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Abstract
This paper considers the measurement of the internal radius of a number of
similar, short, tubular leadpipes using pulse reflectometry. Pulse
reflectometry is an acoustical technique for measuring the internal bore of a
tubular object by analysing the reflections which occur when an acoustical
pulse is directed into the object. The leadpipes are designed to form the
initial, or lead, part of a trumpet or cornet and their internal radii differ by
less than 0.1 mm between similar pipes. The ability of the reflectometer to
detect these small differences, which are considered by players to produce a
noticeable difference in the sound of an instrument, are investigated. It is
seen that the pulse reflectometer is able to distinguish between leadpipes
with different nominal radii varying by as little as 0.03 mm, demonstrating
its potential in the study of musical instruments and showing that it can be
used as a diagnostic tool by the instrument manufacturer to detect defects
which are significant enough to acoustically alter performance. The absolute
accuracy of the radius measurements is also considered at the end of the
leadpipe, where the uncertainty is ±0.05 mm.

Keywords: acoustic pulse reflectometry, bore profile, leadpipes

1. Introduction

In the production and assessment of musical wind instruments
it is very useful for the manufacturer to be able to investigate
the internal bore, since the ultimate musical performance of
the instrument is determined to a great extent by this profile.
Although the relationship between the bore shape and the
acoustics of the instrument is very complicated, the ability
to obtain a detailed description of the internal profile of the
instrument can be useful to the manufacturer, particularly as
a diagnostic tool enabling comparisons to be made between
‘good’ and ‘bad’ instruments. Comparisons of this type can
pinpoint regions where action can be taken by the manufacturer
to improve the performance of a ‘bad’ instrument. In this

paper we consider the study of a number of leadpipes for
both trumpets and cornets. These correspond to the initial
portion of the trumpet or cornet and have been designed by the
manufacturer with a series of slightly different bores in order
to change the musical qualities of the instrument.

For many years the internal bore of musical instruments
has been measured using tools such as calipers. While these
can give an accurate measure of the bore, it is generally
not possible to access the whole of the instrument and so
an incomplete profile is obtained. To produce a detailed
profile in the accessible regions requires a large number of
single measurements and can be time consuming. The range
of accessibility can be extended by inserting objects of a
known size (or a size which can be measured using calipers)
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into the instrument. This can also be time consuming, and
the measurement region is limited to the straight section at
either end of the instrument, or adjacent to regions which
can be separated (for example the slide on a trombone).
Added to this, bends in a tube usually produce an irregular
bore section so the only means of measurement remaining
is to cut the tube in slices and make many measurements
of each segment. An alternative method of obtaining bore
profiles is by first measuring the input impedance of the
instrument. This is defined as the ratio of the acoustic
pressure to the alternating volume velocity at the entrance to
the instrument. The bore profile and the input impedance are
closely related and, in principle, the bore profile can be derived
from an input impedance measurement. To date, attempts
at measuring the bore in this manner have proved difficult.
Recently [1] it has been shown that bore reconstruction from
input impedance is feasible using an optimization technique.
This approach is currently being developed further by the
author of [1]. Currently its resolution along the axis of the
measured instrument is limited by the bandwidth of the system;
the accuracy is promising, but the technique is demanding in
terms of computational resources. In this paper we consider a
third technique: acoustic pulse reflectometry.

Pulse reflectometry is an non-intrusive measuring tech-
nique which can be applied to obtain internal measurements
of tubular objects. The technique was first developed for seis-
mic studies [2] and has also been applied to airway measure-
ment in medical applications [3–5]. Smith [6] was the first to
use impulse reflectometry to detect debris and imperfections
in trumpets not visible or measurable by traditional methods.
One imperfection of great interest to brass players is valve
misalignment and in tests 0.25 mm was readily detectable.
Most recently the technique has been applied to the study of
other musical instruments [7–10] as well as general tubular ob-
jects [7, 11, 12]. Pulse reflectometry involves inserting a short
sound pulse, containing a wide range of frequencies, into the
object being measured. The internal reflections of this pulse
are then recorded and the input impulse response found. The
input impulse response can then be used to calculate the inter-
nal bore [7, 11, 13, 14] of the object.

The musical qualities of an instrument (intonation, timbre
and response) are strongly dependent on the bore profile of the
internal air column. The smaller brass musical instruments,
such as a trumpet or cornet, can be characterized by three main
sections of brass tube. The most visible section of a trumpet is
the bell flare, which is attached to a cylindrical section (with
a diameter of approximately 11.8 mm) incorporating valves
(allowing the musician to play a chromatic scale) and a slide
for fine tuning to a standard frequency. This section is matched
to the end of the mouthpiece (approximately 7 mm diameter)
with a 250 mm tapered tube called the leadpipe (pronounced
‘leedpipe’) or mouthpipe. Smith and Daniell [15] studied the
effect on musical qualities of small changes of the order of
0.1 mm to the bore shapes of trumpets. Due to a proportional
effect, these changes have a far greater effect on the smaller-
diameter sections such as the leadpipe than on any other part of
the instrument, and it is clear from tests that certain players can
detect these small differences. Consequently the manufacturer
Smith–Watkins Brass [16] provides clients with a choice of
15 different leadpipe profiles that are interchangeable on their

model of trumpet. These tapered tubes are made by ‘lead
drawing’ i.e. forcing an annealed brass tube onto a specially
shaped hardened steel mandrel by passing both through a lead
block. Since there is full control of the manufacture and final
gauging of each pipe, Smith–Watkins Brass is confident of
repeating the same item first made 16 years ago. In fact in
1999, Smith was awarded the status of Millennium Product for
the interchangeable leadpipe system employed on his ‘Soloist’
cornet [16]. A cornet has a longer (approximately 360 mm)
leadpipe than a trumpet; since the cornet leadpipe is bent into a
large semicircle, internal gauging is impossible by traditional
means such as calipers.

A number of the Smith–Watkins Brass leadpipes were
used in this study. The trumpet leadpipes are identified
by number and come in three families: {10, 12, 14, 16},
{32, 34, 36, 38} and {64, 66, 68, 70, 72}, produced on mandrels
I, II and III respectively. Within each family the radius of the
pipe increases with the pipe number. Each pipe has the same
length and large end radius. The cornet leadpipes are based on
five shapes which are labelled, in increasing radius, R0, A0,
G0, T0 and K0. Pipes G2 and G4 are also constructed with
the same shape as G0 but with slightly larger radii. Similar
pipes K2, K4, A2, R2 and T4 are also produced. Note that
the numbers are used to label the pipes and have no precise
meaning other than the general trend that, within a family, a
larger number corresponds to a larger pipe.

Since any manufacturer is primarily interested in
observing the difference between either ‘similar’ pipes (which
are intended to be identical) or ‘different’ pipes (designed to
produce a different sound), we concentrate on determining if
the pulse reflectometer is capable of these measurements. Any
measuring device must be capable of detecting such differences
if it is going to be useful for comparing musical instruments and
aiding manufacturers. The accuracy of the measured profile is
also considered at the end of the pipes, where it can be checked
using calipers.

2. Pulse reflectometry

The aim of pulse reflectometry is to obtain the internal radius
of a tubular object. This is done by determining the object’s
input impulse response, which is then analysed to determine
the internal bore profile.

2.1. The input impulse response

The input impulse response is the reflection sequence which
would be obtained if an acoustical impulse were fired into the
object. For example, consider an object consisting of three
cylindrical sections c1, c2 and c3, shown in figure 1. When an
acoustical impulse propagates through such a tube it will be
partially reflected and partially transmitted at each of the radius
changes (including the open end); the partial reflections and
transmissions at the step c1:c2 between cylinders c1 and c2 are
shown in figure 1. Thus the input impulse response will be a
series of impulse-like peaks corresponding to reflections at the
steps c1:c2, c2:c3, . . . and also multiple reflections occurring,
for example, by the input impulse being transmitted at c1:c2,
reflected at c2:c3 and finally transmitted at c1:c2 towards the
source. The shape of each of the peaks constituting the input
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Figure 1. An object consisting of three cylinders c1, c2 and c3. An
impulse signal entering the object is shown, as are the partial
reflection and partial transmission at c1:c2.
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Figure 2. A schematic diagram of the pulse reflectometer.

impulse response will be slightly different from the impulse
due to the losses experienced by the pulse as it propagates in
the object.

It is not possible to measure the input impulse response
directly since it is impossible to create an ideal acoustic
impulse. A schematic diagram of the apparatus used to find
the input impulse response is shown in figure 2. The initial
pulse is produced by sending a square pulse of duration 80 µs
to the speaker. The resulting acoustical pulse from the driver
propagates along the source tube, past the microphone and
into the object. Reflections from the object propagate back
along the source tube and are detected by the microphone
which is embedded in the wall of the source tube so that the
front face of the microphone matches the wall as closely as
possible. The signal from the microphone is then amplified and
sampled at 50 kHz. Here 1024 samples of the reflected signal
are recorded giving a time-series of the reflections lasting
approximately 20 ms. The length of the source tube and the
position of the microphone are selected to ensure that only
reflections of the object are recorded and not the input pulse
or secondary reflections from the speaker. The apparatus is
shown in figure 3.

Using the technique described above it is possible to
measure the object reflections; however, this is not the input
impulse response because the initial acoustical pulse is not
an impulse function. To calculate the input impulse response
function we need to deconvolve the measured reflection with
the input pulse. Thus the input impulse response is given by
the inverse Fourier transform of IIR(ω) where

Figure 3. The pulse reflectometer.

IIR(ω) =
[

R(ω)I ∗(ω)

I (ω)I ∗(ω) + q

]
, (1)

R(ω) is the Fourier transform of the measured reflections, I (ω)

is the Fourier transform of the input pulse and q is a small
constraining factor to prevent division by zero. The input
pulse was measured by removing the object and replacing
it with a rigid cap which terminates the source tube and
produces a perfect reflection of the input pulse. This ensures
that any signal losses in the tube, between the microphone
and the object/rigid termination, are accounted for in the
deconvolution. The signal-to-noise ratio was improved by
taking 1000 averages of both signals before performing the
deconvolution and the measurements were performed in an
anechoic chamber.

Finally, it is important to ensure that there is no DC
component in the recorded signals; this derives not from
any acoustical effects but from the electronics between the
microphone and the computer. The DC value imposes an
incorrect increase or decrease on the radius (since it is not
present in the acoustical signal) which is added consecutively
to each point along the object in the final reconstruction. Thus
even a very small DC value can add a large error to the radius
measurement at the far end of the tube. To find the value of the
added DC shift a tube of length 403 mm and constant radius
is inserted between the source tube and the object. The ‘DC
tube’ now becomes part of the object being measured in that it
corresponds to the first 403 mm of the reconstruction. With the
‘DC tube’ in place the input impulse response is calculated as
before using equation (1). Now, it is know that no reflections
will occur during the first 2l/c seconds, where l is the length of
the ‘DC tube’ and c is the speed of sound. The average value
of the input impulse response is found during this time and
corresponds to the DC value. The DC value is then subtracted
from the whole signal. This has been shown to be an effective
method for removing the DC term [7, 11].

3. Bore reconstruction

The discrete input impulse response is a time-series of
reflections from the object. These reflections occur whenever
there is a change in impedance due to the tube increasing or
decreasing in radius. The objects being considered generally
have a smoothly varying radius. In order to evaluate the
internal bore we approximate the object by a series of small
cylinders c1, c2, . . . , each of length cδt/2, where δt is the
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Source tube DC tube Leadpipe

CouplerCoupler Sheath

Figure 4. A schematic diagram (not to scale) showing how the
source tube, the DC tube, the leadpipe and the sheath are coupled.

sample time. The cross-sectional area of each step can be
found provided the initial area of the object is known (or can
be measured). Note that the notation used here is similar to the
notation introduced in figure 1; however, here each cylinder has
the same length, l = cδt/2 and the radius of each cylinder is
the average radius of the actual object over the corresponding
length l. If an object has a constant radius over several of
these interrogation cylinders then there will be no reflections.
However each of the ‘steps’ between the cylinders is still
considered separately in the reconstruction algorithm. The first
term in the input impulse response series corresponds to the
reflection of the impulse at the boundary between the first and
second cylinders. Thus the change in impedance, and hence
the change in radius, at c1:c2 can be found. This can be repeated
noting that the subsequent terms in the series are made up from
primary reflections and multiple reflections. The sample rate
used throughout was 50 kHz. Increasing the sample rate to
100 kHz increases the resolution of points along the axis of the
object. Other than this, no detectable increase in accuracy was
observed due to a decrease in the length of the interrogation
cylinders. There is also no increase in the bandwidth since
there is no distinguishable signal above 25 kHz.

To obtain good accuracy the viscous losses incurred
by the sound inside the object must be taken into account.
These can be significant for the radius of objects we are
considering and are described by Keefe [17] as a function of
both the radius and the frequency. Thus in any interrogation
cylinder different frequency components within the pulse will
be damped at different rates. The resulting change in the shape
and amplitude of the pulse is accounted for by a lossy filter.
Full details of the lossy filter algorithm can be found in [13,14].

The DC tube was connected to the leadpipe and to the
source tube using specially designed couplers, as shown in
figure 4. The coupler joining the source tube and the DC
tube is designed to keep the radius approximately constant.
There is a small step inside the coupler joining the DC tube
to the leadpipe. Different couplers were built so that the
second internal radius of the coupler approximately matches
the internal radius of the leadpipe being measured. Thus the
step may be a step up or a step down depending on the leadpipe.

It is well known that a series of ripples occurs in a recon-
struction whenever there is a large step in the object’s radius,
including the open end of a pipe [7,11]. This is the Gibbs phe-
nomenon, which arises because of the finite bandwidth of the
sampled reflections. To improve the reconstruction near the
open end of the leadpipe, a cylindrical sheath was fitted over
the open end. This is similar to the continuation of the trumpet
which would normally occur at the end of the leadpipe and has
the effect of removing the ripples from the reconstruction at
the end of the leadpipe. This sheath is also shown in figure 4.

0.0 0.5 1.0
Length (m)

4
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R
ad

iu
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DC tube
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Sheath

open end
Ripples at

Coupler

Figure 5. A typical reconstruction of pipe 10. The position of the
DC tube, the coupler, the leadpipe and the sheath are marked on the
graph. Also marked are the ripples which occur around a large step
or an open end, in this case at the open end of the sheath.

4. Results

A typical reconstruction of pipe 10 is shown in figure 5, in
which the different portions of the reconstruction are identified.
The initial section is the DC tube which should have a fixed
radius. The first portion of the DC tube (approximately
16.5 cm, corresponding to 1 ms of the sampled signal) is
fixed at the known radius of the DC tube by the reconstruction
algorithm. This removes any anomalous numerical peaks in
the initial portion of the deconvolved signal. The second
portion of the DC tube reconstruction is calculated from the
sampled reflections. Here we see a small variation in the
measured radius of considerably less than 0.1 mm. The second
section of the reconstruction is the coupler used to connect the
DC tube to the leadpipe. It is designed to slip over the DC tube
so that the change in the internal radius is minimal. In figure 5
the change is seen to be about 0.1 mm. The small internal step
within the coupler can be clearly seen. Inside the initial portion
of the leadpipe there is a slot for the trumpet mouthpiece to be
inserted. There is a decrease in the radius of the pipe at the
end of this slot. On the reflectometer the coupler is inserted
into the pipe in the same manner as a mouthpiece; there is
therefore an overlap between the coupler and the start of the
leadpipe and so the initial portion of the pipe is not measured.
The reconstruction of the pipe starts just before the step down
in radius at the end of the mouthpiece slot. The variation in
the radius of the leadpipe from this step to the end is about
1.5 mm, increasing in a smooth manner along the length of
the pipe. Finally we see the sheath at the end of the leadpipe.
Ripple is observed on the reconstruction at the open end of the
sheath, but not at the end of the leadpipe.

4.1. Repeatability and measurement accuracy

When comparing the reconstruction of a number of pipes,
either to observe the difference between the pipes, or to
compare a number of pipes which are intended to be the same,
it is essential to know the accuracy of the measurements so
that we can determine which differences in the reconstruction
correspond to real differences in the pipes and which to
uncertainties in the measuring technique. One type of
uncertainty which is present in any reconstruction is a
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Figure 6. The RMS variation between repeated reconstructions of
pipe 10. The reconstructions were repeated using method 1 (thicker,
solid curve) and method 2 (thinner, dotted curve).

systematic uncertainty which occurs in every measurement.
While it is desirable to be able to measure the actual radius of
an object with a high degree of accuracy it should be noted that
differences between pipes (which is our primary interest here)
can still be observed despite any systematic uncertainties. It is
therefore more important here to consider the repeatability and
reliability of the measurements; the absolute accuracy of the
radius measurements will be considered briefly in section 4.5.

The repeatability of the measurements was studied in two
ways. Method 1 involved making ten repeated measurements
of the object reflections without removing the pipe or touching
the apparatus in any way. Method 2 involved taking ten sepa-
rate measurements at different times and on different days, this
test reflects more closely the conditions under which the reflec-
tometer is likely to be used in a musical instrument workshop.

Methods 1 and 2 were used to examine the repeatability
of the technique using pipes 10, 38 and G0. The root mean
square (RMS) of these variations was calculated and is shown
in figures 6 and 7 for pipes 10 and G0 respectively. The
results for method 1, corresponding to ten measurements, are
represented by the thicker, solid curve and the results for
method 2, corresponding to six of the ten measurements which
were selected because they were made at similar temperatures,
are represented by the thinner, dotted curve. From figure 5 we
can see that there is a step close to 0.4 and 0.5 m along the object
(within the coupler) and that the trumpet leadpipe lies between
about 0.5 and 0.75 m. The cornet leadpipe lies between about
0.5 and 0.9 m. There are a number of general features in
figures 6 and 7 which were also observed for pipe 38. Firstly,
there are a number of peaks at approximately 0.4 and 0.5 m
corresponding to the steps in the coupler and at about 1.0 m in
figure 6 and 0.9 m in figure 7 corresponding to the open end
of the sheath and the end of the cornet leadpipe respectively.
The peaks observed for method 2 are due to differences
in temperature between the measurements, and differences
between the length of the coupler which was inserted into the
pipe (seen to vary by up to 2 mm). Since the speed of sound
is a function of temperature the number of sample points and
their separation will be different for reconstructions measured
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Figure 7. The RMS variation between repeated reconstructions of
pipe G0. The reconstructions were repeated using method 1
(thicker, solid curve) and method 2 (thinner, dotted curve).

at different temperatures4. In figure 7 there are peaks at 0.4 and
0.5 m for method 1 suggesting that there may have been a small
change in temperature during the half hour taken to obtain the
measurements. Except for the peaks the value of the RMS
variation is typically about 0.01 mm in the region of the pipes
and generally no greater than 0.02 mm. This suggests that the
pulse reflectometer should be able to distinguish between pipes
provided they differ by more than about 0.03 mm. It would
be expected that variations around regions of step changes
in radius would have similar levels of repeatability to other
regions under ideal temperature controlled conditions.

4.2. Trumpet leadpipe reconstructions

Trumpet leadpipe reconstructions are shown in figure 8, for the
two mandrels I and II. Three replicas of pipe 10 (pipes 10a,
10b and 10c) and four replicas of pipe 38 (pipes 38a, 38b, 38c
and 38d) were reconstructed and are also shown in figure 8.
The replica pipes are intended to be the same; however, they
cannot be totally identical. Only the leadpipe is shown in the
figures, and the length axis has been re-calibrated so that zero
corresponds to the start of the pipe. In some of the pipes
where the initial step is larger there is some ripple observed
in the reconstruction (see for example pipe 10). This ripple
can obscure the measurements slightly, especially close to the
step, and may prevent small differences being noticed. In the
middle section, between any initial ripple and the convergence
at the end of the pipes, the differences between the different
sized pipes can clearly be seen within each family. Also
the difference between the replica pipes is much smaller than
the difference between different pipes (pipes with a different
number). Thus, if an unknown pipe was obtained and measured
it should be possible to determine which pipe it is.

4 Note that this problem occurs here because of the manner in which the
results are compared. Normally the speed of sound is accounted for in the
algorithm by varying the spatial separation of the data points.
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Figure 8. Reconstructions of the four pipes in the mandrel I and II families. Rconstructions of three replicas of pipe 10 and four replicas of
pipe 38 are shown.
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Figure 9. Reconstructions of the G and K families of cornet leadpipes. Reconstructions of two replica G0 and two replica K2 pipes are
shown.

4.3. Cornet leadpipe reconstructions

We now turn our attention to the cornet leadpipe
reconstructions. Figure 9 shows reconstructions of the G and
K pipes. Both these families contain three pipes labelled 0,
2 and 4 as their radius increases. We also studied replica G0
and K2 pipes. It is clear from the figure that the mean radius
of the G family is smaller than that of the K family, and that
the range of radii within the K family is less than the range
within the G family. Figure 9 shows only a small difference
between pipe K0 and K4, typically about 0.1 mm. Over the
whole length of the pipes the reconstructions for both the K2
pipes are seen to lie between the two curves for K0 and K4 and
the agreement between the two K2 pipes is much greater than
the agreement between any of the other curves. This suggests a
high degree of accuracy in the manufacture of the two K2 pipes
with little variation introduced due to the curved shape of the
pipes. Figure 9 also shows the pipes increasing in radius from
G0 to G4. This is evident everywhere except close to the initial
step where the G2 pipe appears smaller than both the G0 pipes.
Since this is close to the step and the differences are small it is
hard to determine whether this is due to a small ripple on the
reconstruction. There is also a significant difference between
the two G0 pipes. In many places the difference between the
two G0 pipes is comparable with the difference between the
larger G0 pipe and the G2 pipe, and in some places it is greater.
It is also evident that G0b is smaller than G0a over most of the
length, but near the mouthpiece it is greater. Note that two

repeated measurements of pipe G0a are shown in figure 9 and
they are in good agreement. Repeated measurements of G0b
showed similar good agreement with the reconstruction which
has been plotted. The reason for the differences between pipe
G0a and G0b being larger than the differences between other
replica pipes is not clear. The manufacturer expects the cornet
pipes to show a larger deviation due to their curved shape; this
could account for the deviation. It is also possible that one
of the pipes has been damaged in some way, either during the
manufacture, in transit, or during its measurement.

We now look at the full range of the cornet pipes through
the five pipes R0, A0, G0, K0 and T0 shown in figure 10. The
manufacturer [16] indicates that the pipes should increase in
radius from the smallest, R0, through A0, G0 and K0, to the
largest T0. Figure 10 shows both the G0 pipes to demonstrate
how they fit into the different families. Clearly the pipes do
increase in radius as indicated by the manufacturer and the
pipes are distinguishable with the exception of the smallest
pipe, R0, which contains a large amount of ripple. The step
down at the start of this pipe is larger than any of the others. The
amplitude of the ripple is, at its largest, about 0.3 mm which
would be acceptable in many applications; however, here it
makes it impossible to compare pipe R0 with the others in a
sensible manner, at least for the first half of the pipe. Both the
G0 pipes lie between the A0 and the T0 pipes over most of their
length, except for a portion between 0.08 and 0.15 m where
G0a becomes significantly smaller than A0. This suggests
that G0b may be the ‘correct’ pipe and G0a the ‘damaged’
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Figure 10. Reconstructions of the cornet leadpipes R0, A0, G0, T0
and K0. The two replica G0 pipes are shown.
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Figure 11. The difference between reconstructions of replicas of
pipes G0, K2 and 38.

pipe, although the evidence is not conclusive; measurement of
another replica G0 pipe would be required to confirm this.

4.4. Differences between replica pipes

The replica pipes we had available were 10a, 10b, 10c; 38a,
38b, 38c, 38d; G0a, G0b and K2a, K2b. Repeated measure-
ments of each of these pipes were made and the differences
between the reconstructions, for example 10a−10b, were con-
sidered. Figure 11 shows one such difference for pipes 38
and K2 and two repeated differences for pipe G0. The results
shown for pipes 38 and K2 are typical of the other results ob-
tained for these pipes and for the results obtained for pipe 10.
The variation between the replica pipes is generally no greater
than the variation observed when repeated measurements of
a single pipe were considered. Thus any deviation between
these replica pipes is too small for the reflectometer to detect.
The two repeated comparisons of pipes G0a and G0b show a
distinct difference between the pipes which is distinguishable
from the variations obtained by repeated measurements of a
single pipe. We can therefore say with certainty that there
is an observable difference between the two G0 pipes, even
although the difference is never greater than 0.12 mm.

4.5. Accuracy of the measurements

In the previous sections we have been concerned with compar-
ing the shape of a series of pipes rather than obtaining exact
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Figure 12. The occurrence of each end radius (rounded to the
nearest 0.01 mm) for each of the trumpet leadpipe reconstructions.
The results are shown in five groups corresponding to all the trumpet
pipes, all the pipes constructed from each of mandrel I, mandrel II
and mandrel III, and all the reconstructions of the single pipe 10a.

measurements of their radius. To investigate the accuracy of
radial measurements made by the pulse reflectometer, the end
radii obtained from each of the trumpet leadpipe reconstruc-
tions were considered. The radii were rounded to the nearest
0.01 mm. The results are shown in figure 12 which shows
the occurrence of each radius. The graph for all the trumpet
pipes had two distinct peaks either side of the average radius
of 5.755 mm. The curve for mandrel I peaks at 5.75 mm while
mandrel II and III show peaks at 5.77 mm explaining the dou-
ble peak observed in the curve for all the pipes. The spread
of the results is 0.1 mm, with all the results between 5.7 and
5.8 mm. The curve for pipe 10a peaks at 5.73 mm and has a
spread such that over 75 % of the results for the final radius
lie within 0.03 mm; this is in line with the RMS results pre-
sented earlier and the assertion that differences between pipes
as small as 0.03 mm can be detected.

Figure 12, however, only highlights differences; it does
not address the question of how accurately the reflectometer
measures the end radius of the pipe. The end radius of a 10a
pipe was measured using calipers to be 5.75±0.025 mm. The
32 reconstructions of pipe 10a, shown in figure 12, have a mean
value of 5.742 mm for the end radius, with a standard deviation
of 0.020 mm, and none of the reconstructions has an end
radius outside the range 5.7–5.8 mm. Therefore, the evidence
suggests that the uncertainty at the end of the trumpet leadpipe
is likely to be no greater than ±0.05 mm. As expected, this is
larger than the variation observed between reconstructions of
the same pipe (∼0.03 mm) and the uncertainty with which the
initial radius of the DC tube can be measured (±0.025 mm).
Despite being larger than the uncertainty which is obtained
when calipers are used, this uncertainty is relatively small
and suggests that the reflectometer is not only useful for
observing small differences between objects, but it can also
give an accurate measurement of the internal radius. It is
expected that the value of ±0.05 mm for the uncertainty
in a measurement will increase with the length and size of
the object being measured. It should also be noted that the
reflectometer actually measures the cross-sectional area of an
object and will therefore give an average value of the radius if
the cross-section is not circular. Also, it is clearly not possible
to obtain measurements with this accuracy in regions of the
reconstruction where ripple is evident.
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5. Discussion

Generally the results have shown that the different leadpipes
can be distinguished using the pulse reflectometer. However,
in some reconstructions the ripple which can occur at any step
within the pipe can obscure the actual radius of the pipe. In
most cases the ripple is not large enough to cause a significant
problem; however, three of the pipes produced a substantial
amount of ripple relative to the radius differences which we
are measuring. These are the three smallest pipes where the
size of the step is largest: pipe 10, see figure 8; pipe R0, see
figure 10, and pipe R2 (not presented). In figure 8 the ripple
on the reconstruction of pipe 10 is evident for most of the re-
construction; it is only in the first 0.1 m that the level of ripple
is unacceptable since we can no longer separate pipe 10 from
pipes 12 and 14. The ripple on pipe R0 in figure 10 is worse
than it is on pipe 10 and is unacceptable in that it renders almost
the first half of the reconstruction unusable. With the exception
of these three pipes, however, the ripple is not a real problem.
Nevertheless, it would be useful if the problem of ripple could
be improved. One possible approach is to use post-processing
techniques to introduce fractional time delays so that the step
between two interrogation cylinders coincides with the actual
step. However, more work is required to asses the effective-
ness of such an approach, both in terms of reducing the ripple
and its computational efficiency.

6. Conclusion

A number of trumpet and cornet leadpipes have been studied
using pulse reflectometry. By changing leadpipes a player can
make musically significant changes to the playing properties
of the instrument, but the differences between the pipes are
small: typically the radius will differ by less than 0.1 mm
between similar pipes. By comparing reconstructions of these
leadpipes we have examined the ability of the reflectometer
to distinguish between them. The reflectometer can typically
detect differences in pipe radii greater than 0.03 mm. Since
all the pipes which are nominally the same size are not
identical, the differences between replica pipes were also
investigated. In most cases the differences were smaller than
0.03 mm and below the resolution of the reflectometer. In
one case detectable differences were observed between two
replicas of a cornet leadpipe. These differences could have
appeared during the manufacture of the pipes, particularly
in the bending of the cornet leadpipe, or they could be due
to subsequent damage. The difference between the replica
pipes was in general smaller than the differences observed
between adjacent pipes which could easily be identified by
the reflectometer. The accuracy of the measurements obtained
from the reflectometer was also considered briefly. At the
end of the pipe the uncertainty taken from a reconstruction
was found to be ±0.05 mm. This is slightly less accurate
than the measurement which could have been taken using
calipers; however, the reflectometer has the advantage that
it can make measurements in inaccessible places. Problems
which still need to be addressed in reflectometry were also
considered briefly; the main difficulty observed here is the
ripple which appears in a reconstruction close to a radius
step.

Overall, the reflectometer has been shown to be capable of
detecting small differences between leadpipes which produce
small but noticeable differences between the musical qualities
of trumpets and cornets. Thus we conclude that the
reflectometer is a useful tool for studying tubular musical
instruments and also for diagnosing and pinpointing defects
during instrument manufacture.
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