
A Scalable Runtime for the ECOSCALE Heterogeneous Exascale
Hardware Platform

Harvey, P., Bakanov, K., Spence, I., & Nikolopoulos, D. S. (2016). A Scalable Runtime for the ECOSCALE
Heterogeneous Exascale Hardware Platform. In Proceedings of the 6th International Workshop on Runtime and
Operating Systems for Supercomputers Association for Computing Machinery.
https://doi.org/10.1145/2931088.2931090

Published in:
Proceedings of the 6th International Workshop on Runtime and Operating Systems for Supercomputers

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
©2016 The Authors
This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was
published in Proceedings of the 6th International Workshop on Runtime and Operating Systems for Supercomputers,
http://dx.doi.org/10.1145/2931088.2931090.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:25. Jun. 2024

https://doi.org/10.1145/2931088.2931090
https://pure.qub.ac.uk/en/publications/3bf3d0c6-6967-41b3-8338-8f5229c0a932

A Scalable Runtime for the Ecoscale Heterogeneous
Exascale Hardware Platform

Paul Harvey, Konstantin Bakanov, Ivor Spence, Dimitrios S. Nikolopoulos
Queen’s University Belfast

University Road
Belfast, United Kingdom

paul@paul-harvey.org, {k.bakanov, i.spence, d.Nikolopoulos}@qub.ac.uk

ABSTRACT
Exascale computation is the next target of high performance
computing. In the push to create exascale computing plat-
forms, simply increasing the number of hardware devices is
not an acceptable option given the limitations of power con-
sumption, heat dissipation, and programming models which
are designed for current hardware platforms. Instead, new
hardware technologies, coupled with improved programming
abstractions and more autonomous runtime systems, are re-
quired to achieve this goal.

This position paper presents the design of a new runtime
for a new heterogeneous hardware platform being developed
to explore energy efficient, high performance computing. By
combining a number of different technologies, this frame-
work will both simplify the programming of current and fu-
ture HPC applications, as well as automating the scheduling
of data and computation across this new hardware platform.
In particular, this work explores the use of FPGAs to achieve
both the power and performance goals of exascale, as well as
utilising the runtime to automatically effect dynamic config-
uration and reconfiguration of these platforms.

CCS Concepts
•Computer systems organization → Parallel archi-
tectures; •Software and its engineering → Schedul-
ing; Language features; •Hardware → Power and energy;

Keywords
heterogeneous parallel runtime, automated scheduling, par-
allel programming, FPGA, opencl, data partitioning

1. INTRODUCTION
There are more applications than ever which require high

performance computing platforms. As the need for more
detailed weather simulations, oil field simulations, or smart
city applications increases, so too does the need to move to-
wards hardware platforms which can perform a billion billion

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ROSS ’16 Kyoto, Japan
c© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

calculations per second: exascale computing.
In order to meet this demand, simply increasing the num-

ber of hardware devices is not a scalable option given the
relative non-linear scaling of power consumption, heat gen-
eration, space requirements, and cost. For example, extrap-
olating from the top HPC systems, such as China’s Tianhe-2,
it is estimated that sustaining exaflop performance requires
a substantial 1GW of power. Consequently, more power ef-
ficient hardware architectures are going to be required.

In addition to the changes required to the hardware plat-
forms, there is also a need to support better programming
models, and their associated runtimes, in order to enable
developers to take advantage of these platforms. Although
the default MPI + X programming approach, where X is
a programming language of choice, has been and still is an
efficient programming option, the low level at which MPI
operates is an ongoing barrier to programmers across the
spectrum of abilities. Furthermore, as HPC systems are be-
coming increasingly heterogeneous, using either parallel or
reconfigurable hardware architectures (accelerators), there
is requirement to move away from semantically broken pro-
gramming models which are aimed at current computing
technologies towards those better able to support develop-
ers for these heterogeneous distributed platforms.

This paper outlines the design of a runtime system for
a new heterogeneous hardware platform. In order to ease
adoption and uptake, this runtime is based on the task and
data parallel models found within the OpenCL programming
framework, but expands upon this in order to transparently
leverage the partitioned global address space (PGAS) model
that it provides across a number of devices. In particu-
lar, this work seeks to break the one-to-one association be-
tween a hardware device and the current granularity of work
in OpenCL to provide flexibility for developers. The run-
time will extend OpenCL abstractions, enabling automated
placement of data and computation across a heterogeneous
hardware platform, with particular focus on FPGAs.

The runtime is being developed as part of the Ecoscale
Project1 and will execute on a new hardware platform be-
ing developed in parallel to address the requirements of en-
ergy efficient, scalable computing in order to meet the future
needs of an exascale compute platform2. Additionally, the
runtime and the hardware platform are being developed in

1www.ecoscale.eu
2Ecoscale is part of a trio of projects, all looking
to creating the building blocks of an exascale plat-
form - http://www.hpcwire.com/2016/02/24/eu-projects-
unite-exascale-prototype/

Figure 1: The Runtime Architecture of OpenCL

tandem with a number of industrial applications to provide
meaningful use cases to both guide and exercise the work.

The key contributions of this work are:

• Straightforward extensions to the OpenCL program-
ming interface to support automated partitioning of
data across multiple heterogeneous hardware platforms.

• A new set of device abstractions for OpenCL to enable
location transparent programming.

• The design of a runtime system to enable the schedul-
ing of data and computation across multiple heteroge-
neous hardware platforms, including hardware recon-
figuration at runtime.

The remainder of this paper is organised as follows: Sec-
tion 2 provides an overview of the state of the art to place
this work in context, Section 3 describes the hardware plat-
form being targeted by this work, the proposed language
extensions and design of the runtime are described in Sec-
tion 4, and a summary of the paper is made in Section 5.

2. BACKGROUND
There have been a number of different approaches to ad-

dress the creation and execution of HPC applications. In
order to establish a context for this work the following is a
discussion of OpenCL, as well as a summary of the related
literature, separated into four equivalence classes.

2.1 OpenCL
OpenCL is a programming framework for heterogeneous

and parallel computing. It is standardised and is managed
by the Khronos working group3. In OpenCL, users are re-
quired to think in terms of host and device code, where a
host is a coordinator application on the CPU, and a device is
an accelerator. An accelerator may be a CPU, GPU, FPGA,
or co-processor such as the Xeon Phi [10].

Given the increasing simplicity with which developers are
able to program accelerators with OpenCL, it is a prime
candidate to explore exascale programming.

2.1.1 OpenCL Configuration
In OpenCL, the host is tasked with setting up, dispatch-

ing, and collecting results from a device. OpenCL is accessed

3https://www.khronos.org/opencl/ - Accessed 5 January
2015

1 __kernel void square(__global float* input ,
2 __global float* output ,
3 const unsigned int count){
4 int i = get_global_id (0);
5 if(i < count)
6 output[i] = input[i] * input[i];
7 }

Listing 1: OpenCL Kernel to Compute the Square
of An Input Array

through an API, which enables relatively low-level access to
data types and functions in order to program and interact
with one or more accelerators.

Creating an OpenCL environment consists of first query-
ing the hardware at runtime to determine the available ven-
dor platforms and the devices available in each platform.
Platforms are essentially drivers provided by the hardware
vendor, and the devices represent the actual accelerators.
Then, a context must be created. A context is an umbrella
structure that holds the device(s) to be used, as well as other
runtime software constructs. A command_queue is then as-
sociated with each device and placed within the context. A
command_queue is used to issue commands to a device. Com-
mands include device queries, memory management opera-
tions, and kernel (Section 2.1.2) invocations. After this, a
user creates a program with the kernel source file, and com-
piles it at runtime. The specific function to be executed
within the compiled source is then used to create the ker-

nel object. At this point the OpenCL environment has been
constructed.

From here the user allocates memory on the device and
then copies host data into this memory. The device memory
is then associated with the correct position in the kernel ar-
guments. Then, the number of dimensions upon which the
kernel should work is calculated, and the kernel is launched
on the device, with this information, via the command_queue.
Usually, the host then blocks attempting to read data back
from the device once it has finished its computation. Once
all computation is complete and the device is no longer re-
quired, there are appropriate destructor functions. The de-
vice itself is treated simply as a functional unit. Data and
code are passed to the device, the device executes this code,
and the results are read back by the host.

2.1.2 Kernels
A device runs a special piece of code known as a kernel.

An OpenCL kernel is written in a C-like syntax and repre-
sents the logic of a single thread. The number and groupings
of threads are supplied during the configuration stage on the
host. These values are known as the local and global work-
sizes, and are used to optimise the allocation of threads to
the underlying hardware for a given dataset. Within a ker-
nel, the currently executing thread may be identified via the
API. This can be used to customise application logic. The
kernel is expressed as a function with parameters. Informa-
tion for the actual computation is passed to this function as
arguments by the host.

The OpenCL model uses a memory hierarchy in which
memory is split into global, local, private, and constant

regions. This is a direct mapping to the hardware configu-
ration of memory found in GPUs, however the same model
is applied to all hardware devices. Global memory is shared

amongst all threads, local memory is shared between a spec-
ified group of threads, and private memory is specific to a
thread. Global and local memory are subject to unsynchro-
nised modifications, although there are mechanisms to syn-
chronise access. Constant memory is shared by all threads,
but is read only. Listing 1 shows a simple kernel.

2.2 Location Transparent Accelerators
OpenCL was designed for single machines which contain

one or more accelerators. Each of these accelerators are
explicitly interacted with to both manage and execute kernel
computations. However, as discussed previously, modern
applications require access to a much larger pool of resources
than a single machine can provide. A number of projects
have begun to explore the idea of expanding the OpenCL
runtime to harness the resources available in a cluster.

SnuCL [12] extends the OpenCL framework by transpar-
ently presenting remote devices as though they were local.
The OpenCL API (v. 1.1) is largely unchanged, except for a
minimal number of optional extensions, with the runtime in-
tercepting all functions and redirecting them as appropriate.
MPI [6] is used as the remote communications library with
an instance the OpenCL runtime executing on each machine
as an MPI node.

SnuCL presents relative simplicity with respect to the op-
erating model, its ability to run standard OpenCL appli-
cations unchanged, and the optimizations implemented to
address the problems due to executing in the distributed
environment. This said, there are a number of limitations
of SnuCL. Firstly, it only supports OpenCL version 1.1[12].
As a consequence it lacks the support of the shared vir-
tual memory (SVM) that the newer versions of the OpenCL
standard provide. This is important as the need to explicitly
manage data movement is a non-trivial problem for devel-
opers in terms of performance and linguistic complexity [8].
Furthermore, each device must be configured and managed
individually, which ultimately limits the scalability of such
approach. There is also no robust discussion of failure man-
agement in SnuCL which is necessary generally, but espe-
cially in a distributed environment.

VOCL [21] is a similar system to SnuCL. It also imple-
ments OpenCL specification 1.1 and uses MPI for inter-node
communication. Given its similarity to SnuCL, VOCL has
similar advantages. Notable differences are that VOCL is
positioned as a fully comprehensive virtual framework, with
support for device checkpoint/restart. However, like Snucl
there are a number of limitations. Whilst VOCL is a step
closer to our work in that each device is virtualised, the
mapping between an OpenCL (software) device and a hard-
ware device is still one-to-one, which once again limits its
scalability. Also, VOCL uses a centralised controller, with
no discussion on how to mitigate performance bottlenecks
or single points of failure.

2.3 Scheduling of Kernels
FluidiCL [16] is a system that dynamically schedules ker-

nels between a GPU and CPU in order to improve perfor-
mance. When the kernels are compiled in the host, the
runtime will compile the specified kernel for both devices.
When dispatched, the kernel computation is split into many
smaller computations which are dispatched on both the CPU
and GPU at the same time. Each subkernel will then read
data from each end of a single data set. The idea is that

each device will perform as much work as possible, with the
more suitable device (CPU/GPU) processing faster and con-
suming more work. The work experiments with the optimal
size of subkernels and notes that it is dependant on whether
the kernel is data or compute-intensive.

In order to ensure consistency between the two devices,
FluidiCL requires that a complete duplicate of the data be
present on each device. This is highly inefficient, and for
large computations with large datasets, such as those be-
ing targeted in Ecoscale, makes this an infeasible approach.
Also, the approach requires developers to manually alter
their kernel code to include coordination points to synchro-
nise data between the two devices. There is no support for
synchronisation primitives. Finally, the authors note that
FluidiCL is not designed for distributed computations or
devices other than GPU/CPU, and is therefore not appro-
priate for the hardware described in this paper.

Shepard [15] is a framework with similar goals to this
work. Shepard aims to decouple application development
from the target platform in systems containing multicore
CPU and GPU setups. The assumption is that developers
will have access to a standard library of kernels for a range of
operations. Developers will group these kernels into tasks.
The runtime can then group these sets of kernels into se-
quential executions, with minimal data movement. Through
a combination of data input size and runtime profiling, the
runtime will then compute the costs of executing these ker-
nels on different devices. Based on these costs, the scheduler
will decide if the kernel should launched on a CPU or a GPU.

Although collections of kernels are grouped into tasks,
Shepard fundamentally schedules at the level of an entire
kernel. This limits the potential parallelism in the system
as hardware platforms with multiple devices, such as a clus-
ter, would not be fully utilised. Hence, having the kernel as
the schedulable unit is sub-optimal.

Yan et al. [22] extend the OpenMP [4] and OpenACC [20]
pragmas to support scheduling entire kernel executions on
different devices. By using annotations, Yan et al. aim to
modify existing code, thus reducing the barrier to uptake
and integration with existing code bases. Again, this work
limits potential parallelism by scheduling entire kernels.

Wen et al. [19] describe a scheduler for OpenCL kernels.
The system uses machine learning to decide which device
(CPU/GPU) an entire kernel should be executed on. By
monitoring a number of different linguistic properties of a
kernel, as well as the expected input data to a kernel, the
machine learning algorithm will decide upon which device
the kernel would be most efficiently executed on terms of
performance (and not power).

This scheduler is designed for systems executing multi-
ple applications, whereas ECOSCALE targets HPC systems
which execute a single application. The work of Wen et al.
is designed for systems with GPUs or CPUs, not FPGAs.
Also, their system is designed for one or two networked de-
vices, as opposed to a cluster or supercomputer. However,
the runtime described in this paper will attempt to apply a
number of these techniques in an HPC setting.

A related and similar system has been developed by Grewe
et al. [7]. This approach also uses machine learning, but
with a greater emphasis on predicting scheduling of kernels,
rather than online learning. This approach again schedules
entire kernels on GPU/CPU systems.

2.4 HPC Languages
There are a number of different HPC languages [23, 14,

3, 1]. The goal of these languages is to provide appropri-
ate programming idioms specifically for HPC computing to
simplify the expression of HPC applications with regard to
parallelism and data placement across a cluster of machines
or a supercomputer. Additionally, the runtime representa-
tion and manipulation of data is often highly optimised for
large contiguous arrays of data which fits the requirements
of typical HPC applications.

In general, one of the main challenges of these languages
is taking existing applications which have been designed for
conventional hardware platforms, such as some simulation
software or graph-based database applications, and to recre-
ate them in the new language. This requires applications to
be completely recreated in a new language, which can be
challenging as some applications have been created years
ago and maintained across the decades. Although tools can
assist, there is no guarantee that the new representation is
bug-for-bug compatible with the existing version.

2.5 Data Partitioning
Both compute and data intensive applications are present

in HPC, as shown by most standard benchmarks now con-
taining a mix of both workloads. As HPC applications in-
corporate more data-intensive applications, data placement
across distributed hardware domains becomes increasingly
challenging for the programmer to orchestrate, as well as
a bottleneck for performance. The applications targeted in
this work are a mix of compute and data intensive.

Although there is a strong desire to automatically clas-
sify data partitions, most languages leave this task to the
developer and provide tools to simplify this process [23].
The extensions by Yan et al. [22] build on existing work to
support specifying how data should be partitioned between
different hardware devices during a computation:

• REPLICATE: A separate copy of the specified data is
made and sent to each device.

• BLOCK(n): Divides the indices in an array dimension
into contiguous, equal-sized blocks of size N/P (P is the
number of devices) and each device takes one block (n
is the number of elements in the block; default: n=
N/P)

• CYCLIC(n): Maps every i th block to number i device
of the target dimension of the device topology. (de-
fault: n=1)

In addition to these techniques, Yan et al. explain further
language annotations to support the exchange of halo infor-
mation - a key issue for many HPC applications. This is the
approach that will be taken initially by this work for data
partitioning as it harmonises well with the existing mecha-
nism in OpenCL for computational partitioning.

2.6 Summary
From the literature review in this section, the following

key conclusions can be drawn:

• There are no dynamic scheduling approaches for OpenCL
kernels which target FPGA hardware

Figure 2: Ecoscale Hardware Architecture

• There is no straightforward programming approach to
enable the use of multiple heterogeneous hardware ac-
celerators, distributed or otherwise.

Given these conclusions, there is a clear gap for fundamen-
tal and practical research of runtime systems and scheduling
for distributed heterogeneous systems which include FPGA
hardware platforms.

3. ECOSCALE HARDWARE
As part of the Ecoscale project, a new hardware platform

is being developed. The following summarises the platform,
with a full description found here [13].

This novel system architecture uses CPUs, memory and
reconfigurable blocks (FPGAs) in a highly parallel manner.
Driven by the characteristics and trends of future HPC ap-
plications, the ECOSCALE architecture logically partitions
the hardware resources (CPUs, reconfigurable logic, memo-
ries, SSDs) into several interconnected NODEs which are
further partitioned into several WORKERS, depending on
the physical structure of the system. Thus, one or more
NODEs offer:

• UNIMEM: a shared partitioned global address space
that allows WORKERs to communicate via regular
loads and stores without global cache coherence.

• UNILOGIC: shared partitioned reconfigurable resources
that share the UNIMEM space with software tasks.

Other architectures either require a global cache coher-
ent mechanism, which simply cannot scale, or support only
DMA operations, which are not efficient for small data trans-
fers, such as messages to synchronize remote threads, or to
configure a remote peripheral [13]. The UNIMEM architec-
ture allows moving tasks and processes close to data instead
of moving data around.

Figure 2 shows the Ecoscale platform. It consists of sev-
eral WORKERs communicating through a multi-layer inter-
connection. There will be 12 WORKERs per NODE. Each
WORKER is an independent computing unit. It includes
a CPU, an FPGA, and an off-chip DRAM memory. The
communication and synchronization between WORKERs is
performed via a multi-layer interconnection, which enables
load and store commands, DMA operations, and interrupts.

Communication overheads between a CPU and an accel-
erator is one of the greatest challenges. Recently, only ex-
plicit memory transfers between host and accelerator mem-
ory were supported, as for GPGPUs. Recent advances en-
able the integration of host and accelerators on the same
chip, thus accelerators can directly access host memory.

WORKERs are composed of accelerator blocks which act
as a (UNIMEM) Unit of Compute. Hence, they can interface
directly with any other UNIMEM units of compute, where
each unit caches its local data coherently. Each accelerator
can also cache its local data and provide coherent access
from remote UNIMEM units. If a single accelerator block
needs to span across multiple FPGA local memories, then
the FPGA units can provide their own coherence schemes
independent of UNIMEM.

The reconfigurable resources are typically configured to
use physical addresses in order to access shared variables.
Since only the OS has access to the physical address space,
the intervention of the OS is unavoidable. A dual stage I/O
MMU, can resolve this problem by translating virtual ad-
dresses to physical addresses in hardware. Using an I/O
MMU, the proposed architecture will allow “user-level ac-
cess” to the reconfigurable accelerators.

Sharing of the limited reconfigurable resources between
WORKERs is paramount. Thus, within a NODE, any WORKER
may access any (local or remote) FPGA via the multi-layer
interconnect shown in Figure 2.

4. ECOSCALE FRAMEWORK
The Ecoscale framework is a combination of a runtime and

programming interface extensions for the OpenCL frame-
work. It is being designed for both breadth and flexibil-
ity. The goal for this runtime is to be able to support a
range of different application categories including traditional
compute-intensive and physics applications, as well as data-
intensive applications.

4.1 Language
From a linguistic perspective, this work will be based on

the default OpenCL programming model. As noted in Sec-
tion 2.1, OpenCL is a popular approach to programming
and executing computation mainly on CPU/GPU acceler-
ators. Given this popularity, this choice enables this work
to be compatible with existing applications, and will require
minimal effort from developers in terms of uptake. This
work will initially support the C language, but will be as
compatible as OpenCL currently is with other languages.

4.1.1 Abstractions
Currently, OpenCL provides a software abstraction for an

accelerator known as a device, where each software device
has a 1-to-1 relationship with an underlying hardware de-
vice. The current range of software devices are DEFAULT,
CPU, GPU, ACCELERATOR. The work intends to extend this de-
vice abstraction to include aggregation of multiple hardware
devices. Specifically,

• WORKER : Abstraction of the devices found in a
worker.

• NODE : Abstraction of the devices found in a node.

The motivation for these new devices it to enable a devel-
oper to submit work to a software device and allow the run-
time to best schedule the kernel computation amongst the
hardware devices abstracted by the software device. Schedul-
ing is discussed further in Section 4.3.

Additionally, a developer will be able to express the types
of accelerator which will be available within a WORKER or
a NODE. For example, a user may wish to have only CPUs,

or only FPGAs. Equally, the user may wish to express the
locality of kernel execution, such as within a single WORKER.
This will be achieved by extending the existing OpenCL
API.

The logical conclusion of this approach is to include a
CLUSTER software device, which would contain NODEs. Al-
though linguistically this is a very achievable goal, it is not
clear if this would be an effective approach. Given that there
are many cluster level scheduling tools, such as slurm [11], it
is uncertain if the CLUSTER abstraction would be required.
This is an open question and will be explored during the
course of the work.

By expanding upon the OpenCL framework, this work will
provide the user with extra functionality which builds upon
existing idioms, rather than introducing lots of new syntax
and concepts. This also has the advantage of increasing
compatibility with legacy code.

4.1.2 OpenCL Extensions
As described in Section 4.3, when using a software device

which abstracts multiple accelerators it is the responsibil-
ity of the scheduler to partition the computation and data
placement as best it can. However, as with other efforts
noted in Section 2, it should be possible for the developer to
provide suggestions to the runtime to assist with this task.

The first extensions are for kernel declarations. The pur-
pose is to indicate to the runtime system which accelerator
this kernel is most suited to, as determined by the developer.
For example, #pragma eco <device type>

The current options include FGPA and CPU. Conventional
OpenCL supported this concept by directly choosing the de-
vice to execute the kernel on, however, as a software device
now abstracts multiple devices, this feature becomes useful.
It should be noted, that one of the main goals of this work
to identify the most appropriate accelerator automatically
at runtime. This feature is conceptually similar to the reg-

ister keyword in C.
The second set of extensions are to assist in partition-

ing the data to simplify the process of distributing the data
across multiple devices at runtime. OpenCL already en-
ables a developer to specify how a computation should be
partitioned into workgroups. This work proposes a similar
mechanism to help direct the runtime to partition data. The
runtime assumes input and output to kernels to be large con-
tiguous arrays of data. Consequently, the specified number
of workgroups will also dictate the number of data blocks.
For example,
clCreateBuffer(context, REPLICATE,...);

In the default situation, the runtime can automatically par-
tition the data. For more complicated situations, such as
halo exchanges, the programmer will be presented with a
similar set of functions as in Yan et al. [22].

It is important to note that these OpenCL extensions
are optional - i.e. the application will complete successfully
without them. Thus, the burden on the developer is non-
existent if desired. However, application performance in a
number of dimensions will improve with their use.

4.1.3 Compilation
As the runtime will use OpenCL, kernels will be compiled

at runtime for the CPU. The Ecoscale project will be creat-
ing a custom kernel compiler for an FPGA. As well as gen-
erating a bitstream to be encoded onto the FPGA hardware

Figure 3: Architecture of the Ecoscale Runtime

from a kernel, the compiler will output metadata describing
the power, performance, and space consumed on the FPGA
hardware. To enable the scheduler to optimise for different
metrics, the compiler will generate multiple bitstreams per
kernel, each optimised for a different metric. These config-
urations will be collected together in a library and be made
available to the runtime. Due to space limitations, discus-
sion of the FPGA compiler is omitted.

4.2 Software Architecture
As described in Section 3, the hardware platform will con-

sist of several WORKERs located within a NODE. One
WORKER per NODE will be used as a controller. Each
WORKER will run an operating system and contain an
Ecoscale runtime, which will be executed on a dedicated
CPU core. The entire runtime is replicated on each node for
robustness, see Section 4.5. The runtime will be based on
an open source implementation of OpenCL (POCL [9]).

An ecoscale runtime will consist of a communication li-
brary, a scheduler, a log of performance metrics of previous
executions, access to the FPGA bitstreams and their associ-
ated metrics (Section 4.1.3), and an online machine learning
component, Figure 3. When initialised, the runtime will be
pointed to a library of FPGA bitstreams.

4.3 Scheduling
Within this work, the novel hardware architecture presents

the opportunity to explore two aspects of scheduling. The
first is hierarchical multi-level scheduling, and the second is
individual scheduling within an OpenCL device.

Given the myriad contribution that have been made in
the area of software scheduling, this work seeks to leverage
as much existing technology as possible. This said, the pres-
ence of FPGA accelerators presents a new and novel prob-
lem to be solved, particularly in terms of dynamic runtime
reconfiguration under the control of the scheduler.

The scheduler will be responsible for the placement of ex-
ecution and data around the system. Figure 4 shows an
example of a scheduling timeline in the proposed system.

4.3.1 Unit of Schedulability
Conventional OpenCL deploys an entire kernel execution

on a single device. Given that an average OpenCL applica-
tion has approximately tens of kernels, this model does not
enable full utilisation of a hardware platform with thousands
of devices. This would require a programmer to manually
break kernels into many smaller kernels, and schedule them.

Alternatively, this work proposes that in such situations,
developers submit kernels to the new software devices pro-

Figure 4: Scheduling of Automatically Partitioned
Kernel Invocations

posed in Section 4.1.1, and that the runtime partition the
kernels into workgroups. It is these workgroups that will be
scheduled across the different accelerators. This has three
main advantages. Firstly, by using a runtime scheduler, the
best hardware platform can be found to execute a workgroup
for a given invocation. This placement may be different for
different invocations. Secondly, the scheduler will be able
to schedule multiple workgroups as units, should this be re-
quired, whereas this is a non-trivial task to accomplish man-
ually in an application. Thirdly, as a workgroup is a smaller
unit of work compared to an entire kernel, it will be pos-
sible to interleave the execution of different workgroups for
greater device utilisation. Note that there is no requirement
for workgroups to be from the same kernel. Workgroups
represent a compromise between scheduling individual work
items and entire kernels. The number of workgroups can be
programmer defined, or automatically inferred.

The ability to dynamically schedule OpenCL kernel work-
groups across heterogeneous hardware platforms is seen as
a key research objective of this work.

4.3.2 Preemption
The Ecoscale runtime will use a run to completion model.

There are two reasons for this. Firstly, although it is possi-
ble to provide preemption on FPGAs by time-multiplexing
different workloads, the process of context switching is slow,
effecting the performance of the execution, thus nullifying
the performance gains of preemption [18]. Secondly, it is the
workgroups of the kernels which will be scheduled. These
will have a shorter lifetime compared to the kernel as a
whole. Consequently, it will be possible to interleave the
execution of different works groups as they complete, with-
out requiring preemption.

4.3.3 Device Level Scheduling
In the first instance, each kernel will be scheduled as an

entire unit, as is currently done. However, given that aver-
age applications consist of tens of kernels, and current HPC
platforms consist of thousands or more hardware accelera-
tors, this approach does not scale. Therefore, this work pro-
poses to schedule the workgroups of a kernel across many
accelerators in order to concurrently take advantage of as
many hardware accelerators as possible.

As noted in Section 4.1.1, this work presents two addi-
tional OpenCL device types. As these are software devices,
it is the responsibility of the runtime to schedule each work-

group invocation on an accelerator. To make this decision,
there are three primary categories that will be considered:
performance, power consumption, data locality.

Performance will be established in two ways. Firstly, the
runtime will monitor kernel execution on different hardware
platforms and use this information for future scheduling de-
cisions. Secondly, the size of the input data will be used as a
soft measure of the length of the computation. Unlike other
work which uses this information for entire kernels, this will
need to be considered for each workgroup.

Power consumption for the CPU will be directly moni-
tored via hardware sensors, however, the FGPA compiler
will also provide power consumption data. As the configu-
ration of the FPGA is being precisely generated, this infor-
mation will be highly accurate.

Finally, the third metric is data locality. As the sched-
uler is responsible for placing both the computation and the
data, it knows exactly where the data will be for the next
kernel (set of workgroups) invocation. As it is easier for the
scheduler to move a few kilobytes of data representing the
computation, rather than the potential gigabytes of raw data
for the computation, the scheduler will focus on keeping data
in the same physical location for as long as possible. This is
similar to the technique used in current GPU programming
to reduce the cost of moving data.

Beyond these established metrics, the scheduler will also
be optimising for power efficiency and FPGA space occu-
pancy. In order to achieve this, and the previous conditions,
machine learning techniques will be used to automatically
choose the most appropriate accelerator for an execution.
Given that the goal is to classify each schedulable unit to
the most appropriate hardware accelerator, support vector
machines (SVMs) [2] would be the most sensible approach.
SVMs are suited to classifying data into two classes. Many
SVMs combined can partition data into multiple classes.

Although machine learning techniques have been used pre-
viously in conjunction with OpenCL [7], these have been
between a maximum of two devices, where each device was
a CPU or a GPU. Given the significant operational differ-
ences between a GPU and an FPGA, this work addresses a
well-defined advancement in the state-of-the-art.

4.4 Memory Architecture
In conventional OpenCL applications, memory is an im-

portant consideration for the developer. When using an ac-
celerator, the developer must manually handle data move-
ments between the host (usually a CPU) and the accelerator
(usually a GPU). This is required as the host and accelera-
tor have different physical memory regions. Data movement
is often one of the greatest bottlenecks in terms of perfor-
mance, and requires the careful attention of the developer.

As noted in Section 3, the Ecoscale hardware will enable
memory located in different WORKERs to be accessed via
DMA. It is the responsibility of the runtime to control DMA
transparently to the application. Thus reducing the latency
of memory accesses between different RAM blocks within a
NODE, and enable more flexible scheduling options.

As it is impossible to know the number and ordering of
memory accesses at compiletime, the ability to transport
data around the hardware system for random (and planned)
memory access is important.

4.5 Resilience

As the size of the computation and the compute platform
increases, it is increasingly necessary to consider the effects
of hardware, network, or software failures, and to provide
some method of mitigation. The Ecoscale runtime is de-
signed to address this with respect to continuity of compu-
tation and continuity of data.

4.5.1 Computation
The Ecoscale runtime is a centralised system with one

WORKER as a dedicated master, and the others as slaves.
However, each worker will posses a full copy of the Ecoscale
runtime meaning that each WORKER is capable of becom-
ing the controller, even though it may be a slave. Also, one
WORKER will be nominated, at runtime via a leadership
election, as a backup controller to monitor the controller.

It is the responsibility of the master to monitor the health
of each slave, and to respond appropriately on failure detec-
tion. Failure is detected by either explicit failure messages
communicated by a slave, such as kernel compilation fail-
ure, or implicitly via the lack of heartbeat messages from a
slave. Here, each slave will periodically send a heartbeat
message to the controller indicating that it is still functional
and responsive.

If the controller detects that a slave has failed, via one
of the above methods, then no further work will be dis-
patched to that WORKER, and all outstanding work will be
reissued to other slaves. The controller maintains account-
ing information on which computation is located on which
WORKER. This information is periodically saved to a file.
As workgroups will run to completion, there is no possibil-
ity to recover partially completed work, and the workgroup
must be reissued. This failure is also reported to a log file
for an external manager (human or machine) to monitor.

Should the controller fail there are two possibilities. Firstly,
if the backup detects that the controller has failed, it as-
sumes the role of controller, duplicating the accounting in-
formation of the controller, performing an election to deter-
mine a new backup, and continues operation. The backup
also notes these events in a log file. Operation continues as
normal. Secondly, if there is some catastrophic failure, the
system will crash. Computationally, the log of accounting
information which the controller has been logging, enables
a checkpoint from which to restart computations.

As the NODEs in a system become networked together,
this approach can be replicated up the hierarchy.

4.5.2 Data
The most common way to ensure the continuity of data

in the presences of errors is via some distributed check-
point/restart protocol [5]. This approach sees snapshots of
data and computation being taken at different points of an
execution. Should an error occur, the data from the last
snapshot of the computation is recovered, and the execution
restarted from the last known point. A similar approach
will be taken in this work, building on existing efforts in
this direction [17].

5. CONCLUSION
This paper presents the design for a runtime system to tar-

get heterogeneous high performance computer architecture,
with an emphasis on power efficiency. By extending and
enhancing the existing OpenCL framework, this work will
enable the portable performance and ease of programming

which is currently offered by OpenCL, combined with the
energy efficiency, compute power, and reconfigurable com-
puting offered by the Ecoscale hardware platform. Also, the
ability to transparently schedule OpenCL kernels at the level
of workgroups across heterogeneous hardware platforms is a
key innovation that will enable such OpenCL applications
to take advantage of current and next generation HPC plat-
forms.

In this way, our work will explore and realise a power and
computationally efficient way to enable high performance
computing, which is intended to lay a foundation for an
exascale compute platform.

6. REFERENCES
[1] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.

Leiserson, K. H. Randall, and Y. Zhou. Cilk: An
efficient multithreaded runtime system. In Proceedings
of the Fifth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPOPP ’95,
pages 207–216, New York, NY, USA, 1995. ACM.

[2] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A
training algorithm for optimal margin classifiers. In
Proceedings of the Fifth Annual Workshop on
Computational Learning Theory, COLT ’92, pages
144–152, New York, NY, USA, 1992. ACM.

[3] B. Chamberlain, D. Callahan, and H. Zima. Parallel
programmability and the chapel language. Int. J. High
Perform. Comput. Appl., 21(3):291–312, Aug. 2007.

[4] B. Chapman, G. Jost, and R. Van Der Pas. Using
OpenMP: portable shared memory parallel
programming, volume 10. MIT press, 2008.

[5] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson. A survey of rollback-recovery protocols in
message-passing systems. ACM Comput. Surv.,
34(3):375–408, Sept. 2002.

[6] M. P. Forum. MPI: A message-passing interface
standard. Technical report, Knoxville, TN, USA, 1994.

[7] D. Grewe, Z. Wang, and M. F. P. O’Boyle. Opencl
task partitioning in the presence of gpu contention. In
26th International Workshop, LCPC 2013, San Jose,
CA, USA, September 25–27, 2013., 2013.

[8] P. Harvey, K. Hentschel, and J. Sventek. Parallel
programming in actor-based applications via opencl.
In Proceedings of the 16th Annual Middleware
Conference, Middleware ’15, pages 162–172, New
York, NY, USA, 2015. ACM.

[9] P. Jääskeläinen, C. S. de La Lama, E. Schnetter,
K. Raiskila, J. Takala, and H. Berg. pocl: A
performance-portable opencl implementation.
International Journal of Parallel Programming,
43(5):752–785, 2015.

[10] J. Jeffers and J. Reinders. Intel Xeon Phi Coprocessor
High Performance Programming. Newnes, 2013.

[11] M. A. Jette, A. B. Yoo, and M. Grondona. Slurm:
Simple linux utility for resource management. In In
Lecture Notes in Computer Science: Proceedings of
Job Scheduling Strategies for Parallel Processing
(JSSPP) 2003, pages 44–60. Springer-Verlag, 2002.

[12] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee.
Snucl: An opencl framework for heterogeneous
cpu/gpu clusters. In Proceedings of the 26th ACM
International Conference on Supercomputing, ICS ’12,

pages 341–352, New York, NY, USA, 2012. ACM.

[13] I. Mavroidis, I. Papaefstathiou, L. Lavagno,
D. Nikolopoulos, D. Koch, J. Goodacre,
V. Papaefstathiou, I. Sourdis, M. Coppola, and
M. Palomino. ECOSCALE: Reconfigurable Computing
and Runtime System for Future Exascale Systems.
Institute of Electrical and Electronics Engineers
(IEEE), 2016.

[14] R. W. Numrich and J. Reid. Co-array fortran for
parallel programming. SIGPLAN Fortran Forum,
17(2):1–31, Aug. 1998.

[15] E. O’Neill, J. McGlone, P. Milligan, and P. Kilpatrick.
Shepard: Scheduling on heterogeneous platforms using
application resource demands. In Proceedings of the
2014 22Nd Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing,
PDP ’14, pages 213–217, Washington, DC, USA, 2014.
IEEE Computer Society.

[16] P. Pandit and R. Govindarajan. Fluidic kernels:
Cooperative execution of opencl programs on multiple
heterogeneous devices. In Proceedings of Annual
IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’14, pages
273:273–273:283, New York, NY, USA, 2014. ACM.

[17] A. G. Schmidt, B. Huang, R. Sass, and M. French.
Checkpoint/restart and beyond: Resilient high
performance computing with fpgas. In
Field-Programmable Custom Computing Machines
(FCCM), 2011 IEEE 19th Annual International
Symposium on, pages 162–169, May 2011.

[18] S. Trimberger. Scheduling designs into a
time-multiplexed fpga. In Proceedings of the 1998
ACM/SIGDA Sixth International Symposium on Field
Programmable Gate Arrays, FPGA ’98, pages
153–160, New York, NY, USA, 1998. ACM.

[19] Y. Wen, Z. Wang, and M. F. P. O’Boyle. Smart
multi-task scheduling for opencl programs on
CPU/GPU heterogeneous platforms. In 21st
International Conference on High Performance
Computing, HiPC 2014, Goa, India, December 17-20,
2014, pages 1–10, 2014.

[20] S. Wienke, P. Springer, C. Terboven, and D. an Mey.
Openacc: First experiences with real-world
applications. In Proceedings of the 18th International
Conference on Parallel Processing, Euro-Par’12, pages
859–870, Berlin, Heidelberg, 2012. Springer-Verlag.

[21] S. Xiao, P. Balaji, Q. Zhu, R. Thakur, S. Coghlan,
H. Lin, G. Wen, J. Hong, and W. chun Feng. Vocl: An
optimized environment for transparent virtualization
of graphics processing units. In In Proc. of the 1st
Innovative Parallel Computing (InPar, 2012.

[22] Y. Yan, P.-H. Lin, C. Liao, B. R. de Supinski, and
D. J. Quinlan. Supporting multiple accelerators in
high-level programming models. In Proceedings of the
Sixth International Workshop on Programming Models
and Applications for Multicores and Manycores,
PMAM ’15, pages 170–180, New York, NY, USA,
2015. ACM.

[23] Y. Zheng, A. Kamil, M. B. Driscoll, H. Shan, and
K. Yelick. Upc++: A pgas extension for c++. In
Parallel and Distributed Processing Symposium, 2014
IEEE 28th International, pages 1105–1114, May 2014.

