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RESOURCE ARTICLE

Molecular Subtyping Resource: a user-friendly tool for rapid
biological discovery from transcriptional data
Baharak Ahmaderaghi1,*, Raheleh Amirkhah1, James Jackson2, Tamsin R. M. Lannagan3, Kathryn Gilroy3,
Sudhir B. Malla1, Keara L. Redmond1, Gerard Quinn1, Simon S. McDade1, ACRCelerate Consortium4,
Tim Maughan5, Simon Leedham6, Andrew S. D. Campbell3, Owen J. Sansom3,7, Mark Lawler1,‡ and
Philip D. Dunne1,‡,§

ABSTRACT
Generation of transcriptional data has dramatically increased in the past
decade, driving the development of analytical algorithms that enable
interrogationof thebiologyunderpinning the profiled samples.However,
these resources require users to have expertise in data wrangling and
analytics, reducing opportunities for biological discovery by ‘wet-lab’
users with a limited programming skillset. Although commercial
solutions exist, costs for software access can be prohibitive for
academic research groups. To address these challenges, we have
developed an open source and user-friendly data analysis platform for
on-the-fly bioinformatic interrogation of transcriptional data derived from
human or mouse tissue, called Molecular Subtyping Resource
(MouSR). This internet-accessible analytical tool, https://
mousr.qub.ac.uk/, enables users to easily interrogate their data using
an intuitive ‘point-and-click’ interface, which includes a suite of
molecular characterisation options including quality control, differential
gene expression, gene set enrichment and microenvironmental cell
population analyses from RNA sequencing. The MouSR online tool
provides a unique freely available option for users to perform rapid
transcriptomic analyses and comprehensive interrogation of the
signalling underpinning transcriptional datasets, which alleviates a
major bottleneck for biological discovery.

This article has an associated First Person interview with the first author
of the paper.

KEY WORDS: Bioinformatics, Data analytics, RNA-seq

INTRODUCTION
In the years since the first whole genome was sequenced, the costs
associated with the generation of molecular ‘big data’ have

decreased rapidly, to a point at which the data handling, rather
than data generation, is the limiting factor in large biological
discovery programmes. Furthermore, large repositories [such as
The Cancer Genome Atlas (https://www.cancer.gov/about-nci/
organization/ccg/research/structural-genomics/tcga) and Gene
Expression Omnibus (Edgar et al., 2002)], now provide free
access to publicly available molecular data. Large international
molecular subtyping projects have markedly improved our
biological understanding of cancer (Sohn et al., 2017), but in
doing so they have created a critical bottleneck in terms of data
reduction, analysis and interpretation, resulting in an urgent need for
solutions that enable rapid biological interrogation of large datasets
(Cerami et al., 2012).

Given the relative paucity of translational bioinformaticians within
many research groups (Gao et al., 2013), there is a need for wet-lab
researchers to have access to user-friendly analytic platforms that
provide rapid and statistically controlled algorithms to perform
common transcriptional analysis tasks, alongside an array of tools
for visualising and interrogating the resulting data. For these tools to be
widely adopted, theywill need to provide both computational and non-
computational users with intuitive ‘point-and-click’ options for
transcriptional analyses, rather than programming-based options. To
address this need, we have developed the Molecular Subtyping
Resource (MouSR) tool, https://mousr.qub.ac.uk/, which enables
individual non-computational end-users to pursue lines of
investigation on transcriptional data within their domain of interest/
area of expertise without the need for expertise in scripting. The
MouSR platform enables interrogation of existing publicly available or
in-house transcriptional data and analytics from either human ormouse
models, within a standardised molecular stratification environment.

RESULTS
MouSR interface
The MouSR (https://mousr.qub.ac.uk/) platform is implemented as
an open-source application that enables both computational and
non-computational users to rapidly go from an existing data matrix,
containing integers [whole numbers, i.e. RNA-sequencing (RNA-
seq) read counts] or decimals (i.e. estimated read counts), to
biologically meaningful results in a user-friendly way. At each step
of the process, users have the option to modify outputs, through
a series of on-the-fly customisable graphics that can all be
downloaded at high resolution for future use. The standard
pipeline includes initial data quality control assessments, followed
by differential analyses, both single-sample and group-wise gene set
enrichment analyses and microenvironment population counters,
producing publication-ready data (Fig. 1). The system uses a
species-agnostic ‘blind embedding’ format, where users can upload
data derived from any patient sample or in vitro/in vivo model as
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either ungrouped individual samples or multiple samples within
experimental groups. The species-specific selection options
available for downstream analyses in MouSR enable users to
perform biological discovery/validation on transcriptional data
derived from human or mouse origin.

To highlight the functionality of theMouSR system, in this paper,
we will focus on colorectal cancer (CRC), using our previously
published and comprehensively characterised genetically
engineered mouse model tumour and organoid datasets,
comprising n=28 samples from matched tumour tissue (n=4

Fig. 1. The MouSR workflow and outputs. (A-F) Utilising transcriptional data derived from human or mouse tissue/cells (A), users are required to have a
transcriptional datamatrix and sample information as the input for theMouSR pipeline (B), accessible via https://mousr.qub.ac.uk/ (C). From the Introduction page
(D), users upload their files and are then presented with a series of point-and-click options for initial data quality control, differential analysis, molecular signalling
and microenvironment characterisation (E), that can be saved as high-resolution image files for further use (F). As an example of the adaptable nature of the
system at each stage, users have options for bespoke formatting, design and labelling of the resulting plots, which can all be downloaded and saved in a
publication-ready format. Figure created using BioRender.
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groups) and genotype-matched organoids (n=3 groups) derived
from n=4 different genotypes and available from ArrayExpress
study E-MTAB-6363 (Jackstadt et al., 2019).
Accessing the MouSR website presents the user with a General

Introduction landing page, providing an overview of the application
with instructions and exemplar formats that are required for use.
The user interface structure has two main sections, namely (1) Data
Input and (2) Data Analysis, which will be described briefly,
followed by an analysis of the CRC mouse exemplar dataset
(ArrayExpress E-MTAB-6363) from Jackstadt and colleagues
(Jackstadt et al., 2019; https://github.com/Dunne-Group/MouSR/
tree/main/Data). For convenience, these data are included here as
supplementary files (Datasets 1 and 2). In addition, a tutorial video
is also included at each point throughout the app to summarise the
main features of the MouSR tool.

Data input
The Data Input section is designed to have flexibility in terms of
acceptable file/data formats, to enable users to upload their own data
derived using a variety of transcriptional profiling platforms
and normalisation procedures. Users are required to have two
separate files: a transcriptional data matrix (input 1) and a sample
information file (input 2) that will enable data analysis and
generation of results (Fig. 1).
In terms of data types for input 1, MouSR has been successfully

tested using human and mouse data derived from a variety of
microarray and RNA-seq platforms and is adaptable enough to
accept data that have been processed using a range of pipelines
resulting in either integers (whole numbers, i.e. RNA-seq read
counts) or decimals (i.e. estimated read counts). However, as
DESeq2 requires integer counts as input, for users who select
decimal input the differential expression options and group-wise
gene set enrichment analysis (GSEA) will not be accessible.
Additionally, the MouSR system has been designed to accept the
most common file formats, including .csv and .txt data files that
utilise various separators including comma, semicolon or tabs. Input
2 includes a summary of basic information that relates to sample
labels and groups.
Prior to uploading their data, users must ensure that both files are

in the recommended format described on the Introduction page,
which is aligned with a standard data matrix output containing gene
ID and gene symbol columns followed by sample values and is in
the format selected by the user according to their data types (default
set as tab delimited/.txt file). To ensure that users with data in an
orientation not supported by MouSR can use the tool, we have
created a transpose link on the Introduction page, which will adjust
the transcriptional matrix using the Transpose CSV Tool (https://
www.convertcsv.com/transpose-csv.htm).
Once the files are in the correct format, the user is required to

upload their two files into input 1 and input 2 (Fig. 2A), using either
a drag/drop from a folder or by navigating to the file location using
the browse function. When files are selected, a progress bar will
immediately begin to indicate that the file is uploading until the
upload is complete.
Given the flexibility and the point-and-click design for

downstream analyses, users must have their files in the correct
format to proceed. At this stage, by clicking ‘Check Input Files’,
users can verify whether their data are correctly loaded or whether
modifications are required. If their files have the correct format, then
the ‘Continue To Submit’ button will be activated. By clicking on it,
the user interface becomes active, triggering the computational
analysis on the background server with input detail and input

summary being displayed when complete, including information
on number of samples, sample names and number of expression
values identified. Our exemplar files took <20 s from submission to
display of input details, confirming that it consists of 24,751
individual genes across 28 samples across seven experimental
groups (Fig. 2B).

Data analysis
The Data Analysis section consists of four main subsections:
(1) principal component analysis (PCA) and multi-dimensional
scaling (MDS), (2) differential gene expression analysis (DGEA),
(3) mouse and/or human GSEA, and (4) mouse and/or
human microenvironment cell population counter (mMCP/MCP-
counter).

PCA and MDS
PCA and MDS are dimensionality reduction methods that represent
an initial step in assessing characteristics of any dataset (Jolliffe and
Cadima, 2016; Young, 2013). These options give the user an
immediate overview of clustering of samples according to their
experimental labels (described further in the Materials and Methods
section).

PCA 2D/3D plots
PCA plots enable the user to look at the principal components that
describe the largest variability between samples in the dataset,
where each data point corresponds to an individual sample. In
MouSR, users can also select any pair of the first three principal
components for their static PCA plot and choice of customisable
options, including the ability to choose a different colour for defined
groups, turning labels on/off, justifying height and width of the plot,
changing size of the labels/points and having different downloading
format (png/svg). In the 3D PCA plot option, MouSR exploits the
functionality offered by the Plotly package (https://plotly-r.com) to
generate an interactive plot with adjustable features, giving users the
option to rotate and zoom the graphic, and isolate certain samples,
alongside the ability to obtain sample information by hovering the
mouse pointer over each data point. Instructions are displayed on the
left-hand side of the plot, under the Plotly mode bar control, and
hovering over the 3D PCA graphic itself will also reveal the built-in
adjustable options above the sample labels on the top right.
Furthermore, the colours of the data points are linked to the earlier
2D PCA colour option. Using our CRC mouse exemplar files
(ArrayExpress E-MTAB-6363; https://github.com/Dunne-Group/
MouSR/tree/main/Data; Jackstadt et al., 2019), samples related to
each experimental group are identifiable using the same colours in
both the 2D (Fig. 2C) and 3D (Fig. 2D) options.

MDS 2D plot
The MDS plot has been added as a further option to project high-
dimensional data down to two dimensions, while preserving relative
distances between observations (described in the Materials and
Methods section). Again, the colour of the plot is linked to the
2D PCA.

DGEA
A primary objective of many gene expression experiments is to
detect and analyse transcripts that display differential expression
levels across different samples or experimental conditions. In
MouSR, such analyses are made easy via a series of intuitive
customisable options that enable selection of bespoke groups,
thresholds and filtering criteria.
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Heatmap
MouSR has been developed to ensure that a choice of different
filtering options is provided. In the ‘Differential categories
comparison analysis’ panel, the comparison between two main
categories is embedded from the labelling information the user
uploaded in input 2, with the names of groups appearing as a list in
dropdown menus for both Category A and Category B. This design
provides the user with options to compare two individual groups, or
to perform the comparison on up to ten groups at each time, as users
can pool up to five experimental groups in Category A versus up to
five experimental groups in Category B. The default heatmap plot is
generated based on log2FoldChange [−2,2] and an adjusted P-value
cutoff of 0.05, using the ‘heatmaply’ package (version 1.1.1)
(https://cran.r-project.org/web/packages/heatmaply/index.html);
however, all of these options can be adjusted by the user (Fig. 3A).
Clicking the submit button will initiate the MouSR app to run

DESeq2 on the data, producing customisable heatmaps, tables,
boxplots and volcano plots. Once complete, the heatmap plot details
how many genes are either up- or downregulated under these
conditions. However, as with most features in MouSR, users have
the option to adjust these to their own desired values, followed by
clicking on the ‘Create Plot’ button to trigger the heatmap to be
updated in real time. Users have the option to perform the clustering
according to sample names or gene names or both, in order to
visualise the differentially expressed genes.

This interactive tool allows the inspection of a specific value by
hovering the mouse over a cell, as well as zooming into a specific
section of the figure by clicking and dragging around the relevant
area. The differential gene expression data can also be displayed or
downloaded as a table for analysis in other downstream tools, with
samples as columns and gene names as rows. To demonstrate the
utility of these features, we utilised the exemplar files to reproduce

Fig. 2. Data import and exploratory analysis. (A) Two input files are required to begin the analytical pipeline in the app – a gene expression matrix and a
metadata that includes sample group labelling. (B) Following data upload, the data summary on samples will be displayed for quick review. (C,D) Exploratory
visualisation of data will be provided in a form of 2D principal component analysis (PCA) plot (C) and a 3D PCA plot (D) with labelled sample groups.
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some of the main findings from the original Jackstadt et al. study
(Jackstadt et al., 2019). Using MouSR, we first performed DGEA
comparing primary tumour data from four mouse genotypes
[villinCreER Apcfl/+ Trp53fl/fl (AP), villinCreER Apcfl/+ Trp53fl/fl

Rosa26N1icd/+ (APN) versus villinCreER KrasG12D/+ Trp53fl/fl (KP),
villinCreER KrasG12D/+ Trp53fl/fl Rosa26N1icd/+ (KPN)], and plotted
the resulting differential genes using the heatmap tool (Fig. 3B).

Heatmap for selected genes
This section provides the ability for users to create heatmaps for
specific genes of interest (minimum of two genes) by clicking on the
gene name in the table or by using the search bar on the top-right
corner of the table. Once selected, the heatmap will be created in real
time as more genes are selected/deselected. Furthermore, there are
two ways to create a heatmap, based on either individual sample
values obtained during the differential analysis, or by creating an
experimental group summary z-score (scale between 1.25 and −1.25)
according to each group analysed (Fig. 3C). The z-scores are
computed on a gene-by-gene basis by subtracting the mean and then
dividing by the s.d. The table is created using two different options;
the first is for every gene uploaded in the original matrix, without
applying any thresholds (Without_Thresholds), and the second
(Default_Thresholds) is based on default values log2FoldChange
[−2,2] and an adjusted P-value of 0.05 in the previous section or will

reflect any modifications to the default thresholds selected by the user
during the previous differential step. From the original study, a
number of specific markers were found to be differentially expressed
between these models [Fig. 6I in Jackstadt et al. (2019)], namely
S100a9, S100a8, Cxcr2, Nos2, Il6, Tgfb1, Vegfa, Arg1, Tgfb3, Tgfb2
and Ifng. Assessment of expression levels for these individual genes
produced a result in less than 30 s that was consistent with the original
study, confirming the utility of the MouSR application (Fig. 3D).

Volcano plot
Using the open-source tool VolcaNoseR (Luijsterburg and
Goedhart, 2020) as inspiration, we have incorporated an
interactive and customised volcano plot into MouSR using two
different options. The first option is ‘using-plotly’, which exploits
functions within the Plotly package (https://plotly-r.com) that give
the user the option to obtain essential information by hovering the
mouse pointer over a dot showing the name of a corresponding
gene. The second option, called ‘selectedGenes’, gives the users the
option to annotate the volcano plot with up to ten genes names (case
sensitive), which generates a new plot in real time. As a default, the
volcano plot shows the log2 of the fold change [−5,5] on the x-axis
and minus log10 of the P-value on the y-axis, with a significance
threshold of 0.01 (Fig. 4A). However, users have the option to adjust
the size of data points, alongside options to modify parameters to

Fig. 3. Differential gene expression analysis and visualisation options. (A) Illustration of the various filtering options in the Heatmap panel for the gene
expression in all the samples from the chosen groups. (B) Heatmap depicts comparison of AP, APN versus KP, KPN genotypes across tumours. (C) The selected
gene side bar for various filtering options is visible to the left of the table. The table includes the genes and annotations uploaded by the user in the first two
columns, followed by columns of expression values under each sample annotation. (D) Heatmap indicates reproducible results, compared to data from Jackstadt
et al. (2019) (Fig. 6I) across the selected genetically engineered mouse model tumours.
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their own desired values, followed by clicking on the ‘Update Plot’
button to trigger the volcano plot to be updated in real time. Using
our exemplar dataset, we examined the transcriptome of KPN versus
KP organoids, to produce a volcano plot that demonstrates increased
expression in Fjx1, Dtx1 and Tgfb2 (Fig. 4B), similar to the
published data [Fig. 6A in Jackstadt et al. (2019)].

Gene expression levels
In this subsection, users can again select a specific gene name, via the
table or the search option, to produce a boxplot of normalised count
for expression values in each experimental group. In the original
study, there was a focus on elevated Tgfb gene expression in the KP
and KPNmodels compared to the AP and APNmodels. Again, using
the intuitive MouSR system, we utilise the normalised counts for
Tgfb1 expression plotted to reproduce this main finding (Fig. 4C).

Mouse/human-specific GSEA classification
Since its introduction, GSEA (Mootha et al., 2003; Subramanian,
2005) has become an essential part of the genomic analysis
compendium of tools, owing to its ability to measure and compare
similarities or differences in experimentally validated biological
signatures in transcriptional datasets. In MouSR, we provide options
for both the original pairwise GSEA method (Category A versus B)
and the modified single sample classification (ssGSEA), using the
fgsea and GSVA packages (Hänzelmann et al., 2013), respectively,

for both the Hallmark and Gene Ontology collections. Furthermore,
in order to facilitate simultaneous classification between human- and
mouse-derived data, we have extended our framework to provide an
option for the users to choose between human or mouse analytical
packages, based on their transcriptional data. Users also have the
option of uploading their own bespoke list of genes or pathways of
interest as an .rdata file. For users with a gene list from a spreadsheet,
we have also created a side link that will convert a .txt file to .rdata,
making this more user friendly for non-computational users.

GSEA plot
In the GSEA plot section, users have the option to compare their two
groups (selected during the differential analysis) with any specific
gene sets within the Hallmark or Gene Ontology collections, which
produces an enrichment plot and an indication of the number of
leading-edge genes. For the Gene Ontology option, as the collection
comprises over 7000 gene sets, only the first 50 pathways based on
enrichment score (ES) will be available. The GSEA algorithm ranks
genes based their expression, focusing on enrichment differences
between samples belonging to two classes, labelled A or B.

Mouse/human-specific microenvironment cell population
counter (mMCP/MCP-counter)
The MCP algorithm gives an estimate of predefined immune and
stromal cell populations from heterogeneous transcriptomic data

Fig. 4. Gene expression levels and volcano plot options. (A) Volcano plot filtering options, by hovering over the plot using Plotly, the information related to each
gene can be accessed immediately. (B) Volcano plot displaying differentially expressed genes with highlighted key genes in text between KPN and KP organoids
[reproducible results compared to data from Jackstadt et al. (2019) (Fig. 6A)]. (C) Boxplot displays normalised counts for Tgfb1 expression compared between
groups.
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(Becht et al., 2016). MouSR includes dual species templates to
ensure that users can assess either mouse or human data. For human,
these populations include eight immune populations [CD3+ T cells,
CD8+ T cells, cytotoxic lymphocytes, natural killer (NK) cells, B
lymphocytes, cells originating from monocytes (monocytic
lineage), myeloid dendritic cells and neutrophils] and two stromal
populations (endothelial cells and fibroblasts) (Becht et al.,
2016). For mouse, these populations include 12 immune cell
types (T cells, CD8+ T cells, NK cells, B-derived cells, memory
B cells, monocytes/macrophages, monocytes, granulocytes, mast
cells, eosinophils, neutrophils and basophils) and four stromal
populations (vessels, lymphatics, endothelial cells and fibroblasts)
(Petitprez et al., 2020).
Using the exemplar data, we performed GSEA using the

Hallmarks collection on KP and KPN tumour samples, in which,
in line with the original publication, we observed an enrichment for
TGF_BETA_SIGNALLING in KPN compared to KP tumour
(Fig. 5A). In addition to the pair-wise method, MouSR also enables
users to perform single-sample assessment using ssGSEA (Fig. 5B)
and MCP (Fig. 5C) to assess enrichment in individual samples
regardless of the experimental group. Given the adaptability of the
MouSR tool, we will continue to add new options for data analyses;
therefore, features in a testing phase will be indicated as such
(i.e. beta version).

DISCUSSION
Every day, significant amounts of molecular data are created from
biological samples at an ever-reducing cost, shifting the challenge
from data acquisition to data analysis and interpretation that can
inform deeper understanding of biological processes. Such
understanding is essential in order to improve our understanding
of disease and identify mechanistic signalling that can aid in
diagnosis, prediction of disease outcomes or the development of
new therapeutic strategies (Gambardell, 2020). An example of how
important interrogation of molecular data can be is reflected in the
worldwide response to the COVID-19 pandemic, where rapid
interpretable data underpinned a meaningful mitigation response to
the pandemic’s impact on health and society (Lai et al., 2020).
Data analytical pipelines require specific skill sets, such as data

informatics and specific programming, which are not currently in the
armamentarium of traditional ‘wet-lab’ scientists. An increased focus

on biomarker development and target-drug discovery for personalised
medicine requires results generated by gene expression profiling to be
interrogated using high-performance computing and potentially with
advanced artificial intelligence or machine-learning algorithms, again
requiring the use of complex bioinformatics tools. For the non-
computational biologist, MouSR, with its intuitive structure and user-
friendly navigation, enables rapid point-and-click publication-ready
analysis of highly complex information, where significant volumes of
data can be analysed using multiple methodologies on a single app.
MouSR provides a unique opportunity for non-specialist users to
analyse their data using customised easy-to-use bioinformatic tools,
while also having dual functionality embedded within the app to
investigate disease-specific models and algorithms that offer deeper
insights to facilitate simultaneous classification between human- and
mouse-derived data. The user can choose to deploy all the features
within our intuitive transcriptional analysis pipeline for
comprehensive work-up, or in other instances the user might decide
to utilise only a selection of the available options within MouSR for
their bespoke analysis requirements.

The application is internet accessible, but, by making our source
code freely available, MouSR provides an open-source option for
individual users or institutes to install their own instance on local
computers/servers. Furthermore, given the remarkable growth in the
R programming language community, the MouSR tool provides an
adaptable template for further development that is not limited by
recurring software fees. As a clear demonstration of the utility of
MouSR, utilising our previously published data, we rapidly
reproduced a number of the main molecular findings from the
original study in a matter of minutes.

During its development, decisions were made to broaden the
range of analyses that MouSR could offer, which in turn leads to a
number of limitations that we acknowledge. The MouSR tool only
controls data from the point of input into the application, leaving the
user responsible for the source of the data and the pre-processing
steps performed. We have included the DESeq2 tool as an initial
step in our pipeline, to ensure that it aligns with the guidelines for
running GSEA; however, similar to all biological findings, the
validity of any downstream analysis remains entirely dependent on
the quality of the input data. In addition, multiple analysis methods
in MouSR have been created using different libraries under a
different version of R; finding the best R version that can suit them

Fig. 5. Gene set enrichment analysis (GSEA) and MCP analysis. (A) Enrichment plot for TGF_BETA_SIGNALLING Hallmark gene set for KPN versus KP
organoid groups, withP-value, FDR value, enrichment score (ES) and normalised enrichment score (NES). The x-axis is all the genes in the data experiment pre-
ranked by themetric, where each black bar is the gene in this gene set (pathway); the y-axis details the level of enrichment via an ES. (B) Single-sample GSEA for
individual samples displayed in a heatmap. (C) Murine microenvironment cell population (mMCP) analysis with infiltrating cell population estimates visualised in a
heatmap.
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all and at the same time accommodate the shiny server version and
CentOS server can be challenging. For instance, there is a recently
published library called ‘Interactive Complex Heatmap’ (Zuguang
Gu and Hübschmann, 2022), which provides an easy-to-use tool for
constructing highly customisable heatmaps, especially for analysing
DESeq2 results. However, based on the version of R and shiny that
we are using, we preferred to deploy the ‘heatmaply’ package. It is
worth noting that although this single-purpose tool can provide
highly customisable heatmaps, it does not have the same breadth of
capabilities or versatility in comparison with MouSR.
Furthermore, MouSR (as a free, open-source tool) can provide

more analysis methods than other existing free analytical apps
currently available. For instance, DEApp (Li and Andrade, 2017) is
largely focused on differential expression analysis of count-based
next-generation sequencing data. In addition, TCC-GUI (Wei Su
et al., 2019) uses differential expression pipelines with robust
normalisation and simulation data generation under various
conditions; however, it does not include GSEA and MCP/mMCP-
counter analysis. The START tool (Nelson et al., 2017), while
having a number of specific functionalities, again does not include
GSEA and MCP/mMCP-counter analysis. Finally, the GENAVi
application (Reyes et al., 2019) can provide certain analyses;
however, it does not include MCP/mMCP-counter analysis, multi-
group comparison or dual functionality for both human- andmouse-
derived data when compared to MouSR. The MouSR architecture
design provides a structure that offers, in the future, the possibility to
implement new types of bespoke analysis pipelines and graphical
outputs with precise functionalities within the open-source R
programming language, facilitating access to thousands of statistical
packages that are continually released and updated globally.
In summary,MouSR is a freely available tool that provides a user-

friendly graphical interface for biological characterisation and
interrogation of transcriptional datasets. Approaches such as ours
help remove a bottleneck in biological discovery for users with
limited programming skills, enabling them to perform statistically
controlled bioinformatics analyses to make valid biologically
informed conclusions more precisely.

MATERIALS AND METHODS
Access and requirements
The MouSR app was built using R (v3.2) and is running on the shiny
server (v1.5.16) hosted on the Queen’s University Belfast virtual server
CentOS 7, 64-bit, Intel Xeon Gold 6130 CPU @2.10 GHZ, 16 Core and 16
GBRAM.The servicewas given extra security and protection by being placed
behind a proxy service, which meant that the server itself is never directly
exposed to the internet. This configuration may be of benefit, where possible,
to other potential users who wish to install their own MouSR version. The
system is accessible via all web browsers tested, and on both Linux and
Windows systems, via https://mousr.qub.ac.uk/. However, Chrome, Edge and
Firefox are the recommended browsers for the best app experience.

File formats
There are numerous pipelines that exist for processing microarray and RNA-
seq data, with no ‘standard’ method being capable of universally
transcending all experimental conditions. A wealth of literature exists on
pipelines for pre-processing of microarray and RNA-seq data (Olson, 2006)
(Conesa et al., 2016), and information on how to access, search and
download these data types from the NCBI gene expression omnibus is
detailed extensively at https://www.ncbi.nlm.nih.gov/geo/.

Importing text files (.csv or .txt)
The app accepts two commonly used text file formats. For ‘.csv’ comma-
separated values (Comma delimited), each line corresponds to a row and all
the fields in each line are separated by commas, whereas in ‘.txt’ tab-

separated values (Tab delimited), all the fields in each line are typically
separated by tabs. The uploaded files size is limited to 30MB; however, this
limitation is only on the online version, and not if users install their own
local instance, owing to our server bandwidth limitation. Please note, our
exemplar file with 24,751 individual genes across 28 samples is only 2.80
MB. The exemplar file (ArrayExpress E-MTAB-6363; https://github.com/
Dunne-Group/MouSR/tree/main/Data; Jackstadt et al., 2019) and accepted
format is described in more detail in the ‘Data input’ subsection of the
Results.

Transposing data tool for import
The transcriptional data matrix file to be uploaded in the app has a
defined format to follow; however, for users for whom their file is not in
the same orientation as the suggested format in the app, a link to the
online transposing tool has been embedded in the Introduction section of the
app and can be accessed via https://www.convertcsv.com/transpose-csv.
htm.

Tools embedded within the MouSR application
PCA
The PCA analysis is performed by the prcomp function in the R stats
package (Jolliffe and Cadima, 2016). PCA is defined by a transformation of
a high-dimensional vector space into a low-dimensional space. It uses linear
combinations of the original data to define a new set of variables that are
referred to as principal components.

MDS
We used the cmdscale function in the R stats package to perform MDS
analysis (Young, 2013). Unlike the PCAmethod that minimises dimensions
while preserving covariance of the data, MDS minimises dimensions and
preserves distance between data points. However, both methods can provide
similar results, if the covariance in data and Euclidean distance measure
between data points in high dimension is equal. MDS uses the similarity
matrix as input, which has an advantage over PCA as it can be applied
directly to pairwise-compared banding patterns. The ‘%Variance’ describes
how much of the total variance is explained by each of the components with
respect to the whole (the sum); ‘% Variance’ values are shown on the axis
labels.

DGEA (DESeq2)
DGEA is performed based on the negative binomial distribution using the
DESeq2 R package (version 1.24.0) (https://bioconductor.org/packages/
release/bioc/html/DESeq2.html; Love et al., 2014). DESeq2 is a count-
based statistical method that performs an internal normalisation where
estimated variance-mean is calculated for each gene across all samples.
DESeq2 also estimates the gene-wise dispersion and logarithmic fold
changes; a dispersion value is estimated for each gene through a model
fit procedure, and differential expression is tested, based on a model
using the negative binomial generalised linear distribution (https://
bioconductor.org/packages/release/bioc/html/DESeq2.html; Love et al.,
2014). We used the DESeq2 package to normalise the data and identify
genes that are differentially expressed between the two main groups selected
by the user.

ssGSEA
ssGSEA was performed using the GSVA package version 1.32.0. The R
package msigdbr version 7.1.1 was also used to retrieve mouse/human
Hallmark and biological processes (GO_BP) gene sets and applied to the
samples (Hänzelmann et al., 2013).

GSEA
This method consists of three steps (Subramanian, 2005). First, ES is
calculated, reflecting the degree towhich a set of genes is over-represented at
the top or bottom of the entire ranked list. Second, the statistical significance
of the ES is estimated by using an empirical phenotype-based permutation
test procedure that preserves the complex correlation structure of the gene
expression data. Finally, after an entire database of gene sets is evaluated, the
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estimated significance level is adjusted to account for multiple hypothesis
testing by first calculating the normalised ES (NES), based on dividing the
actual ES by the mean of ESs against all permutations of the dataset, then
calculating the false discovery rate (FDR) corresponding to each NES. In
this study, GSEA was performed on log expression ratio using fgsea, an R
package that is a fast implementation of pre-ranked GSEA (see below).

MCP
TheMCPcounter andMurineMCP (mMCP) counter R packages are used to
estimate the quantity of several immune and stromal cell populations from
heterogeneous transcriptomic data for human and murine samples,
respectively (Petitprez et al., 2020; Becht et al., 2016).

Packages used
Shiny (https://cran.r-project.org/web/packages/shiny/index.html; https://
cran.r-project.org/web/packages/shinydashboard/index.html), shinythemes
(https://cran.r-project.org/web/packages/shinythemes/index.html), shiny-
dashboard (https://cran.r-project.org/web/packages/shiny/index.html; https://
cran.r-project.org/web/packages/shinydashboard/index.html), shinycustom-
loader (https://cran.r-project.org/web/packages/shinycustomloader/index.
html), shinycssloaders (https://cran.r-project.org/web/packages/
shinycssloaders/index.html), shinyalert (https://cran.r-project.org/web/
packages/shinyalert/index.html), ggplot2 (https://cran.r-project.org/web/
packages/ggplot2/index.html), tibble (https://cran.r-project.org/web/
packages/tibble/index.html), DESeq2 (https://bioconductor.org/packages/
release/bioc/html/DESeq2.html; Love et al., 2014), limma (https://
bioconductor.org/packages/release/bioc/html/limma.html), plyr (https://cran.
r-project.org/web/packages/plyr/index.html), biomaRt (https://bioconductor.
org/packages/release/bioc/html/biomaRt.html), heatmaply (https://cran.r-
project.org/web/packages/heatmaply/index.html), reshape (https://cran.r-
project.org/web/packages/reshape/index.html), plotly (https://plotly-r.com),
WGCNA (https://cran.r-project.org/web/packages/WGCNA/index.html),
lattice (https://cran.r-project.org/web/packages/lattice/index.html), pheatmap
(https://cran.r-project.org/web/packages/pheatmap/index.html), RColor-
Brewer (https://cran.r-project.org/web/packages/RColorBrewer/index.html),
GSVA (Hänzelmann et al., 2013), rlist (https://cran.r-project.org/web/
packages/rlist/index.html), msigdbr (https://cran.r-project.org/web/packages/
msigdbr/index.html), tidyverse (https://cran.r-project.org/web/packages/
tidyverse/index.html), mMCPcounter (Petitprez et al., 2020), MCPcounter
(Becht et al., 2016), magrittr (https://cran.r-project.org/web/packages/
magrittr/index.html), dplyr (https://cran.r-project.org/web/packages/dplyr/
index.html), ggrepel (https://cran.r-project.org/web/packages/ggrepel/index.
html), readxl (https://cran.r-project.org/web/packages/readxl/index.html), DT
(https://cran.r-project.org/web/packages/DT/index.html), colourpicker (https://
cran.r-project.org/web/packages/colourpicker/index.html), fgsea (http://
bioconductor.org/packages/release/bioc/html/fgsea.html) and enrichplot (https://
bioconductor.org/packages/release/bioc/html/enrichplot.html) packages were
used in this study.

File outputs and modifiable formats
The customised options for plots that are common in all app sections are
turning labels on/off, justifying height and width of the plot, and having
different downloading format (png/svg). Additionally, some analytical
panels have extra-customised options in their filtering criteria, in order to
provide an easier-to-use environment for the users, such as changing the
colours, or sizes of labels and points, assigning output filenames, adding
legends and changing scales.
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