the slack bus. The voltage magnitude at bus
n ∈ N \ {1} are desired to be confined in a bounded region
defined as

|Vn| ≤ |Vn| ≤ |Vn| (8)

Typically, |Vn| = 0.95 per units (pu) and |Vn| = 1.05 pu
are used. If phase angles of voltages at the buses are confined,
power transmitted on lines are bounded. Therefore, a constraint
is set on the voltage phase angle at bus n ∈ N \ {1} as

−θn ≤ θn = arctan(
V imn
V ren

) ≤ θn (9)

E. EM’s Optimization Task

Given the costs and constraints presented in the previous
subsections, the optimization task is stated as

min
(
f1(PMG

1 ) +
∑

n∈MT
fn(PMT

n )
)

(10a)

s.t. (3), (4), (5), (6), (7), (8), (9). (10b)

The problem (10) can be transformed into an equivalent one
which has voltages as the only variables [25, 26]. Denote
the bus voltage vector by V = [V1, ..., VN ]T and the bus
admittance matrix by Y = [Ylk]N×N . Let {en}n∈N form
standard basis vectors in Rn, in which en := [0, ..., 1, ..., 0]T

is defined as the n−element of en is 1 and the others are 0.
The following transformation can be obtained [25, 26]:

Yn := ene
T
nY (11a)

|Vn|2 = Tr(VVH) (11b)

Pn :=
1

2

(
Yn + (Yn)H

)
(11c)

Pn = Tr(PnVVH) (11d)

Qn :=
j

2

(
Yn − (Yn)H

)
(11e)

Qn = Tr(QnVVH) (11f)

Pn and Qn can be expressed as functions of V, so do the
cost function and the constraints in (10). It is well known that
the optimization problem in (10) is non-convex [10]. In the
following, a two-step distributed strategy is proposed to solve
the non-convex optimization problem.

III. DISTRIBUTED EM STRATEGY

In this section, a distributed strategy, which consists of
two steps, is introduced and discussed. In the first step, the
optimization task is relaxed by neglecting the voltage and
reactive power constraints; i.e., (10) is relaxed to

min f(PD) =
(
f1(PMG

1 ) +
∑

n∈MT
fn(PMT

n )
)

(12a)

s.t. (3a), (4a), (5), (7a). (12b)

where PD = [..., PDr , ...]
T , r ∈ R, is a vector consisting of

the dispatchable active power of all the regions, and PDr is
PMG

1 if region r has the substation and PMT
n if region r has

an MT at bus n.
The goal of the first step is to find the optimal allocation

of active power for the dispatchable sources. Its optimized
outcomes are then fed into the second step in which constraints
(3) and (4) are reconfigured based on the inputs. The active
power inequality constraints are reconfigured such that the box
constraints are narrowed to the region around the solutions of
(12), which are denoted as PMG,∗ and PMT,∗

n , as

max(PMT,∗
n −∆PMT

n , PMT
n ) ≤ PMT

n ≤

min(PMT,∗
n + ∆PMT

1 n, PMT
n ) (13a)

max(PMG,∗ −∆PMG
1 , PMG) ≤ PMG

1 ≤
min(PMG,∗

1 + ∆PMG
1 , PMG

1 ) (13b)

where ∆PMT
n = σ|PMT,∗

n | and ∆PMG
1 = σ|PMG,∗

1 |, where
0 < σ < 1, and σ = 0.1 is selected in this paper.
For the reactive power inequality constraints at buses where
MTs are installed, a minimum PF of 0.95 with active power
referred to solutions of (12) are allowed. In the second step,
the optimization task (10) is considered. In [16], only Step
1 is considered. However, with the adoptions of EVs and
DERs, the voltage constraints and power transmission limits
on transmission lines are likely violated. There are works
that consider only Step 2 and utilize the ADMM to solve
the EM’s optimization problem [12–14]. But (10) is a non-
convex optimization problem, and the convergence and global
optimality are not ensured.
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A. Step 1

Denote the sum of non-dispatchable active power and loads
at bus n by PSn = PPVn + PWT

n + PLn + PEVn , ∀n ∈ N . The
augmented Lagrangian of (12) is

L1 = f(PD) + µ
(∑
r∈R

PDr +
∑
n∈N

PSn

)
+
∑
r∈R

λmaxr (PDr − PDr ) +
∑
r∈R

λminr (−PDr + PDr )

+
ρ1

2
‖
∑
r∈R

PDr +
∑
n∈N

PSn ‖2

(14)

where µ, λmaxr , and λminr are Lagrange multipliers, and
ρ1 > 0. In [27] and [28], a distributed algorithm based on
the singular perturbation method is proposed aiming to solve a
general optimization problem. The underlying idea of the algo-
rithm is constructing a two-time-scale dynamical system which
has an equilibrium point satisfying the Karush–Kuhn–Tucker
conditions: the first set of equations is called the fast dynamic
layer and the second set is called the slow dynamic layer. The
fast dynamic layer can be derived as

ξ̇hr =− ξhr −
∑
s∈Nr

(ξhr − ξhs )−
∑
s∈Nr

(ζhr − ζhs )

+
(
PDr +

∑
n∈Rr

PSn

)
(15a)

ζ̇hr =
∑
s∈Nr

(ξhr − ξhs ) (15b)

ξ̇µr =− ξµr −
∑
s∈Nr

(ξµr − ξµs )−
∑
s∈Nr

(ζµr − ζµs ) + µr, (15c)

ζ̇µr =
∑
s∈Nr

(ξµr − ξµs ), (15d)

It is noted that (15a) is to estimate the average of (
∑
r∈R P

D
r +∑

n∈N P
S
n ), i.e., ξhr −→ 1

R (
∑
r∈R P

D
r +

∑
n∈N P

S
n ). The

following is the slow dynamic layer

ẋr = −εkxr
( ∂fr
∂xr

(xr) + ξµr + λmaxr − λminr + ρ1ξ
h
r

)
(16a)

µ̇r = εkµr

(
ξhr −

∑
s∈Nr

(µr − µs)
)

(16b)

λ̇maxr = εkλ
max

r (xr − PDr ) (16c)

λ̇minr = εkλ
min

r (−xr + PDr ) (16d)

While ε� 1 is a real positive number which aims to have (16)
having a slower dynamics than that of (15), kxr , k

µ
r , kλ

max

r , and
kλ

min

r ∈ R>0 are to cope with differences in the dynamics of
xr, µr, λmaxr , and λminr .

B. Step 2

The ADMM algorithm [11] is briefly presented before de-
riving its application to the considered optimization problem.
Consider the following optimization problem:

min
(
f(x) + g(z)

)
(17a)

s.t. Ax + Bz = c and x ∈ Cx, z ∈ Cz (17b)

where x and z are vectors of variables, c is a constant vector,
Cx and Cz are their constraint sets, and A and C are matrices.
Suppose the vectors and matrices have appropriate dimensions.
The associated augmented Lagrangian is

L2(x,y, z) =f(x) + g(z) + yT (Ax + Bz− c)

+
ρ2

2
‖ Ax + Bz− c ‖22

(18)

where ρ2 > 0. The ADMM has three repetitively updating
steps as

xk+1 = argmin
x∈Cx

L2(x, zk,yk) (19a)

zk+1 = argmin
z∈Cz

L2(xk+1, z,yk) (19b)

yk+1 = yk + ρ2(Axk+1 + Bzk+1 − c) (19c)

The ADMM’s configuration is now specified to fit the
optimization problem. Applying the ADMM for consensus
optimization problem [11], let g(z) = 0 and c = 0. Define a
voltage vector Vr = [..., V rer,n, ..., V

re
r,m, ..., V

im
r,n , ..., V

im
r,m, ...]

T ,
where bus n is in region r and bus m is not region r but it has
a neighbor in region r. Let x = [VT

1 , ...,V
T
R]T and decompose

f(x) as
f(x) ≡

∑
n∈MT ∪{1},n∈Rr

fn(Vr) (20)

Define the matrix A = [aij ]4l×k such that it is full row rank
and l is the number of edges connecting two nodes of two
different regions and k is the dimension of x. Additionally,
aij = |κ| if j−th element of x, which is either V rer,n or V imr,n
with bus n has a neighbor not in region r. Otherwise, aij = 0.
The matrix B is defined as B = −I4l×4l, where I4l×4l is the
4l × 4l identity matrix. In the second updating step, zk+1 is
the solution of the following equation

∆L2(xk+1,yk, z)

∆z
|z∈Cz = 0 (21)

which can be expressed as

zk+1|z∈Cz = P(
1

ρ2
yk + Axk+1) (22)

If y has a zero initialization and z0 = P(Ax0), then zk+1 =
P(Axk+1), where P is the orthogonal projection operator on
Cz . The orthogonal projection matrix P = [pij ]4l×4l is selected
such that pii = 1

2 , pij = − 1
2 if both the i−th and j−th

elements of Axk+1 are either the real part or the imaginary
part of a bus voltage optimized in two regions, otherwise pij =
0. With the specified configuration, voltages of a bus (both the
real part and imaginary) optimized in two different controllers
reach a consensus as (Axk − zk) −→ 0 when k −→∞.

IV. CHIL IMPLEMENTATION

A. CHIL Experimental Setup

1) CHIL Setup: The IEEE 33 bus system in [29] with
additions of DERs is used to validate the proposed scheme.
The system is geographically divided into 6 regions, with each
corresponding to an EM agent. These DERs’ locations, param-
eters, and block diagrams are shown in Fig. 2a). Particularly,
Rowen’s model is used to simulate MTs’ engines [30], and the
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Fig. 2. CHIL experimentation: a) IEEE bus system simulation model b) CHIL experimental setup.

control structure in [31] is applied to integrate the MTs with
the grid through power electronics converters. Furthermore,
the type 4 wind turbine model in [32] is used, and the control
model of the PVs is taken from [33]. Additionally, PV panels
are modeled by the double-diode model with parameters
extracted from the Siemens SM50 solar panel’s specifications.
Because the main focus of this paper is EM, average models
for power electronics converters of the MTs, and PVs, and
WT are sufficient to demonstrate the EM strategy.

Fig. 2b) illustrates the CHIL experimental setup. The system
is simulated by MATLAB/Simulink and deployed into a dig-
ital real-time simulator (DRTS) OPAL-RT OP4510. The EM
strategy is realized by LabVIEW and deployed into NI sbRIO
9627 controllers. A human-machine interface (HMI) computer

is also added to the testbed for sending starting and stopping
signals and collecting experimental data from the controllers.
Experimental data from the model running in the DRTS is
collected by OPAL-RT’s OpWriteFile modules. A 1-Gbps
ethernet network connecting these devices is established by
a TP-LINK T1600G-52TS switch. The DRTS communicates
with the controllers by the User Datagram Protocol (UDP),
while the communication protocol among the controllers is
the RTI Data Distribution Service (DDS). Moreover, the HMI
exchanges data with the controllers by shared variables in
LabVIEW. EM’s results are passed to the model running in the
DRTS as setpoints. The MTs have a duty of controlling active
and reactive power injected into the network and bus voltages
at which the MTs are installed, while the WT and the PVs are
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controlled to reach the commanded reactive power from EMs.
Fig. 3a) illustrates the EM program with a detail of the use

of LabVIEW’s Timed Loop and While Loop blocks. First,
the program starts in a Timed Loop to initialize variables
and buffers and to listen to starting signals from the HMI.
After receiving the starting signal, there are two main blocks
running in parallel: Optimization Block and Communication
Block. The former is to implement the two-step optimization
process while the latter exchanges data among the controllers
and the simulator with the controllers. NI sbRIO 9627 boards
are powered by a dual-core ARM Cortex-A9 microprocessor
which allows the parallel running of the two blocks. Every 15
minutes, information of non-EV load, EV load, and weather
data are fed into EMs; each EM can only receive this infor-
mation of buses which it manages. Although these values can
be generated from forecasting engines, they are stored in the
DRTS and are sent to the controllers by the UDP protocol
as this work primarily studies EM. Each controller uses this
information and local system data of the region to form a
LabVIEW cluster called sysInfo. Local system data includes
the local admittance matrix and the WT and PVs’ system
parameters to estimate their power generation outputs given
weather data. The information of cost functions and constraints
is also in sysInfo.

A synchronous updating mechanism is designed in this
work. In particular, the iteration index k is added at the end
of the exchanging data frame. A circular buffer reads the data
coming from neighboring EMs, and the buffer is updated by
the first-in-first-out rule if it discerns a new iteration index;
otherwise, it ignores the receiving data. Every iteration, the
controller reads the circular buffer and matches the iteration
index in order to have the same k for all involved EMs. This
applies to both Step 1 and Step 2 as both steps use only the
same circular buffer and RTI DDS’s writer and reader block.

As an illustration of exchanging data between two EMs, Fig.
3b) shows the exchange of data between EM1 and EM5. Buses
that are managed in Region 1 are 1, 2, 3, and 4, and buses
that are managed in Region 5 are 23, 24, and 25. These buses
are illustrated by circles. There is a connection between nodes
3 and 23. Although Region 1 does not contain bus 23, EM1
has V re1,23 and V im1,23 as variables in the optimization process.
Note that the first subscript indicates the region index, and
the second indicates the bus index. Bus 23 in Region 1 is
illustrated by a pentagon. Region 5 contains bus 23 and its bus
voltage can be represented by [V re5,23, V

im
5,23]. The optimization

process aims to reach a consensus between [V re1,23, V
im
1,23] and

[V re5,23, V
im
5,23]. This applies to the other buses which have

connections between two regions.
After Step 1, active and reactive power constraints are

reconfigured by modifying corresponding fields in sysInfo,
and then fed into Step 2. To solve (19a), the LabVIEW’s
Constrained Nonlinear Optimization module, which utilizes
the sequential quadratic programming algorithm, is used. To
obtain the information of the optimization problem, this mod-
ule accesses sysInfo via a Formula Node with C++ syntax
structure code deployed inside. Although it is observed that
each iteration of Step 1 has a computational time fewer than
60 ms by implementing on the NI sbRIO 9627 controllers,

Fig. 3. Distributed EM: a) Diagram of EM’s LabVIEW program b) Illustration
of exchanging data between EM1 and EM5.
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the time for each iteration of Step 1 is set to 60 ms, which is
higher than 40 ms of the Comm. w. EMs block in Fig. 3a) to
ensure the communication time is less than the computational
time of Step 1. Step 2 is more computationally expensive than
Step 1 because of the nonlinear constraint solver; therefore, a
duration of 3 seconds is set for each iteration. The maximum
number of iterations is the stopping condition for both Step 1
and Step 2. The stopping conditions of the Comm w/ DRTS
block and the Comm w/ EMs block are designed such that
either Step 1 or Step 2 runs in parallel with the Comm w/
EMs block.
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Fig. 4. Simulated operational data used in the experiment: a) load profile and
renewable generation, b) wind speed, c) solar irradiance, and d) temperature.

2) Operational Data: The original load is replaced by the
sum of EV load profiles generated from the method presented
in Subsection II-C and non-EV load profiles generated from
the CREST model [34]. 100 non-EV load profiles are gen-
erated from the model, and they are averaged. It is observed
that the peak value of the 15-min averaged load per individual
profile is around 1 kW. Originally, the IEEE 33 bus system
has a fixed 3.715 MW of load in total. Assuming the original
load as the peak total demand and 3715 households in the
residential area, load profiles are generated for each house-
hold. The load profiles are randomly distributed to the buses
such that the number of load profiles is proportional to the
original load values at the buses. The CREST model does not
consider reactive power, so it is assumed PF follows uniform
distribution in the range [0.95,0.99], which is close to that of
[35]. For EV reactive load, a PF of 0.99 is assumed which

is specified in Texas Instrument’s design recommendation
[36]. With the assumption of 3715 households, three levels
of EV penetration are considered: 500 EVs, 1000 EVs, and
1500 EVs. The number of EVs assigned to each bus is also
proportional to the value of the original load. The fast-charging
profile generation feature of the EV profile generation tool
for the public charging stations outside the analysis area is
taken into account to better represent the car arrival times
and starting SoC levels of the second charging sessions for
the residential chargers in the considered network. While the
CREST model can be used to generate weather data for PVs,
wind speed generation is not included in the model; therefore,
it is generated by the Weibull distribution. Fig. 4 shows data
generated by using the methodology described above for the
day of January 15. Furthermore, the market price of electricity
is taken from [37], and the fuel price is cF = 5.807 ($/gallon)
which is taken from [38] at the time of the experiment. The
values of αn, βn, and γn of MTs at Buses 8, 24, and 30
are 0.12, 3.507, and 149.977, respectively. Those of MTs at
Buses 14 and 20 are 0.097, 4.269, and 92.293, respectively.
Additionally, the the market price of electricity is taken from
[37].

B. CHIL Experimental Results and Discussion

1 5 12 19 23 26 33
Bus Number

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

p
u

500 EVs

1000 EVs

1500 EVs

Fig. 5. Voltage profile of Scenario 1.

1) Scenario 1: The system without distributed EM is set
up. MTs are simulated in the grid following mode that they
generate active power to serve the load locally in their regions
until they reach limits. The reactive power of the three types of
DERs is set to 0. With this setup, the impact of EV charging
under the three levels of EV penetration at the peak load,
which is at 19:30, is studied. Fig. 5 shows bus voltages of
the three testing cases. As can be seen, while voltages for the
cases of 500 and 1000 EVs are in the range [0.95,1.05] pu,
buses 16, 17, and 18 have voltages less than 0.95 pu when the
system populates 1500 EVs.

2) Scenario 2: This scenario follows the setup described in
IV-A1 with 1500 EVs populated, and EMs are deployed. Three
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Fig. 6. Experimental results of Scenario 2: a) power generation allocation b) cost of generation c) bus voltages d) ε.

cases are tested: at 00:00 when the load is the lowest, at 12:45
when the renewable generation is max, and at 19:30 when the
total load is at peak. The simulation results are shown in Fig.
6. Particularly, Fig. 6a) shows the amount of power generated
or delivered at the 6 dispatchable power suppliers. For the case
of 19:30, the MTs generate at full capacity. This is because
the grid’s electricity price is more expensive than the price if
power generated by the MTs; therefore, EMs allocates power
generation to the 5 MTs to meet the power load balance. The
total cost of generation is shown in Fig. 6b) in which the case
that generation allocated to the 6 energy sources proportionally
to their maximum capacities is also computed; this case is
without EM. It can be seen that deploying EM with both Step
1 and Step 2 is economically beneficial in the 12:00 AM and
12:45 PM cases. For the case of applying only Step 2, only
local optimality is found. In Fig. 6c), voltages are in the range
of [0.95, 1.05] pu. Compared to the case without EM, bus
voltages are maintained under the impact of 1500 EVs. Define
the following quantity

ε = max
n∈Ω
|Vr,n − Vs,n| (23)

where Ω is the set of buses which have voltage optimized in
both region r and region s. ε is shown in Fig. 6d) and it can
be seen that voltages converge after 60 iterations for all three
cases.

V. CONCLUSION AND FUTURE WORK

In this paper, a distributed EM to efficiently manage dis-
tribution grids with the penetration of heterogeneous DERs
and EV is presented. The strategy includes two steps that

the first step enhances the global optimality searching for the
second step. In addition, information after running Step 1 is
used to reconfigure constraints to ensure that the PF limits
of generators and the substation are respected. A realistic EV
charging profile generation methodology is also presented in
this work. The IEEE 33 bus system is used to investigate the
impact of EVs. The CHIL implementation of the strategy is
also reported, and the experimental evidence is shown. Ex-
perimental results show the economic and voltage regulation
benefits of deploying the distributed EM.

There are potential directions to leverage this work in
the future. First, energy storage technologies can be added
to the current version. Second, adopting the vehicle-to-grid
(V2G) mode into the system is another extension. Third,
the future work will consider adding distribution locational
marginal pricing of the power grid and the traffic flow of the
transportation systems to the model.
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