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Energy Efficiency Maximization in Large-Scale
Cell-Free Massive MIMO: A Projected Gradient

Approach
Trang C. Mai, Member, IEEE, Hien Quoc Ngo, Senior Member, IEEE, and Le-Nam Tran, Senior Member, IEEE,

Abstract—This paper considers the fundamental power allo-
cation problem in cell-free massive mutiple-input and multiple-
output (MIMO) systems which aims at maximizing the total
energy efficiency (EE) under a sum power constraint at each
access point (AP) and a quality-of-service (QoS) constraint at
each user. Existing solutions for this optimization problem are
based on solving a sequence of second-order cone programs
(SOCPs), whose computational complexity scales dramatically
with the network size. Therefore, they are not implementable
for practical large-scale cell-free massive MIMO systems. To
tackle this issue, we propose an iterative power control algorithm
based on the frame work of an accelerated projected gradient
(APG) method. In particular, each iteration of the proposed
method is done by simple closed-form expressions, where a
penalty method is applied to bring constraints into the objective
in the form of penalty functions. Finally, the convergence of
the proposed algorithm is analytically proved and numerically
compared to the known solution based on SOCP. Simulations
results demonstrate that our proposed power control algorithm
can achieve the same EE as the existing SOCPs-based method,
but more importantly, its run time is much lower (one to two
orders of magnitude reduction in run time, compared to the
SOCPs-based approaches).

Index terms— Cell-free massive MIMO, massive MIMO,
spectral efficiency, MMSE-SIC, power control.

I. INTRODUCTION

Cell-free massive mutiple-input and multiple-output
(MIMO) has attracted a lot of research interest recently, for
its ability to overcome the inherent intercell-interference of
cellular networks [2]–[7]. Basically, cell-free massive MIMO
uses a massive number of distributed access points (APs)
together with simple linear processing to coherently serve
many users using the same time and frequency resources.
Each APs can be equipped with several antennas. It relies
on the favorable propagation and channel hardening property
of massive MIMO technology [8], and the macro-diversity
of network MIMO technique [9]. Therefore, it can provide
universally good service to all users in the network regardless
their locations.
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In cell-free massive MIMO, because the APs and users are
distributed over a large area, power controls are very important
to control the near-far effect, and hence, can significantly
improve the system performance as well as to save the radiated
powers from the APs in the downlink and the users in the
uplink. Thus, many research works on power allocations in
cell-free massive MIMO have been studied [2], [3], [10]–[13].
In [2], [3], power control coefficients at the APs and users were
optimally chosen to maximize the minimum spectral efficiency
of all users. In [10], the max-min power power control under
limited backhaul was investigated. The downlink transmission
power optimization of cell-free massive MIMO with spatially
correlated Rayleigh fading channels for noncoherent joint and
coherent joint transmission was exploited in [11]. A joint
downlink transmit powers and the number of active APs
optimization was proposed and solved in [12]. In [13], the
total energy efficiency maximization taken into account the
hardware and backhaul power consumption was proposed and
exploited. In the context of cell-free massive MIMO, the
solutions to power control problems in most, if not all, of
previous work are based on successive convex approximation
principle, which approximates a non-convex problem by a
sequence of convex second order cone programs (SCOPs)
[14]. As a result, these methods have very high computational
complexity, as they rely on interior point methods (through
the use of off-the-shelf convex solvers) to solve these convex
problems. Therefore, they are not implementable for large-
scale cell-free massive MIMO with many APs and users (e.g.
in stadium or shopping malls where we may have thousands
of APs and active users).

To deal with the large-scale problem in cell-free massive
MIMO, [15] proposed a scalable framework, which uses AP
selection to cope with computational complexity and backhaul
requirements. However, the power allocation is quite simple
and heuristic, and thus, it may underestimate the capacity of
the system. Another approach to deal with the large-scale
problem is presented in [16]–[18]. The main idea of this
approach is to decompose a large optimization problem into
smaller optimization subproblems to reduce computational
complexity. However, this method cannot be applied to solve
optimization problems in which the variables are coupled, such
as those with quality of service (QoS) constraints.

In this paper, we consider the energy efficiency maximiza-
tion problem with QoS constraints with an emphasis on large-
scale settings. For such scenarios, the number of power control
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coefficients (i.e., the product of the number of APs and the
number of users) which need to be optimized can be extremely
large. Thus, our goal is to propose a novel power control
algorithm for the energy efficiency maximization problem,
which has much lower computational complexity compared
to the traditional SOCP-based method. It is apparent from the
above discussions that an efficient numerical method for this
particular problem is still demanding. To this end, we combine
the penalty method and the accelerated projected gradient
(APG) method. More specifically, the penalty method is used
to handle the QoS constraints in our problem, resulting in more
tractable subproblems. Note that the penalty method is widely
used to deal with constrained optimization [19]. In principle,
the penalty method penalizes a set of constraints by proper
terms and adds the penalty terms into the objective, creating
the so-called penalized objective. In this way, an optimal
problem with sophisticated constraints can be converted into a
regularized optimization problem with simple constraints for
which efficient solutions are easier to derive. By increasing the
penalty parameter, the solutions to these regularized problems
converge to a solution of the original problem. In this paper,
to solve the regularized problems obtained from the penalty
method, we then apply the APG method which is a variant
of the accelerated proximal gradient method proposed in [20]
for nonconvex programming. As shall be numerically shown
in Section V, compared to the sequential SOCP-based method,
the proposed method achieves the same total EE but with
much lower run time and computational complexity since it
is entirely based on first order oracle (i.e the value of the
objective and its gradient). Thus, the proposed method can
be readily modified to tackle the high complexity of other
resource allocation problems for large-scale cell-free massive
MIMO. The main contributions of this paper are as follows.

• We provide the mathematical background of the APG
method with a detailed proof as an alternative solution
for sequential SOCP-based method to deal with many
resource allocation problems in large-scale cell-free mas-
sive MIMO.

• In our proposed APG method, no external optimization
solver is needed as the projection, which is the main
operation of the proposed method, is done by closed form
expression. As the result, it is much faster to output a
solution, compared to the known sequential SOCP-based
method.

• We customize the presented APG method to solve the to-
tal EE maximization problem in cell-free massive MIMO.

• For our specific problem, we first transform the problem
of total EE maximization, subject to transmit power
constraints at APs and the individual quality-of-service
(QoS) constraints at each user, into a form amenable to
the application of the APG method.

• We then combined the penalty method and the APG
method to achieve a good and low-complexity power
control algorithm. In particular, the QoS constraints are
penalized by a proper smooth penalty term which in
controlled by a penalty parameter. The penalty term is
then added to the original objective, giving rise to the

penalized problem. The APG is applied to solve the
penalized problem, whereby each iteration admits closed-
form expressions. The computational complexity of the
proposed algorithm is provided.

• We provide numerical results to show that the pro-
posed algorithm can achieve the same performance as an
SCOPs-based method but with much reduced run time.

• We also verify that our proposed algorithm converges to
a feasible solution regardless the choice of starting point.

The rest of this paper is organized as follows. Section II
provide the preliminaries of the APG method. Next, Section
III recalls total EE optimization problem in cell-free massive
MIMO. Then, Section IV proposes to use APG method
for total EE optimization problem. Section V evaluates the
system performance by using numerical results. Finally, the
conclusion is drawn in Section VI.

Notation: Standard notations are used in this paper. The
superscripts (·)T and (·)H stand for the transpose and the
Hermitian, respectively. Notation [x]+ denotes the projector
onto the positive orthant. Notation ∇, and ∂ denote the gradi-
ent, and sub-gradient, respectively. Notation domf denotes a
domain of function f , and ||.|| denotes the l2-norm. Notation
≡ is used to define an equivalent quantity. Finally, we use �,
⊗, and 〈., .〉 to denote the Hadamard, the Kronecker products
and an inner product, respectively.

II. MATHEMATICAL PRELIMINARIES: ACCELERATED
PROJECTED GRADIENT METHOD

In this section, we first provide the general framework of
an accelerated proximal gradient method and then present a
variant of the accelerated proximal gradient method, which is
termed the accelerated projected gradient (APG) method, to
deal with the EE maximization problem to be considered in
Section III. First, we recall some definitions. A function f
is said to be proper if domf 6= 0. A function f is said to
have an L-Lipschitz continuous gradient if there exists some
L > 0 such that ||∇f(x) − ∇f(y)|| ≤ L||x − y||,∀x,y.
If f(x) ≥ x0, ∀x ∈ X , then the function is said to be
bounded from below by x0. If f(x) ≥ x0, ∀x ∈ X , then the
function is said to be bounded from below by x0. A function
f is lower semicontinuous at point x0 if lim infx→x0 f(x) ≥
f (x0). f(x) is coercive, i.e., f is bounded from below and
f(x)→∞ when ‖x‖ → ∞.

We now present a general mathematical framework, called
the accelerated proximal gradient method for non-convex
problems presented in [20], which concerns the following
optimization problem

min
x∈Rn

{T (x) ≡ f(x) + g(x)}, (1)

where f(x) is L-Lipschitz continuous gradient, g(x) is proper
and lower semicontinuous, and T (x) is coercive. Then the
accelerated proximal gradient method for solving (1), consists
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of the following iterations:

yk = xk +
tk−1

tk
(zk − xk) +

tk−1 − 1

tk
(xk − xk−1),

zk+1 = proxαyg(yk − αy∇f(yk)),

vk+1 = proxαxg(xk − αx∇f(xk)),

xk+1 =

{
zk+1 T (zk+1) ≤ T (vk+1)

vk+1 otherwise,

tk+1 =

√
4t2k + 1 + 1

2
,

(2)

where αx, αy are step sizes, and proxαg is the proximal
operator defined as

proxαg(x) , argmin
u

g(u) +
1

2α
||x− u||2. (3)

In general, accelerated proximal gradient method in (2) is
designed to cope with the unconstrained optimization problem
(1). However, most of resource allocation problems in cell-
free massive MIMO are constrained optimization problems.
Therefore, in this paper, we present a special case of the
accelerated proximal gradient method, which is called the APG
method, to deal with those problems. Specifically, we consider
the following optimization problem

min
x∈C

f(x), (4)

where C is the feasible set of the considered problem, which
is often defined by a set of constraints. Again, assume that
f(x) is a proper function with Lipschitz continuous gradient,
and bounded from below. We remark that g(x) in (1) is not
necessarily smooth. Thus, to apply the iterations in (2) to solve
(4), we can let g(x) in (1) be the indicator function of the
feasible set C. In this way, the proximal operator in (3) reduces
to the Euclidean projection onto C [20]. As a result, the APG
method for solving (4), consists of the following iterations:

yk = xk +
tk−1

tk
(zk − xk) +

tk−1 − 1

tk
(xk − xk−1) (5a)

zk+1 = PC(yk − αy∇f(yk)) (5b)
vk+1 = PC(xk − αx∇f(xk)) (5c)

xk+1 =

{
zk+1 f(zk+1) ≤ f(vk+1),

vk+1 otherwise
(5d)

tk+1 =

√
4t2k + 1 + 1

2
, (5e)

where PC(x) denotes the Euclidean projection of x onto C,
which is defined as

PC(x) , argmin
u∈C

||x− u||2. (6)

III. TOTAL ENERGY EFFICIENCY OPTIMIZATION IN
CELL-FREE MASSIVE MIMO

In this section, we first briefly introduce the system model
of cell-free massive MIMO and formulate the total EE op-
timization problem with conjugate beamforming at the APs,
taking into account arbitrary pilot sequence assignments, and
imperfect channel estimation. Then, by using penalty functions
(PFs), we reformulate the total EE optimization problem into
the form so that the APG method can be applied.

A. System Model

CPU

AP 1

AP 2

AP M

User 1

User 2

User K

Fig. 1. System Model.

1) Spectral Eficiency: We consider a cell-free massive
MIMO downlink, which is shown in Fig. 1, where M APs
coherently serve K users. To take the advantage of channel
reciprocity, we consider time division duplex (TDD) operation,
where channel information only needs to be estimated in the
uplink training phase, and is used in both uplink and downlink
data transmission phases. All M APs connect to a central
processing unit (CPU) through a backhaul network. Each user
has a single antenna, while each AP is equipped with N
antennas. The propagation channel between AP m and user
k is modeled as

gmk = β
1/2
mkhmk, (7)

where βmk is the large-scale fading, and hmk is the small-scale
fading, whose elements are i.i.d. CN (0, 1) RVs. The downlink
transmission needs two phases: uplink training and downlink
payload data transmission phases. In the training phase, all
users send their pilot sequences, √τpϕk ∈ Cτp×1, ∀k, where
‖ϕk‖

2
= 1, to all APs in the system. Then, pilot signal

received at AP m is

Yp,m =
√
τpρp

K∑
k=1

gmkϕ
H
k + Wp,m, (8)

where ρp is the normalized transmit signal-to-noise ratio
(SNR) of each pilot symbol, Wp,m is the noise matrix whose
elements are i.i.d. CN (0, 1) RVs. After that, each AP uses
its received pilot signals from all K users to estimate its
local channels using the minimum mean-square error (MMSE)
technique [21]. The channel estimate of gmk is

ĝmk =

√
τpρpβmk

τpρp

∑K
k′=1 βmk′

∣∣ϕHk′ϕk∣∣2 + 1
y̌p,mk, (9)

where

y̌p,mk ,
√
τpρpgmk +

√
τpρp

K∑
k′ 6=k

gmk′ϕ
H
k′ϕk + Wp,mϕk.

(10)
In the downlink data transmission phase, APs use conjugate
beamforming technique and the channels estimated in the
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training phase to precode the symbols intended for all users.
The vector of transmitted signals from AP m is

xm =
√
ρd

K∑
k=1

√
ηmkĝ

∗
mkqk, (11)

where qk is the symbol intended for user k which satisfies
E
{
|qk|2

}
= 1, ∀k, ρd is the normalized transmit power at

each AP, and ηmk is power coefficient between the AP m and
the user k, satisfying

K∑
k=1

ηmkγmk ≤
1

N
, ∀m, (12)

where

γmk =
τpρpβ

2
mk

τpρp

∑K
k′=1 βmk′

∣∣ϕϕϕHk′ϕϕϕk∣∣2 + 1
. (13)

Then the signal received at user k is given by

rk =

M∑
m=1

gTmkxm + wk. (14)

By applying the same technique as the one in [13], the
downlink achievable spectral efficiency (SE) of the k-th user
can be expressed as

Sek ({ηmk}) =
τc − τp
τc

log2

(
1+

ρdN
2|γ̄γγTkkη̄ηηk|2

ρdN2
K∑
k′ 6=k
|γ̄γγTk′kη̄ηηk′ |2 + ρdN

K∑
k′=1

||κκκk′k � η̄ηηk′ ||22 + 1

)
, (15)

where τc is the length of each coherence interval, τp is
the length of the training phase for each coherence in-
terval, κκκk′k , [

√
γ1k′β1k;

√
γ2k′β2k; . . . ;

√
γMk′βMk] ∈

RM+ , η̄ηηk , [
√
η1k, . . . ,

√
ηMk]T ∈ RM+ , and γ̄γγk′k ,

|ϕϕϕHk′ϕϕϕk|
[
γ1k′

β1k

β1k′
, γ2k′

β2k

β2k′
, . . . , γMk′

βMk
βMk′

]T
.

2) Power Consumption Model: In this paper, the total
power consumption is modeled as [13]

Ptotal =

M∑
m=1

Pm +

M∑
m=1

Pbh,m, (16)

where Pm is the power consumption at the m-th AP, and Pbh,m
is the power consumed by the backhaul link connecting the
CPU and the m-th AP. Specifically, Pm is modeled as

Pm =
1

αm
ρdN0

(
N

K∑
k=1

ηmkγmk

)
+NPtc,m, (17)

where 0 ≤ αm ≤ 1 is the power amplifier efficiency, N0 is
the noise power, and Ptc,m is the internal power required to
run the circuit components at each antenna of the m-th AP.
Next, Pbh,m is modeled as

Pbh,m = P0,m +B · Se ({ηmk}) · Pbt,m, (18)

where P0,m is a fixed power consumption of each backhaul,
Pbt,m is the traffic-dependent power, and B is the system
bandwidth.

3) Total Energy Efficiency : While spectral efficiency has
been a common performance measure for wireless commu-
nication design, in this paper we aim to maximize the total
energy efficiency of the system, which is defined as how many
bits can be transmitted by one Joule. Specifically, the total EE
(bit/Joule) can be calculated as

Ee ({ηmk}) =
B
∑K
k=1 Sek({ηmk})
Ptotal

, (19)

B. Optimization Problem Formulation

Our problem is to maximize the total EE (19) by allocating
the power coefficients {ηmk}, under a sum power constraint
at each AP and a QoS constraint, i.e., SE constraint Sok at
each user. The optimization problem is stated as

(P) :


max
{ηmk}

Ee({ηmk})

s.t. Sek({ηmk}) ≥ Sok, ∀k,∑K
k=1 ηmkγmk ≤ 1/N, ∀m,

ηmk ≥ 0, ∀k, ∀m,

(20)

In this paper (P) is assumed to be feasible. An equivalent
form of problem (P) can be rewritten as

(P1) :


max
{ηmk}

B
∑K
k=1 Sek({ηmk})

P̄fix+ρdN0N
∑M
m=1

1
αm

∑K
k=1 ηmkγmk

s.t. Sek({ηmk}) ≥ Sok, ∀k,∑K
k=1 ηmkγmk ≤ 1/N, ∀m,

ηmk ≥ 0, ∀k, ∀m,

(21)

where P̄fix ,
∑M
m=1(NPtc,m+P0,m). Note that the objective

function of the problem (P1) is nonconvex. The common
method to tackle such such a nonconvex problem is to it-
eratively approximate a nonconvex function by a series of
convex functions under the framework of successive convex
approximation. In fact, this is the method presented in [13], in
which the EE maximization problem is solved by a sequence
of SOCPs. However, as the complexity dramatically increases
when the system scales up (i.e. the numbers of APs and
users increase), such method cannot provide a solution for
large-scale optimization problems in cell-free massive MIMO
systems with thousands of APs and users. In the next section,
we will propose a new algorithm based on the APG method
to solve problem (P1). Our proposed algorithm has very
low complexity, and hence, and can efficiently deal with the
systems with many APs and users.

IV. PROPOSED APG ALGORITHM FOR THE TOTAL
ENERGY EFFICIENCY OPTIMIZATION

In this section, we apply the APG method to efficiently solve
the total energy efficiency optimization problem in Section III.
We first reformulate the optimization problem (P1) by change
of variables such that the gradient of the function and the
resulting projection can be computed more efficiently. We also
apply a penalty method to convert the total EE maximization
problem into the form which is amenable to applying the
APG method. Note that our algorithm is done over large-scale
fading time scale and is performed at the CPU. The details of
these steps are described in the following.
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A. Problem Reformulation

In order to apply the APG method for solving problem
(P1), we need to reformulate (P1) into the form of (4) and
to make sure that the gradient of the objective is Lipschitz
continuous. To this end, we first introduce a new variable
θmk =

√
ηmkγmk and define new notations as follows:

• θθθ , (θθθ1;θθθ2; . . . . ;θθθM ) ∈ RMK
+ , where θθθm ,

[θm1; . . . ; θmK ] ∈ RK+ , is the vector of all power control
coefficients associated with AP m.

• Ak , IM ⊗ eTk , where ek ∈ RK denotes the k-th unit
vector, i.e., the vector such that ek = 1 and ej = 0,∀j 6=
k.

• γ̃γγk′k , |ϕϕϕHk′ϕϕϕk|
[√

γ1k′
β1k

β1k′
;
√
γ2k′

β2k

β2k′
;. . . ;
√
γMk′

βMk
βMk′

]
,

and κ̃κκk , [
√
β1k;
√
β2k; . . . ;

√
βMk] ∈ RM+ .

Then, (P1) can be rewritten as

(P2) :

{
max
θθθ∈C

B u(θθθ)
v(θθθ) , f(θ)

s.t. uk(θθθ) ≥ Sok, ∀k,
(22)

where

C = {θθθ | ||θθθm||2 ≤
1

N
,m = 1, 2, . . . ,M ;θθθ ≥ 0}, (23)

v(θθθ) = P̄fix + ρdN0N

M∑
m=1

1

αm
||θθθm||2, (24)

u(θθθ) ,
K∑
k=1

uk(θθθ), (25)

and

uk(θθθ) =
τc − τp
τc

log2

(
1+

ρdN
2
(
γ̃γγTkkAkθθθ

)2
ρdN2

K∑
k′ 6=k

(
γ̃γγTk′kAk′θθθ

)2
+ ρdN

K∑
k′=1

||κ̃κκk � (Ak′θθθ)||2 + 1

)
.

(26)

As shall be seen shortly, the projection onto C can be done by
closed form expressions. Thus, the main obstacle in deriving
an efficient algorithm for solving (P2) is the QoS constraints.
To overcome this issue we propose to combine the penalty
method and the APG method as described in the next subsec-
tion.

B. Proposed Algorithm

The overall structure of the proposed method is as follows:

• The penalty method is invoked to bring the QoS con-
straints into the objective by some form of a loss function
through a penalty parameter, leading to the penalized
problem.

• The APG method is then applied to solve the penalized
problem. This process is repeated until a stopping crite-
rion is achieved.

1) Penalty Method: The constraint uk(θθθ) ≥ Sok can be
written as

γ̃γγTkkAkθθθ ≥ ak×√√√√ρdN2

K∑
k′ 6=k

(
γ̃γγTk′kAk′θθθ

)2
+ ρdN

∑K

k′=1
||κ̃κκk � (Ak′θθθ)||2 + 1,

(27)

where ak ,

√
2
Sok

τc
τc−τp −1
ρdN2 . Then, for each QoS constraint

we introduce the following quadratic loss function [19]

Ψk(θθθ) , [max (0, gk(θθθ))]
2
, (28)

where gk(θθθ) is defined by (29), shown at the top of the next
page. Note that gk(θθθ) is convex and Ψk(θθθ) is smooth. Then, for
a given penalty coefficient ξ, the penalized objective function
of (P2), denoted by fξ(θθθ), is given by

fξ(θθθ) , B
u(θθθ)

v(θθθ)
− ξ

K∑
k

Ψk(θθθ). (30)

We remark that the above regularized objective is formed
in the context of maximization. Also note that the value of
the penalty coefficient ξ should be selected appropriately. If
this parameter is large, the feasibility is guaranteed but the
resulting optimization problem is numerically ill-conditioned.
On the other hand, if it is too small, it may produce a
suboptimal solution or even converges to an infeasible point,
i.e. the constraints are violated.

In practice, to avoid the above issues, we can first solve
the penalized optimization problem for a small value of ξ and
check if the stopping criterion is met. If not, we can increase
ξ by ρ > 1 times and repeat this process until the stopping
criterion is met. In this iterative process, it is critical to use
the solution of the previous iteration as the starting point of
the next. In essence, the key to the penalty method is to solve
the following regularized optimization problem for a given ξ

max
θθθ∈C

fξ(θθθ), (31)

which has the same form as (4). We are now in a position to
apply the APG method to solve (31) which is detailed next
section.

2) APG Method: We first show that fξ(θθθ) is a proper
function with Lipschitz continuous gradient and bounded from
above, and thus, the APG method is applicable to solve (31).
Towards this end, It is easy to see that the function f(θθθ)
is proper and bounded from above1, which is shown by the
following inequalities

fξ(θθθ) = B
τc − τp
τc

u(θθθ)

v(θθθ)
− ξ

K∑
k

[max (0, gk(θθθ))]
2

≤ Bτc − τp
τc

u(θθθ)

v(θθθ)
<∞.

1Note that for a minimization problem the objective should be bounded
from below.
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gk(θθθ) , ak

√
ρdN2

∑K

k′ 6=k

(
γ̃γγTk′kAk′θθθ

)2
+ ρdN

∑K

k′=1
||κ̃κκk � (Ak′θθθ)||2 + 1− γ̃γγTkkAkθθθ. (29)

The above inequality holds since the total EE is bounded
from above as its numerator, i.e. total SE, is limited by inter-
user interference and total power consumption. The Lipschitz
continuity of the gradient of fξ(θθθ) is stated in Proposition 1.

Proposition 1. The function fξ(θθθ) shown in (30) is Lf -
Lipschitz continuous gradient with a Lipschitz contant Lf
given by (84) in Appendix B.

Proof. See Appendix B.

It is now obvious that we can apply the APG method in (5)
to solve (31). Our proposed method that combines the penalty
method and the APG method is summarized in Algorithm
1, where θξ denote an optimal solution to (31). Regarding

Input: θθθ(0) ∈ RMK
+ , 0 < αθ, αy < 1/Lf , ρ > 1,

δ > 0, ς > 0, ξ
Initialization: θθθ(1) = z(1) = θθθ(0)

repeat /* outer loop: penalty method */
Set t(1) = t(0) = 1; n← 1; m← 1
repeat /* inner loop: APG method */

y(n) = θθθ(n) +
t(n−1)

t(n)
(z(n) − θθθ(n))

+
t(n−1) − 1

t(n)
(θθθ(n) − θθθ(n−1))

z(n+1) = PC(y
(n) + αy∇fξm(y(n))) (32)

v(n+1) = PC(θθθ
(n) + αθ∇fξm(θθθ(n))) (33)

θθθ(n+1) =

{
z(n+1), if fξm(z(n+1)) ≥ fξm(v(n+1))

v(n+1), otherwise,

t(n+1) =

√
4(t(n))2 + 1 + 1

2
n← n+ 1

until
∣∣∣ fξm (θ(n))−fξm (θ(n−10))

fξm (θ(n))

∣∣∣ ≤ ς;
Update the starting point for the next iteration:
θθθ(1) = z(1) = θθθ(n)

Set θθθξm = θθθ(n)

Increase the penalty parameter: ξm+1 = ξm × ρ
m← m+ 1

until convergence;

Algorithm 1: The proposed algorithm for solving (22).

the APG procedure in Algorithm 1, we note that we have
modified (5), accounting for the maximization context, where
we move along the gradient to increase the objective of the
current point. Note also that, for a practical purpose we stop
the APG procedure when the relative increase in the objective
during the last 10 iterations is less than ς .

It is clear that the key operations in the implementation
of Algorithm 1 are the computation of the gradient ∇fξ(θθθ)
and the projections in (32) and (33). In particular, these two
operations can be done in closed-form as shown in Proposition
2 and Proposition 3, respectively.

Proposition 2. ∇fξ(θθθ) can be calculated as

∇fξ(θθθ) = B
v(θθθ)∇u(θθθ)− u(θθθ)∇v(θθθ)

v(θθθ)2
− ξ

K∑
k=1

∇Ψk(θθθ),

(34)

where

∇u(θθθ) =

K∑
k=1

∇uk(θθθ), (35)

∇v(θθθ) = ρdN0N

[
2

α1
θθθ1;

2

α2
θθθ2; . . . ,

2

αM
θθθM

]
, (36)

∇Ψk(θθθ) = 2 [max (0, gk(θθθ))]∇gk(θθθ), (37)

and ∇gk(θθθ), ∇uk(θθθ), which are shown at the top of the next
page, are given by (38), and (39), respectively.

Proof: See Appendix C.

Proposition 3. The projection PC(u) admits the following
analytical solution

θθθm =

√
1/N

max(||
[
um
]
+
||,
√

1/N)

[
um
]
+
, ∀m = 1, 2, . . . ,M.

(40)

Proof: See Appendix D.

C. Proposed Algorithm with Line Search

In Algorithm 1 is guaranteed to converge for any fixed step
sizes smaller than Lf . However, it is possible that Lf given
in (84) is significantly larger than the best Lipschitz constant
of the gradient of fξ(θθθ) which is practically difficult to find.
In order to find a larger step size, and thus faster convergence,
we can carry out a line search to tune the step size in (32)
and (33). In this paper, we can perform a line search as
described in Algorithm 2, inspired from [20], which works as
follows. In each iteration, the backtracking line search starts
with a large step size, and then decrease it until a better
feasible solution is found. As we can see from Algorithm 2,
the algorithm will always terminate with a better point, in the
sense of maximizing the objective function fξ(θθθ). Note that the
backtracking line search in Algorithm 2 follows the Barzilai-
Borwein (BB) rule [22]. As ∇fξ(θθθ) is Lipschitz continuous
with a Lipschitz constant Lf given in (84), the line search
procedure is guaranteed to terminate after finite steps.
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∇gk(θθθ) = Nakρd
√
µ̄k
( K∑
k′ 6=k

AT
k′
(
γ̃γγk′kγ̃γγ

T
k′k +

1

N
Bk

)
Ak′ +

1

N
AT
kBkAk

)
θθθ −AT

k γ̃γγkk, (38)

∇uk(θθθ) =
ρdµk(τc − τp)

τc ln 2

(
AT
k γ̃γγkkγ̃γγ

T
kkAk − µ̄kρd

(
γ̃γγTkkAkθθθ

)2(∑K

k′ 6=k
AT
k′
(
γ̃γγk′kγ̃γγ

T
k′k +

1

N
Bk

)
Ak′ +

1

N
AT
kBkAk

))
θθθ, (39)

µk ,
2

ρd
∑K
k′=1

(
γ̃γγTk′kAk′θθθ

)2
+ ρd

N

∑K
k′=1 ||κ̃κκk � (Ak′θθθ)||2 + 1

N2

; µ̄k ,
1

ρd
∑K
k′=1,k′ 6=k

(
γ̃γγTk′kAk′θθθ

)2
+ ρd

N

∑K
k′=1 ||κ̃κκk � (Ak′θθθ)||2 + 1

N2

.

Input: ν < 1, δ > 0
s(n) = z(n) − y(n−1);
r(n) = ∇fξ(z(n))−∇fξ(y(n−1))

Set αy = (s(n))T s(n)

(s(n))T r(n) or αy = (s(n))T r(n)

(r(n))T r(n) ,
s(n) = v(n) − θθθ(n−1);
r(n) = ∇fξ(v(n))−∇fξ(θθθ(n−1)),

Set αθ = (s(n))T s(n)

(s(n))T r(n) or αθ = (s(n))T r(n)

(r(n))T r(n) ,
repeat /* step size for (32) */

z(n+1) = PC(y
(n) + αy∇fξ(y(n))),

αy = αyν,
until fξ(z(n+1)) ≥ fξ(y(n)) + δ||z(n+1) − y(n)||2;
repeat /* step size for (33) */

v(n+1) = PC(θθθ
(n) + αθ∇fξ(θθθ(n))),

αθ = αθν,
until fξ(v(n+1)) ≥ fξ(θθθ(n)) + δ||v(n+1) − θθθ(n)||2;

Algorithm 2: Backtracking line search for finding a step
size for (32) and (33).

D. Convergence Analysis of Proposed Method

The convergence of Algorithm 1 is guaranteed that of the
APG method and the penalty method. Specifically, for a given
ξ, similar to Theorem 1 of [20], we can show that the objective
sequence {fξ(θ(n))} is monotonically increasing. Also, the
sequence {θ(n)} is bounded and thus has accumulation points.
Each accumulation point is also a stationary solution to (31).
Furthermore, following the arguments in [19, Chap. 10] we
can show that the iterate sequence {θξm} converges (in the
subsequence sense) to a feasible point of (P2) when ξm →∞.
Thus the obtained solution of Algorithm 1 is also a stationary
point of (P2). The proof of these claims is given in Appendix
E. We note however that since Algorithm 1 will terminate for
some finite ξm when a pre-determined error tolerance is met, it
can only produce an approximate stationary solution of (P2).

E. Computational Complexity Analysis

It is obvious that the complexity of Algorithm 1 in each
iteration is dominated by that of (32), and (33) and the
computation of the objective. Here we use the big-O notation
to analyse the complexity of (32) and (33). From Propo-
sition 2, it is easy to see that the complexity to calculate
the gradient of ∇fξ(θθθ) is O(KM2). The projection PC(u)
requires the complexity of O(KM) which is obvious from
Proposition 3. Similarly, the complexity of computing fξ(θθθ)
is O(KM2). As a result, the overall complexity of Algorithm

1 is O(IP IAPGKM
2) where IP and IAPG are the number of

iterations of the outer loop (i.e. the penalty method) and the
inner loop (i.e. the APG method) in Algorithm 1, respectively.
Note that the line search procedure contributes negligible
complexity since the gradient can be reused and the projection
requires much less complexity. In [13], a SCA method based
on solving a sequence of SOCPs was presented. We remark
that the complexity of solving an SOCP in each SCA iteration
is O(

√
K +MM3K4) [23]. Thus the complexity of the SCA

method in [13] is O(ISCA
√
K +MM3K4) where ISCA

is the number of SCA iterations. It is apparent that the
computational complexity of our proposed method is much
lower than the SCA method in [13].This point is numerically
demonstrated in the next section.

V. NUMERICAL RESULTS

In this section, numerical results will be provided to evaluate
as well as show the benefits of our proposed algorithm.

A. System Setup

We consider cell-free massive MIMO systems, where loca-
tions of M APs and K users randomly uniformly generated
within an area of 1 × 1 km2. The wrapped around technique
is used. The large-scale fading coefficient is modeled as:

βmk = PLmk · zmk, (41)

where zmk is the log-normal shadowing with the standard
derivation σsh = 8 dB, and PLmk is the three-slope-based
path loss, which is modeled (in dB) as

PLmk =
−L− 35 log10(dmk), if dmk > d1

−L− 15 log10(d1)− 20 log10(dmk), if d0 < dmk ≤ d1

−L− 15 log10(d1)− 20 log10(d0), if dmk ≤ d0,

where we choose d0 = 10 m, d1 = 50 m, and L = 140.7 dB.
The power consumption is summarized as follows: power am-
plifier coefficient am = 0.4, ∀m; internal power consumption
per antenna Ptc,m = 0.2 ∀m; fixed power consumption per
each backhaul. In addition, we choose Sok = 1 bit/s/Hz,
B = 20 MHz, ρd = 1 W, ρp = 0.2 W, and noise figure
is 9 dB. In simulation, we implement Algorithm 1 with the
line search described in Algorithm 2 where ρ = 0.5.
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B. Convergence of Proposed Algorithm

In the first experiment, we show the performance of the
proposed APG method in comparison with the sequential
SOCPs-based method in [13], with D = 1 km, τc = 200,
and τp = K. As can be seen in Fig. 2, the proposed
method achieves the same EE performance as the SOCPs-
based method. In terms of the number of iterations required to
output a solution, although our proposed APG method requires
more iterations to converge, compared to the SOCPs-based
method. However, as we mentioned previously, the proposed
method requires very cheap iteration cost, and thus is far more
efficient in terms of the actual run time. This point is clearly
illustrated in Fig. 3, where we plot the run time of the proposed
algorithm and the SOCPs-based method as a function of M .
The simulations are built using MATLAB and the results are
obtained on a Dell laptop with Intel CoreTM i7-9750H and
RAM of 16 GB. The stopping criterion is ς = 10−3. Compared
to the sequential SOCPs-based method, our proposed scheme
reduces the run time significantly, i.e, about 62 times and 53
times when M = 100 and M = 400, respectively.

Next, we need to verify that the proposed APG algorithm
will not violate any PFs, or equivalently, the total loss,∑K
k Ψk(θθθ), will converge to 0, regardless the starting point.

The numerical results are shown in Fig. 4 using two different
scenarios with the number of APs, M = 100 and M = 400,
respectively. In this figure, blue curves and orange curves
represent total PFs (total loss) and total EE, respectively. In
the both scenarios, total PFs starts in infeasible domain, and
gradually converges to 0 when the algorithm terminate, as the
result of increasing the penalty parameter ξ.
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Fig. 2. Convergence rate of the proposed APG algorithm with K = 40, N
= 1.

C. Multi-antenna APs

Fig. 5 examines the effect of multiple antennas at the APs.
We consider two scenarios: (N = 1 and M changes) and (N
changes, M = 100). For a fair comparison, both scenarios
have the same total number of antennas of all APs, i.e. MN
is fixed. The numerical results show that, with fixed number
of APs M = 100, run time just changes a small amount, or
even faster when changing the number of antennas per AP
from 1 to 10. However, run time increase proportionally with
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Fig. 3. Run time versus the number of APs M . The number of users is
K = 40.
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Fig. 4. Convergence rate vs sum of all penalty functions with K = 40, N =
1.

the number of APs using single antenna. This is indeed an
expected result since the complexity of our proposed algorithm
only depends on the number of APs M . Regarding to the
total EE, Fig. 5 (b) shows that multi-antenna APs always
outperform single-antenna APs, on the condition that they have
the same total number of antennas at APs. The main reason
is that more energy is consumed when single-antena’s AP is
used. Therefore, based on our numerical results, instead of
increasing the number of APs, we should increase the number
of anntennas per APs to take the advantages of both run time
and total EE of the proposed algorithm.

D. System setup based on number of users

Fig. 6 compares two setups of the system with different
number of APs using multi-antennas. It clear that both sys-
tem’s performance, i.e. total EE, and run time heavily depend
on number of APs in the system regardless number of users.
In this case, we can see that system with M = 200 always
outperforms the one with M = 500 in term of run time and
total EE, when the number of users changes from 10 to 80.
Therefore, based on number of users in the system, we can
setup the system by just activating the suitable number of APs
to achieve higher performance and faster running time.
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Fig. 5. Run time and total energy efficiency vs total number of antennas at
APs with K = 40.

10 30 50 80

Number of users

0

10

20

30

R
u

n
 t

im
e

 (
s
)

M=500

M=200

(a)

10 30 50 80

Number of users

1

2

3

4

5

6

T
o

ta
l 
e

n
e

rg
y
 e

ff
ic

ie
n

c
y

M=500

M=200

(b)

Fig. 6. Run time and total energy efficiency vs number of users with N = 10.

E. System Scale V.s. Total energy efficiency

Fig. 7 considers three different system scale setups, where
the first, the second, and the third system scales are cor-
responding to different number of APs and users M × K,
which are 200× 40, 500× 100, and 1000× 200, respectively.
We choose τc = 500, and τp = 200 for all scenarios. The
result shows the trade-off between the spectral efficiency and
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Fig. 7. Total energy efficiency and total spectral efficiency vs system scale
with N = 1.

energy efficiency. While the total SE proportionally increases
when extending the system scale (because the number of users
increases), the total EE shows the opposite trend (because
the energy consumption increases). Depending on practical
applications and requirements, suitable numbers of APs and
users can be designed.

VI. CONCLUSION

We applied a APG method to deal with a large-scale EE
optimization problem in cell-free massive MIMO systems,
taking into account of power contraints at the APs and QoS
contraints at each user. To compare with the sequential SOCPs-
based approaches, our proposed method achieves the same
performance, while its run time is much faster, i.e., one to
two orders of magnitude reduction. Therefore, this method
has a great potential to deal with large-scale optimization
problems in cell-free massive MIMO, and hence, can be
applied to practical scenarios. In addition, our optimization
problem is done over large-scale fading time scale. It means
the optimal power control coefficients can be updated only
once for each large-scale fading realization. Since the large-
scale fading coefficient changes very slowly with time, the
system can fully operate in a bursty communication scenario
with some random activation of the users.

APPENDIX

A. Useful properties and Lemmas
In this section, we provide some useful properties and

lemmas related to Lipschitz continuity that shall be used to
analyse the Lipschitz continuity of the gradient of the objective
in (31). Some of the following properties and lemmas are in
fact extension of the results in [24, Section 1.5] for scalar-
valued functions. We also provide proofs to these for the sake
of completeness.

1) Linear Combinations: Let f1 : Rn → Rn and f2 :
Rn → Rn be Lipschitz continuous with a Lipschitz constants
L1 and L2, respectively. Then f1± f2 is Lipschitz continuous
with a Lipschitz constant L1 + L2.

Proof:

||(f1 + f2)(x)− (f1 + f2)(y)||
(a)

≤
||f1(x)− f1(y)||+ ||f2(x)− f2(y)|| ≤ (L1 + L2) ||x− y||,
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where (a) is the triangle inequality.
2) Product of Functions: Let f1 : Rn → R and f2 :

Rn → Rm be bounded functions over a bounded set S,
such that |f1(x)| ≤ M1 and ||f2(x)|| ≤ M2 for all x ∈ S.
Further suppose that f1 and f2 are Lipschitz continuous with a
Lipschitz constants L1 and L2, respectively. Then the product
of f1 and f2 is Lipschitz continuous with a Lipschitz constant
(M1L1 +M2L2).

Proof:

||f1f2(x)− f1f2(y)||
≤ ||f1(x) (f2(x)− f2(y)) + (f1(x)− f1(y)) f2(y)||
≤ ||f1(x) (f2(x)− f2(y)) ||+ || (f1(x)− f1(y)) f2(y)||
≤M1||f2(x)− f2(y)||+M2||f1(x)− f1(y)||
≤ (M1L1 +M2L2)||x− y||.

3) The Composition of Functions: Let f1 : R → R and
f2 : Rn → R be Lipschitz continuous with Lipschitz constants
L1 and L2, respectively. Then the composite function f1 ◦ f2

is Lipschitz continuous with a Lipschitz constant L1L2.
Proof:

||f1(f2(x))− f1(f2(y))|| ≤ L1||f2(x)− f2(y)||
≤ L1L2||x− y||.

4) The Quotient of Functions: Let f1 : Rn → Rn and f2 :
Rn → R be Lipschitz continuous with Lipschitz constants L1

and L2, respectively on a bounded set S, such that ||f1(x)|| ≤
M for all x ∈ S, and further assume that there is a constant
c > 0 such that |f2(x)| ≥ c for all x ∈ S. Then f1/f2

is Lipschitz continuous with a Lipschitz constant (ML1 +
L2/c

3).
Proof: First, since f2 is Lipschitz continuous with a

Lipschitz constants L2, and |f2(x)| ≥ c, we have

|1/f2(x)− 1/f2(y)| = |f2(x)− f2(y)|
|f2(x)f2(y)|

≤ L2

c2
||x− y||.

Thus 1/f2 is Lipschitz continuous with a Lipschitz constant
L2

c2 . Next, applying the product property in A2 for f1 and 1/f2,
we have

||(f1/f2)(x)− (f1/f2)(y)|| ≤ (ML1 + L2/c
3)||x− y||.

Lemma 1. Let f : Rn → R, and assume that ||x + y|| ≤ c,
∀x,y ∈ S . Then f(x) = (aTx)2 is Lipschitz continuous with
a Lipschitz constant c||a||2.

Proof:

|f(x)− f(y)|
= |(aTx)2 − (aTy)2| = |

(
aTx− aTy

) (
aTx + aTy

)
|

(b1)

≤
∣∣aTx + aTy

∣∣ ||a||||x− y||
(b2)

≤ c||a||2||x− y||, (42)

where (b1) and (b2) base on the Cauchy-Schwarz inequality.

Lemma 2. Let f : Rn → R, and assume that
(||a� x||+ ||a� y||) ≤ d, ∀x,y ∈ Rn, then a Lipschitz

constant of f(x) = ||a � x||2 is Lipschitz continuous with
a Lipschitz constant d||a||.

Proof:

||f(x)− f(y)|| =
∣∣||a� x||2 − ||a� y||2

∣∣
= |(||a� x|| − ||a� y||) (||a� x||+ ||a� y||)|
(c1)

≤ ||a� x− a� y|| (||a� x||+ ||a� y||)
(c2)

≤ d||a||||x− y||, (43)

where (c1) and (c2) are due to the triangle inequality and the
Cauchy-Schwarz inequality, respectively.

B. Proof of Proposition 1

First, note that fξ(θθθ) is proper as domfξ 6= 0. Next, we need
to prove that fξ(θθθ) is Lipschitz continuous gradient. ∇fξ(θθθ)
can be calculated as

∇fξ(θθθ) = B
v(θθθ)∇u(θθθ)− u(θθθ)∇v(θθθ)

v(θθθ)2

− 2ξ

K∑
k=1

[max (0, gk(θθθ))]∇gk(θθθ). (44)

As ∇fξ(θθθ) is computed from uk(θθθ), v(θθθ), gk(θθθ), ∇uk(θθθ),
∇v(θθθ), and ∇gk(θθθ) we now need to find the Lipschitz con-
stants of these terms, and then apply properties in Appendix
A to conclude the Lipschitz constant of ∇fξ(θθθ). To this end
the following results are in order

1) ∇uk(θθθ) is Lipschitz continuous, and ||∇uk(θθθ)|| is
bounded from above: Recall that

∇uk(θθθ) =
∇nk(θθθ)

ln2 (nk(θθθ) + dk(θθθ))
− nk(θθθ)∇dk(θθθ)

ln2 (nk(θθθ) + dk(θθθ)) dk(θθθ)
,

(45)

where
nk(θθθ) , ρdN

2
(
γ̃γγTkkAkθθθ

)2
, (46)

dk(θθθ) , ρdN
2

K∑
k′ 6=k

(
γ̃γγTk′kAk′θθθ

)2
+ρdN

K∑
k′=1

||κ̃κκk�(Ak′θθθ)||2+1,

(47)

∇nk(θθθ) = 2ρdN
2AT

k γ̃γγkkγ̃γγ
T
kkAkθθθ, (48)

and

∇dk(θθθ) = 2ρdN
2

K∑
k′ 6=k

AT
k′γ̃γγk′kγ̃γγ

T
k′kAk′θθθ

+ 2ρdN

K∑
k′=1

AT
k′BkAk′θθθ. (49)

In order to show that ∇uk(θ) is Lipschitz continuous, we will
prove that the first term and the second term of the right hand
side in (45) are Lipschitz continuous, respectively. First, note
that by applying Lemma 1 and Lemma 2, it is easy to see that
nk(θθθ), dk(θθθ) and nk(θθθ) +dk(θθθ) are Lipschitz continuous and
their Lipschitz constants are

Lnk = 2ρdN
3/2
∣∣|γ̃γγTkkAk||2, (50)
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Ldk = 2ρdN
3/2

K∑
k′ 6=k

∣∣|γ̃γγTk′kAk′ ||2 + 2
√
K/Nκ̃κκTk 1M ||κ̃κκk||,

(51)

and

Lnk,dk = 2ρdN
3/2

K∑
k=1

∣∣|γ̃γγTkkAk||2 + 2
√
K/Nκ̃κκTk 1M ||κ̃κκk||,

(52)

respectively. Next, we have ∇nk(θθθ) =
2ρdN

2AT
k γ̃γγkkγ̃γγ

T
kkAkθθθ , Cnkθθθ is Lipschitz continuous,

as

||∇nk(x)−∇nk(y)|| = ||Cnk(x− y)|| ≤ λmax(Cnk)||x− y||,
(53)

where λmax(Cnk) is the largest eigenvalue of Cnk . Moreover,

||∇nk(θθθ)|| = ||Cnkθθθ|| ≤
λmax(Cnk)

√
M√

N
, (54)

and

ln2 (nk(θθθ) + dk(θθθ)) ≥ ln 2. (55)

Then, from (52), (53), (54), and (55), by applying the quotient
of functions in Section A4, we have that ∇nk(θθθ)

ln2(nk(θθθ)+dk(θθθ)) is
Lipschitz continuous with a Lipschitz constant as follow

Lt1 =
(λmax(Cn))2

√
M√

N
+

Ln,d
(ln 2)2

. (56)

By applying the similar method to ∇nk(θθθ), we can prove
that ∇dk(θθθ) is Lipschitz continuous with a Lipschitz constant
written as

L∇dk = λmax(Cdk), (57)

where Cdk , 2ρdN
2
∑K
k′ 6=kA

T
k′γ̃γγk′kγ̃γγ

T
k′kAk′ +

2ρdN
∑K
k′=1 A

T
k′BkAk′ . Moreover, we have

||∇dk(θθθ)|| ≤ λmax(Cdk)
√
M√

N
, (58)

and

|nk(θθθ)|
(d1)
< nmax <∞, (59)

where (d1) is based on the fact that |nk(θθθ)| is bounded by the
power constraints. Then, from (50), (57), (58), and (59), by
applying the product of functions in Section A2, it is easy to
see that nk(θθθ)∇dk(θθθ) is Lipschitz continuous with a Lipschitz
constant given by

Lnk,∇dk = nmaxLnk +
(λmax(Cdk))2

√
M√

N
, (60)

and

||nk(θθθ)∇dk(θθθ)|| ≤ nmaxλmax(Cdk)
√
M√

N
. (61)

Similar to (59), we have

|dk(θθθ)|<dmax <∞, (62)

for some dmax, and thus

|nk(θθθ) + dk(θθθ)|<dmax + nmax <∞. (63)

Then, from (51), (52), (62), (63) and by applying the
product of functions in Section A2, we can see that
(nk(θθθ) + dk(θθθ)) dk(θθθ) is Lipschitz continuous with a Lips-
chitz constant given by

Lnk+dk,dk = dmaxLdk + (nmax + dmax)Lnk,dk . (64)

Next, we have

ln2 (nk(θθθ) + dk(θθθ)) dk(θθθ) ≥ ln2. (65)

We now can conclude, from (60), (61), (64), and (65) and
by applying the quotient of functions in the Section A4, that

nk(θθθ)∇dk(θθθ)
ln2(nk(θθθ)+dk(θθθ))dk(θθθ) is Lipschitz continuous with the following
Lipschitz constant

Lt2 =
nmaxλmax(Cdk)

√
MLnk,∇dk√

N
+
Lnk+dk,dk

(ln 2)2
. (66)

Finally, from (56), and (66), by applying the linear combina-
tion of the functions in Section A1, it follows that ∇uk(θθθ) is
Lipschitz continuous with a Lipschitz constant given by

L∇uk = Lt1 + Lt2, (67)

and ||∇uk(θθθ)|| is bounded as

||∇uk(θθθ)|| ≤ (λmax(Cnk) + nmaxλmax(Cdk))
√
M

ln 2
√
N

, ζ∇uk .

(68)

2) uk(θθθ) is bounded and Lipschitz continuous: First, we
have

uk(θθθ) =
τc − τp
τc

log2

(
1 +

nk(θθθ)

dk(θθθ)

)
≤ τc − τp

τc
log2 (1 + nmax) , ζuk . (69)

Next, to prove uk(θθθ) is Lipschitz continuous, we first consider
the function h1(x) = log2(x) over the domain 1 ≤ x ≤ xmax.
Note that h1(x) is continuously differentiable and thus we
have

sup
t∈(1,xmax)

|h′1(t)| = sup
t∈(1,xmax)

log2 e|
1

t
| ≤ log2 e. (70)

By the mean value theorem, there exists some ξ between y
and z, y, z ∈ (1, xmax), such that

|h1(z)− h1(y)| = |h′1(ξ)(z − y)|
≤ sup
t∈(1,xmax)

|h′1(t)| |z − y| ≤ log2e|z − y|. (71)

In other words, h1(x) = log2(x) is Lipschitz continuous with
a constant log2e. Next we consider the function h2(x) = 1 +
nk(θθθ)
dk(θθθ) , for which we have

1 ≤ |dk(θθθ)|
(d3)
< dmax <∞ (72)

where (d3) is based on the fact that |dk(θθθ)| is bounded by the
power constraints. Then, from (50), (51), (59), and (72), the



12

quotient property in Section A4 implies that h2(x) is Lipschitz
continuous with a Lipschitz constant found as

Lh2 = (nmax + dmax)(Ln + Ld) + Ld. (73)

Finally, from (71), and (73) by applying composition property
in Section A3, we can prove that uk(θθθ) is Lipschitz continuous
with the following Lipschitz constant

Luk = Lh2
log2 e. (74)

3) v(θθθ) and ∇v(θθθ) are bounded and Lipschitz continuous:
It is easy to see that v(θθθ) is bounded by

v(θθθ) ≤ P̄fix + ρdN0N

M∑
m=1

1

Nαm
, ζv. (75)

Next, let us rewrite v(θθθ) as

v(θθθ) = P̄fix + ρdN0N
M∑
m=1

1

αm
||θθθm||2 , P̄fix + Cv||θθθ||2.

(76)

Then, following the same steps in Section B1, we can show
that v(θθθ) is Lipschitz continuous with a Lipschitz constant Lv
expressed as

Lv =
2
√
Mλmax(Cv)√

N
. (77)

Next, we have

∇v(θθθ) = ρdN0N

[
2

α1
θθθ1;

2

α2
θθθ2; . . . ,

2

αM
θθθM

]
, C∇vθθθ,

(78)

and thus ||∇v(θθθ)|| is bounded by

||∇v(θθθ)|| ≤
√
Mλmax(C∇v)√

N
, ζ∇v, (79)

and ∇v(θθθ) is Lipschitz continuous with the following Lips-
chitz constant

L∇v = λmax(C∇v). (80)

4) gk(θθθ) and ∇gk(θθθ) are bounded and Lipschitz contin-
uous: By following the same method in the Section B1 and
using the fact that dk(θθθ) ≥ 1, we can show that gk(θθθ) is
Lipschitz continuous with Lgk = akLdk + ||γ̃γγTkkAk|| and
bounded as

gk(θθθ) ≤ akdk(θθθ) + γ̃γγTkkAkθθθ

≤ ak|dk(θθθ)|+ nmax

ρdN2
< akdmax +

nmax

ρdN2
, ζgk . (81)

∇gk(θθθ) is also Lipschitz continuous with L∇gk = akL∇dk
and bound as

||∇gk(θθθ)|| < akρdλmax(Cdk)
√
M√

N
+ λmax(AT

k γ̃γγkk) , ζ∇gk .

(82)

5) ∇fξ(θθθ) is Lipschitz continuous: From (24) we have

v(θθθ)2 ≥ P̄ 2
fix, (83)

which is due to the fact that the second term in (24) is always
greater than or equal to zero. Then, following the same method
to find the Lipschitz constant of ∇uk(θ) in Section B1, we
can prove that ∇fξ(θθθ) is Lipschitz continuous with a Lipschitz
constant given by

Lfξ = L1 + L2 + L3, (84)

where L1 =
B

∑K
k=1 L∇uk
P̄ 2

fix

;

L2 =
B((

∑K
k=1 L∇uk )(

∑K
k=1 ζ∇uk )+Lvζv)

P̄ 4
fix

;

and L3 = 2ξ
∑K
k=1(ζgkLgk + ζ∇gkL∇gk).

C. Proof of Proposition 2

Recall that the PF is

Ψk(θθθ) = [max (0, gk(θθθ))]
2
, (85)

then

∇Ψk(θθθ) =

{
0, gk(θθθ) ≤ 0

2gk(θθθ)∇gk(θθθ), gk(θθθ) > 0,
(86)

which can be rewritten as

∇Ψk(θθθ) = 2 [max (0, gk(θθθ))]∇gk(θθθ). (87)

Using the quotient rule we can write ∇f(θθθ) as

∇fξ(θθθ) = B
v(θθθ)∇u(θθθ)− u(θθθ)∇v(θθθ)

v(θθθ)2
− ξ

K∑
k=1

∇Ψk(θθθ),

(88)

where

∇v(θθθ) = ρdN0N
[ 2

α1
θθθ1;

2

α2
θθθ2; . . . ,

2

αM
θθθM
]
, (89)

and

∇u(θθθ) =

K∑
k=1

∇uk(θθθ). (90)

To find the gradient of ∇gk(θθθ) we recall the following
equalities

∇
(
γ̃γγTk′kAk′θθθ

)2
= 2AT

k′γ̃γγk′kγ̃γγ
T
k′kAk′θθθ, (91)

∇
(
||κ̃κκk � (Ak′θθθ)||2

)
= 2AT

k′BkAk′θθθ, (92)

where Bk ∈ RM×M+ is a diagonal matrix whose m-th element
is [Bk]m = βmk. Then, by applying the chain rule, we can
easily compute the gradient of ∇gk(θθθ) as shown in (38). To
find the gradient of ∇uk(θθθ), we first apply the chain rule
together with the quotient rule, we have

∇uk(θθθ) =
d(θθθ)

ln2 (n(θθθ) + d(θθθ))

d(θθθ)∇n(θθθ)− n(θθθ)∇d(θθθ)

d(θθθ)2

=
1

ln2 (n(θθθ) + d(θθθ))

(
∇n(θθθ)− n(θθθ)∇d(θθθ)

d(θθθ)

)
,

(93)

where
n(θθθ) , ρdN

2
(
γ̃γγTkkAkθθθ

)2
, (94)
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d(θθθ) , ρdN
2

K∑
k′ 6=k

(
γ̃γγTk′kAk′θθθ

)2
+ρdN

K∑
k′=1

||κ̃κκk�(Ak′θθθ)||2+1,

(95)

∇n(θθθ) = 2ρdN
2AT

k γ̃γγkkγ̃γγ
T
kkAkθθθ, (96)

and

∇d(θθθ) = 2ρdN
2

K∑
k′ 6=k

AT
k′γ̃γγk′kγ̃γγ

T
k′kAk′θθθ

+ 2ρdN

K∑
k′=1

AT
k′BkAk′θθθ. (97)

The substitution of (96) and (97) into (93) yields (39).

D. Proof of Proposition 3

We now show that the projection onto C admits an analytical
solution and is parallelizable. Recall that PC(u) is explicitly
written as

min
θθθ∈RMK

||θθθ − u||2 (98a)

s.t. ||θθθm||2 ≤
1

N
,m = 1, 2, . . . ,M (98b)

θθθ ≥ 0. (98c)

Note that the objective in (98) is separable with θθθm. Thus (98)
boils down to solving the following subproblem for each m

min
θθθm∈RK

||θθθm − um||2 (99a)

s.t. ||θθθm||2 ≤
1

N
(99b)

θθθm ≥ 0. (99c)

Problem (99) is actually the projection onto the intersection of
an Euclidean ball and the positive orthant. Finally, the result
(40) is a direct application of [25, Theorem 7.1].

E. Convergence Proof of Algorithm 1

The convergence proof is divided into two parts. In the first
part of the proof we show that, for a given ξm, the APG
iterations converge to a stationary solution to the penalized
problem (31). In the second part we show that {θθθξ} converges
to a feasible point of (P2). Thus the convergent point of
Algorithm 1 is indeed a stationary point of (P2).

We begin with the first part of the proof by recalling an
important inequality of a Lf -Lipschitz continuous gradient
function. Specifically, for a function f(x) has a Lipschitz con-
tinuous gradient with a constant Lf , the following inequality
holds

f(y) ≥ f(x) +
〈
∇xf(x),y − x

〉
− Lf

2
||y − x||2. (100)

The projection in (33) is equivalent to

v(n+1) = argmin
θθθ∈C

||θθθ − θθθ(n) − αθ∇fξ(θθθ(n)||2 (101a)

= argmax
θθθ∈C

〈∇fξ(θθθ(n), θθθ − θθθ(n)〉 − 1

2αθ
||θθθ − θθθ(n)||2

(101b)

where 〈x,y〉 = xTy is the inner product of x and y and we
have used the fact that ||a − b||2 = ||a||2 + ||b||2 − 2〈a,b〉.
Note that when θθθ = θθθ(n), the objective in (101b) is 0 and
v(n+1) is the optimal solution to (101b). Thus the following
inequality is obvious

〈∇fξ(θθθ(n),v(n+1)−θθθ(n)〉− 1

2αθ
||v(n+1)−θθθ(n)||2 ≥ 0 (102)

Combining (100) and (102) we obtain

fξ
(
v(n+1)

)
≥ fξ

(
θθθ(n)

)
+
〈
∇fξ

(
θθθ(n)

)
,v(n+1) − θθθ(n)

〉
− L

2

∥∥v(n+1) − θθθ(n)
∥∥2

≥ fξ
(
θθθ(n)

)
+
( 1

2αθ
− L

2

)∥∥v(n+1) − θθθ(n)
∥∥2
. (103)

It is easy to see that if αθ < 1
Lf

, then fξ
(
v(n+1)

)
≥ fξ

(
θθθ(n)

)
.

Next, if fξ
(
z(n+1)

)
≥ fξ

(
v(n+1)

)
, then θθθ(n+1) = z(n+1), and

fξ
(
θθθ(n+1)

)
= fξ

(
z(n+1)

)
≥ fξ

(
vk+1

)
. (104)

If fξ
(
z(n+1)

)
< fξ

(
v(n+1)

)
, then θθθ(n+1) = v(n+1), and

fξ
(
θθθ(n+1)

)
= fξ

(
v(n+1)

)
≥ fξ

(
θθθ(n)

)
. (105)

In summary we have shown that

fξ
(
θθθ(n+1)

)
≥ fξ

(
v(n+1)

)
≥ fξ

(
θθθ(n)

)
. (106)

Since C is compact convex, {θθθ(n)} and {v(n)} are bounded.
Thus {θθθ(n)} has accumulation points.

In the second part of the proof, we now assert that any
accumulation point is a stationary solution of (31). As fξ(θθθ(n))
is non-decreasing, the objective at all the accumulation points
is the same which is denoted by f∗ξ . Then, from (103) we have( 1

2αθ
− L

2

)∥∥∥v(n+1) − θθθ(n)
∥∥∥2

≤ fξ
(
v(n+1)

)
− fξ

(
θθθ(n)

)
≤ fξ

(
θθθ(n+1)

)
− fξ

(
θθθ(n)

)
. (107)

Summing over n = 1, 2, · · · ,∞, we have( 1

2αθ
− L

2

) ∞∑
n=1

∥∥v(n+1) − θθθ(n)
∥∥2 ≤ f∗ξ − fξ

(
θθθ(1)

)
<∞.

(108)

Since αx <
1
L , we can conclude that

v(n+1) → θθθ(n) as n→∞. (109)

The optimality condition of (101b) results in〈 1

αθ

(
v(n+1) − θθθ(n)

)
−∇θθθfξ(θθθ(n)), θθθ − θθθ(n)

〉
≤ 0, ∀θθθ ∈ C.

(110)

Let θθθ∗ be any accumulation point of {θθθ(n)}, i.e. {θθθ(nj)} →
θθθ∗ as j → ∞. From (109) we immediately have that
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{θθθ(nj+1)} → θθθ∗. We also note that ∇θθθfξ(θθθ) is continuous, and
thus ∇θθθfξ(θθθ(nj)) → ∇θθθfξ(θθθ∗). By letting j → ∞ in (110),
we have

〈
∇θθθfξ(θθθ∗), θθθ − θθθ∗

〉
≥ 0, ∀θθθ ∈ C. This inequality

simply means that θθθ∗ is a stationary solution to (31) which
completes the first part of the proof.

Now we show that {θθθξm} indeed converges to a feasible
point of (P2). Note that for small ξm, θθθξm may not be feasible
to (P2), and that the following inequalities always hold for
lager ξm

f(θξm) ≥ fξm(θξm) = max
θ∈C

fξm(θ) ≥ f∗, (111)

where f∗ is the optimal objective of (P2). In the above, the
first equality is due to the negativity of the penalty term and the
second inequality is true for two reasons. First, the problem
max
θ∈C

fξm(θ) becomes a convex problem for large ξm since

fξm(θ) becomes concave. Second, the APG method can find
the optimal solution since the problem is now convex. Thus the
second inequality in (111) holds because the optimal objective
is no less than the objective at any feasible solution.

Let us consider a sequence ξm → ∞. Since the sequence
θξm belongs to compact set, it has a convergent subsequence
(i.e. the Bolzano-Weierstrass theorem). Thus we can assume
without loss of optimality that θξm converges to a certain
point θ∗ by abuse of notation. We will show that θ∗ is indeed
feasible to (P2). First note that since θξm → θ∗ and thus
f(θξm) → f(θ∗) due to the continuity of f . Then from
(111) we have f(θ∗) ≥ f∗. Suppose to the contrary that θ∗

is infeasible. Since θξm → θ∗ and Ψk(·) is continuous, for
sufficiently large m we have

Ψk(θξm) ≥ Ψk(θ∗) > 0, k = 1, 2, . . . ,K. (112)

Thus for these k we would have

fξm(θξm) = f(θξm)− ξmΨk(θξm) ≤ f(θξm)− ξmΨk(θ∗).
(113)

Thus it is easy to see that fξm(θξm)→ −∞ when ξm →∞,
which contradicts (111) and thus completes the proof.
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