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Abstract

In this paper we extend the minimum-cost network flow
approach to multi-target tracking, by incorporating a mo-
tion model, allowing the tracker to better cope with long-
term occlusions and missed detections. In our new method,
the tracking problem is solved iteratively: Firstly, an initial
tracking solution is found without the help of motion infor-
mation. Given this initial set of tracklets, the motion at each
detection is estimated, and used to refine the tracking solu-
tion. Finally, special edges are added to the tracking graph,
allowing a further revised tracking solution to be found,
where distant tracklets may be linked based on motion sim-
ilarity. Our system has been tested on the PETS S2.L1 and
Oxford town-center sequences, outperforming the baseline
system, and achieving results comparable with the current
state of the art.

1. Introduction

Multi-target tracking in video consists of detecting all
subjects in every frame, and following their complete tra-
jectory over time. Successful research on a new generation
of reliable pedestrian detectors [5, 11] has prompted the use
of the tracking-by-detection paradigm [6], even for crowded
or semi-crowded scenarios. Under this paradigm, tracking
can be understood as a two-step process composed of de-
tection and data association. The tracker first acquires a
set of detections using a pedestrian detector. The individ-
ual detections are then assigned to tracks, where each track
is composed of all the detections from a single individual.
If all persons were to be correctly observed at every time-
step this task would be trivial, however, due to false pos-
itive detections, occlusions and missed detections, this as-
sociation problem becomes very challenging. In this paper
we explore the potential of linear programming (LP), using
a minimum-cost network flow formulation, for solving the
multi-target tracking problem. Specifically, we investigate
techniques for improving the data association of detections

into tracks by using motion information.
The minimum-cost network flow tracking approach can

cope well with short sequences of missed detections, how-
ever it tends to become unreliable given relatively long pe-
riods of occlusion or detector failure. This problem occurs
because the association costs, used to link detections into
tracks, are based only on static features such as appearance
similarity or distance between detections. These static fea-
tures tend to be unreliable indicators of whether detections
belong to the same track if there are large gaps between the
detections.

To address this problem, we propose to solve the track-
ing problem iteratively. Initially, static features, such as dis-
tance and time, are used to find a preliminary tracking so-
lution given the set of detections over a window of frames.
Using these initial tracklets, the motion at each detection
is estimated and used to remove associations incompatible
with a linear velocity assumption. We then introduce the
concept of tracklet linking to the minimum-cost network
flow tracker, by adding special edges to the tracking graph,
allowing widely separated tracklets to be linked based on
motion similarity. Association of detections, and associa-
tion of tracklets, makes use of a novel cost function shown
to outperform a Gaussian type cost function on these tasks.

1.1. Related Work

Recent research has demonstrated the potential of global
optimization for tracking in crowded scenes, where the
matching problem is solved jointly for all tracks [4, 18, 21].
Under this perspective, multi-target tracking is defined as
a constrained min-cost flow optimization problem, that can
be solved using LP to find the global optimum. As an ad-
ditional advantage, trajectory initialization and termination
are inherent to this methodology.

Given a set of pedestrian detections, it is possible to
model the problem of the multi-target pedestrian tracking
using graph theory. Typically in such an approaches, the
vertexes of the graph may be used to represent the discrete
locations where pedestrians are permitted to exist [3, 12], or
pedestrian locations as hypothesized by a detector [4, 16, 8].



Graph edges are typically used to model the cost of associ-
ating pairs of detections in the same track, based on fea-
tures such as appearance or distance [8]. Due to the fact
that problems in graph theory can be expressed as equiva-
lent linear programs, an assortment of LP tracking models
have been explored including: k-shortest paths [4], flow lin-
ear programming [3] and min-cost network flow [8]. Such
methods are appealing due to their mathematically rigorous
formulation, but may require special vertexes to represent
occlusions [21, 15], missed detections [20], or higher-order
motion constraints [16], leading to increased model com-
plexity.

In LP approaches to tracking, global optimization is car-
ried out over a sequence of frames using static features
such as appearance-similarity or distance between detec-
tions. In contrast with predictive tracking approaches, such
as Kalman filtering [13] or Particle Filtering [6], motion is
typically not included during this optimization, leading to
difficulties when dealing with long-term occlusion. Only a
few papers have considered the inclusion of motion mod-
els or constraints in the LP framework to deal with long
term occlusions. An approach where global optimization
is combined with social behavior analysis to improve accu-
racy in crowded scenarios is presented in [16]. Their model
takes into account past and future frames to include con-
stant velocity and social interaction. However, this poten-
tial is not fully exploited since only instant constant veloc-
ity is assumed and the social forces could be impractical
or counter-productive in highly crowded scenes [15]. Simi-
larly, a smoothness constraints over a three frame windows,
based on instant constant velocity, is introduced by [8]
and [9]. Finally, hypergraphs [17, 10] have been proposed
to allow higher order motion models in the edges of a nor-
mal graph. Although this makes it possible to handle an
arbitrary higher-order cost functions over the entire trajec-
tory, it has not been shown to favorably impact the tracking
performance or to help during long term occlusions [8].

2. Multiple Person Tracking

2.1. Multi-target Tracking as a Data-Association
Problem

A pedestrian detector can be used to produce a set of de-
tections over a sequence of frames, the goal of multi-target
tracking is to correctly associate all the detections corre-
sponding to each individual. Let the set of all detections,
of size I , be D = {di1 . . . di . . . dI}. Each detection is de-
fined as di = (x, y, w, h, c, t) where (x, y) is the position
of the detection in image space, (w, h) are the bounding
box width and height, c is the detector confidence, and t is
the time associated with the detection. A tracklet is an or-
dered set of detections τ = {dk1 . . . dk . . . dK}, of size K,
where dk(t) < dk+1(t)∀k, and [k1 . . .K] ⊂ [1, I]. The

goal of multi-target tracking is to find the set of N track-
lets T∗ = {τ1...τN} which best explains the detections i.e.
the set of tracklets with the maximum posterior probability
given the detection set: T∗ = arg maxT P (T |D). As direct
search for the optimal set of tracklets would be intractable,
a common simplifying assumption [16] is that every detec-
tion may belong only to a single tracklet, and that detections
are conditionally independent, which can be expressed as

T∗ = arg max
T

∏
i

P (di|T )P (T ) (1)

T∗ = arg max
T

∏
i

P (di|T )
∏
n

P (τn) (2)

where P (di|T ) is the probability that di is a true detection,
and P (τn) = P ({dk,1 . . . dk . . . dK}) reflects the plausibil-
ity of a given tracklet τn, which can be expressed, using the
Markovian assumption as follows

P (τn) = PS(dk,1)PE(dK)
∏
k

PL(dk|dk−1) (3)

where PS(dk,1) is the probability the tracklet starts at dk,1,
PE(dK) is the probability the tracklet ends at dK , and
PL(dk|dk−1) is the probability that detection dk−1 follows
detection dk within tracklet τn.

2.2. Minimum-Cost Network Flow Problem

The above generally defined multi-target tracking prob-
lem can be modeled as a minimum-cost network flow prob-
lem, where detections, and the cost of associating two de-
tections, are modeled as graph edges with associated costs.
Given a directed graph G = (V,E), with special vertexes:
source, s ∈ V , and sink, r ∈ V . Every edge, E(u,v), has
an associated cost, c(u,v) ∈ R, flow capacity constraint,
u(u,v) ≥ 0, and flow, f(u,v) ≥ 0. The goal is find the set
of edges Q ⊆ E, capable of transporting X units of flow
from S to T , with minimum cost, without violating the ca-
pacity constraints, where the cost for a given solution, Q, is
defined as

∑
(u′,v′)∈Q C(u′,v′)F(u′,v′).

The objective function in Eq. (2) can be translated into
an equivalent minimum-cost network flow problem by first
taking the logarithm of Eq. (2) and then incorporating
Eq. (3), which leads to the following linear function

T∗ = argminT −
∑
i

logP (di)−
∑
n

(logPS(dk1)

− logPE(dK)−
∑
k

logPL(dk|dk−1))
(4)

This function can then be mapped to the minimum-cost net-
work flow framework by incorporation of flags fi,j ∈ {0, 1}
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Figure 1. Graph used to represent the tracking problem. Every green edge, (ai, bi), represents a detection di. Black edges, (bi, aj), are
standard links between detections. The blue edge (bi, aj) represents our proposed link between widely separated detections. Vertexes
s and r are the source and sink vertexes. Gray edges, (s, bi) and (ai, r) connect the source and sink vertexes to all detections.

for the flow along edge (i, j), and costs Ci,j ∈ R indicating
the cost associated with traversing edge (i, j), as follows

T∗ = argminT
∑
i

Cifi +
∑
i,j

Ci,jfi,j+∑
i

Ci,rfi,r +
∑
i

Cs,ifs,i
(5)

where calculation of the costs associated with each edge
type: Ci ∝ P (di), Ci,j ∝ PL(dk|dk−1), Cs,i ∝ PS(dk1)
and Ci,r ∝ PE(dK), will be discussed in later sections.
This expression of the tracking problem allows linear pro-
gramming to be used to efficiently compute a minimum-
cost network flow solution. To ensure the solution to the
minimum-cost network flow problem is also a valid tracking
solution, several constraint are placed on the flag variables.
As detections may only be a member of a single tracklet,
Eq. (1), a capacity constraint, ui ≤ 1,∀ui, is placed on all
edges, and flags variables are subject to the constraints

fs,i + fi ≤ 1 fi,r + fi ≤ 1 (6)

which enforce mutual exclusion at the starting and ending
detections of each tracklet. The following additional con-
straints enforce conservation of flow at each detection

fi + fs,i =
∑
j

fi,j fi + fi,r =
∑
j

fj,i (7)

The above described minimum-cost network flow problem
can be used to construct a graph G, describing the relation-
ships between all detections, as follows: Every detection di
is represented by an edge connecting two vertexes (ai, bi)
with associated cost Ci and flag fi, where the cost depends
on the detector confidence. All detections are connected
to the source vertex s, by an edge (s, bi) with cost Cs,i
and flag fs,i, and are connected to the sink vertex r, by an
edge (ai, r) with cost Ci,r and flag fi,r. The relationships
between all pairs of detections in frames di(t) and dj(t′),
where t′ > t, are represented as linking edges (bi, aj), with
cost Ci,j and flag fi,j . An illustration of the tracking graph
for a simple scenario is shown in Fig. 1.

2.2.1 Detection Linking Edges

A pair of detections, di and dj , are connected by edge
(bi, aj) with cost Ci,j , shown as black edges in Fig. 1. De-
tections may be linked if the following conditions are met:
The time gap ∆Ti,j between the detections must satisfy
∆Ti,j ≤ ∆Tmax. The distance Di,j between the detections
must satisfy Di,j ≤ Dmax where Dmax = ∆Ti,jVmax i.e.
the speed required to link the detections must be less than
Vmax units per frame. Finally, the overlap of the bounding
box sizes defined as, Oi,j = (di ∩ dj)/(di ∪ dj), must sat-
isfy Oi,j ≥ 0.5. If these conditions are satisfied the linking
cost is defined as

Ci,j = C(Di,j , Dmax) + C(∆Ti,j − 1,∆Tmax) (8)

where C is defined as

C(κ, λ) = 1− e−
√

κ
λ (9)

so that linking cost increases with both distance and time,
while links between detections in the consecutive frames
incur no time-penalty cost, thus encouraging short links.

2.2.2 Detection Edges

All detections di are represented by two vertexes connected
by inner edge (ai, bi) with cost Ci, shown as green edges
in Fig. 1. The trivial solution to the min-cost network flow
problem is fi,j = 0,∀fi,j , with total cost zero i.e. no track-
lets. To prevent this, all detection edges have negative cost
i.e. Ci < 0,∀di. Therefore the minimum-cost solution may
take negative values by inclusion of detection edges, thus
encouraging the formation of tracklets. The cost of all de-
tection edges is defined as Ci = −P (di), where P (di) is
the likelihood that detection di is a true detection, based on
the normalized detector confidence score, 0.5 ≤ di(c) ≤ 1.
Thus, confident detections will have more negative scores,
encouraging their inclusion in tracklets.

2.2.3 Source and Sink Edges

All detections di are connected to the source vertex by an
edge (s, bi), and to the sink vertex by an edge (ai, r), with



respective costs, Cs,i and Ci,r, shown as gray edges in
Fig. 1. We adopt the approach of [16] whereby Cs,i =
0,∀Cs,i and Ci,r = 0,∀Ci,r. Therefore, no penalty or
bonus is given for beginning or ending a tracklet. Addition-
ally, due to the flow constraints of Eq. (6) and Eq. (7), and
the fact that the source node is connected to the end of ev-
ery detection edge, while the sink node is connected to the
start of every detection edge, there is no bonus or penalty
for beginning or ending at any particular detection. As ev-
ery detection is treated equally, tracklets may begin or end
at any location within the tracking area.

3. Motion Modeling For Linear Programming
In the previous section we have described the general

framework for multi-target tracking using linear program-
ming. One drawback of this approach is that velocity is
not taken into account when calculating the association cost
between individual detections. Unlike trackers with an ex-
plicit motion model, such as Kalman filtering [13] or parti-
cle filtering [6], optimization of the minimum-cost network
flow problem is carried out simultaneously over a window
of frames using only static features. While this approach
can cope with short sequences of missed detections, long
periods of occlusions and detector failure may cause it to
become unreliable. To allow tracking to continue under
such circumstances, the concept of tracklet linking, using a
velocity cost, is introduced into the minimum-cost network
flow tracker. We propose an iterative strategy, whereby ini-
tial tracklets are estimated using only static features, and are
then refined based on inferred tracklet velocity.

3.1. Velocity estimation

Given an initial set of tracklets T , calculated using only
static features, an estimated velocity can be associated with
every detection that is a member of a tracklet, and can be
used to both refine the initial tracklets as well as to link
widely separated tracklets.

For tracklet τ ∈ T , consisting of an ordered set of de-
tections τ = {d1...dS}, tracklet velocity at each detection
can be estimated using first order linear regression, based
on the assumption that realistic motion is linear over short
time-periods. This approach has an important advantage in
comparison to simple estimation of the instantaneous veloc-
ity [16] of the tracklet given the connected detection: it is
more robust against outliers and inaccuracies in the detec-
tion locations, which can cause huge miscalculations in the
estimated velocity since no filtering or smoothing is inher-
ent in this schema.

For every detection di ∈ τ , its velocity is estimated us-
ing two sets of neighboring detections: set wf = {dj ...di}
of detections ending at di, and set wb = {di...dk} of de-
tections starting at di, where |dl(t) − di(t)| ≤ F, ∀dl ∈
wb, wf , where F is the frame-rate of the sequence i.e.

velocity is estimated using a 1s window of frames. For
sets wb and wf , independent linear regressions are per-
formed over the x, y, w and h values of the member de-
tections with time as the predictor variable. Detection di is
then written as di = (x, y, w, h, c, t, βf , αf , βb, αb), where
βf = (xfβ , y

f
β , w

f
β , h

f
β) and αf = (xfα, y

f
α, w

f
α, h

f
α) are the

regression coefficients learned from wf . Coefficients βb

and αb learned from wb are defined similarly. Using the
regression coefficients, the tracklet state predicted forward
from di to time t′ can be written as (x′, y′, w′, h′, t′) =
di(β

f )t′ + di(α
f ).

3.2. Tracklet Refinement

The estimated velocity at each detection is used to refine
the tracklets by breaking links that are not consistent with a
linear velocity assumption over short periods of time. For
every detection, not at the start or end of a tracklet, its asso-
ciated regression coefficients are used to predict the tracklet
state forward and backward in time, to the time of its follow-
ing and preceding detections respectively. The bounding
box intersections of the predicted states with the following
and preceding detections are computed. If either intersec-
tion is zero, the tracklet is broken at that point. This process
removes cases where a tracklet appears to make very sudden
changes in velocity, which are unlikely to occur in realistic
situations due both to the generally high detection rate as
well as physical constraints such as inertia.

3.3. Edge Costs for Linking Over Long Gaps

Using the refined tracklets and estimated motion mod-
els, tracklet linking over long gaps can be performed using a
third iteration of the LP optimization. Edges (ai, bj), shown
in blue in Fig. 1, representing potential links between track-
lets, are added to the tracking graph, between detections at
the starting and ending points of the tracklets estimated in
the previous iteration. These new edges have costs based on
the relative velocities of the tracklets linked, while the costs
associated with all other edges remain identical to those de-
scribed in Section 2.2.

Detections de at the end of a tracklet τi, and ds at the
start of tracklet τj , may be linked if the following condi-
tions are met. The time-gap ∆Te,s between the detections
must satisfy ∆Te,s ≤ ∆T̃max, where ∆T̃max � ∆Tmax

i.e. this link would be prevented by the time constraint
∆Te,s ≤ ∆Tmax of Section 2.2.1. An additional time con-
straint ∆Te,s ≤ max(|τi|, |τj |) , where |τi| and |τj | are
the length of τi and τj respectively, prevents long links
between short tracklets, thus reducing the number of false
positives. The speed constraint is identical to that used in
Section 2.2.1, while the detection overlap constraint from
Section 2.2.1 is not used during tracklet linking. If all con-
ditions are satisfied, the cost Ce,s for linking de with ds is
calculated as follows.



Figure 2. During tracklet linking, tracklet τi is projected forward in
time, while tracklet τj is projected backward. The linking energy
cost measures the average difference between the predicted and
actual tracklet positions, e.g. between τfi (t) and τj(t)

Let τfi (t) be the forward predicted (x, y) position of
tracklet τi at time t, calculated using de(βf , αf ), and let
τ bj(t) be the backward predicted (x, y) position of tracklet
τj at time t, calculated using ds(βb, αb). Let τi(t) and τj(t)
be the actual (x, y) positions of tracklets τi and τj respec-
tively at time t, based on the member detections, and finally
let ds(t) and de(t) be the times associated with detections
and ds and de respectively. Then, a linking energy function
can be defined in terms of the residual between the predicted
and actual tracklet positions, as follows

Ee,s =
1

F

F∑
t′=1

|τfi (ds(t) + t′)− τj(ds(t) + t′))|2

+
1

F

F∑
t′=1

|τ bj (de(t)− t′)− τi(de(t)− t′))|2

(10)

where F is the window length over which the energy func-
tion is calculated, typically equal to the frame-rate of the se-
quence. The linking energy function is illustrated in Fig. 2.
The full tracklet linking cost Ce,s is defined as

Ce,s = C(Ee,s, Emax) + C(∆Te,s,∆T̃max) (11)

where the function C is defined in Section 2.2.1 andEmax is
a large constant used to normalize the linking energy cost.
The tracklet linking cost is designed to favor pairs of track-
lets with a small residual between the predicted and actual
positions of the tracklets. The linking energy cost Ee,s is
zero for tracklet pairs that lie in a straight line, meaning
tracklet pairs consistent with the automatically estimated
motion model are favored during linking. Once the linking
costs have been added to the tracking graph, the minimum-
cost network flow solution is computed again to produce the
final tracking solution.

4. Experiments
The tracker was tested on the Oxford town center [2]

and PETS S2.L1 [14] sequences. Example output is shown
in Fig. 3. The Oxford dataset is 4500 frames, at 25 fps,
and features realistic pedestrian motion in a moderately
crowded street scene. The PETS S2.L1 sequence is 794

frames at 7 fps. Crowd density is low, however this se-
quence features more unpredictable pedestrian motion. For
the Oxford sequence, pedestrian detection was performed
offline using the part-based Poselets pedestrian detector [5].
For the PETS sequence the detections from [1] were used.
As it has been shown that linear programming trackers can
be sensitive to false positive detections [4], we pre-process
the detector output as follows: Detections with a confidence
score below a threshold are removed. Non-maxima sup-
pression, with a threshold of 0.5, as in [11], is used. Finally,
camera calibration is used to removed detections based on
height, estimated using bounding-box size, for detections
outside the range 1.2 m to 2.1 m.

The linear program representing the tracking problem
is solved using the built-in Matlab solver linprog. As
in [21] Fibonacci search is used to find T∗, the optimal
quantity of flow to pass through the tracking graph, where
each unit of flow represents a tracklet. The final tracker out-
put was smoothed using a moving average filter, with win-
dow length, F , equal to the frame-rate of the sequence. The
parameters were set as follows: Dmax = 20 pixels/frame,
∆T̃max = 3 s, Emax = 200, ∆Tmax = 3 frames for PETS,
and ∆Tmax = 5 frames for Oxford.

4.1. Linking Parameters

In this experiment we investigate tracker performance
when varying the tracklet linking method, and the cost func-
tion for associating detections and tracklets. We compare
tracklet linking performance using the energy function pro-
posed in Section 3.3, with a baseline method, and we com-
pare the cost function proposed in Eq. (9), with a Gauss
cost function. The baseline tracklet linking method sim-
ply extrapolates a line between the end detection of the first
tracklet and start detection of the next tracklet, forward and
backward by F frames. The association cost is then calcu-
lated similarly to Eq. (10). A Gauss cost function is defined
as c = 1 − e−(

x
xmax )2 , where xmax is the maximum per-

mitted value for x. This function grows slowly for small
x, in contrast with our proposed cost function, which grows
quickly for small x.

Tracking results for all combinations of tracklet linking
method (baseline and regression) and cost function (Gauss
and Eq. (9)) are shown in Fig. 4 as a function of ∆T̃max, the
maximum gap in seconds, over which tracklet linking may

Figure 3. Example tracker output for, Left: Oxford Town Centre,
Right: PETS S2.L1. Videos containing the tracking results are
provided as supplementary material.



occur (see Section 3.3); ∆T̃max = 0 is equivalent the min-
cost flow network with no long-distance links. From Fig. 4,
it can again be seen that velocity and motion modeling im-
proves performance, and that our cost function, Eq. (9), out-
performs a conventional Gaussian cost function. For both
sequences, as ∆T̃max is increased, the combination of re-
gression linking and proposed cost function produces the
most stable performance over a wide range of ∆T̃max val-
ues, with the desirable property of never decreasing perfor-
mance below the system without a motion model, in spite
of the parameter tuning. On the PETS sequence, the com-
bined baseline methods are able to produce a higher MOTA
for ∆T̃max = 2 however, this is not replicated on the Ox-
ford sequence. This could be due to the short-term occlu-
sions and random motion in the PETS sequence, meaning
the motion model is less useful. Additionally, this combina-
tion is quite sensitive to parameter tuning. In contrast, when
∆T̃max is increased to large values, meaning the tracker is
permitted to link very widely separated detections, increas-
ing the possibility of mistakes, tracking performance with
the proposed methods does not drop below the level of no
tracklet linking for PETS, and remains high for the Oxford
sequence. In conclusion, these results show that the com-
bination of our proposed tracklet linking method and cost
function, can lead to improved tracker accuracy without re-
quiring careful parameter tuning, as both sequences contain
quite different tracking environments in terms of pedestrian
motion, and different detectors were used to produce the
detections for each sequence.

4.2. Tracking Results

Tracking results for the Oxford and PETS sequences are
presented in Table 2 along with comparative results from
the literature. Our results are comparable with the litera-
ture [14, 1], and our tracker out-performs other min-cost
flow approaches, including [16] which uses simple instant
velocity within LP. Comparing MOTA for the system tested
with and without tracklet linking, we can see that motion
modeling improves performance on both sequences, and al-
though precision drops slightly due to some tracklets be-
ing incorrect linked, recall significantly improves, indicat-
ing that more tracklets were correctly linked. Additional
statistics, shown in Table 1, were collected to compare use
of stage 1 (Conventional LP), with the full system consist-
ing of stages 1, 2 and 3 (Our Method), showing the num-
ber and length of tracking gaps present compared to the
ground truth. For the complete system, on both datasets the
number of gaps decreases across all lengths, with the num-
ber of short gaps (less than 0.5 s) decreasing significantly.
The full system was also able to link tracklets across many
medium length gaps, of 1 to 2 s, and can even successfully
link across some very challenging long range gaps, of up to
75 frames or 3 s, in the case of the Oxford dataset.

Oxford Gap Len. (s) <0.5 <1 <2 ≥ 2
Gap Len. (Frames) <4 <7 <14 ≥ 21
Our Method 28 10 6 4
Conventional LP 46 21 10 4

PETS Gap Len. (s) <0.5 <1 <2 ≥ 3
S2.L1 Gap Len. (Frames) <12 <25 <50 ≥ 75

Our Method 478 167 95 48
Conventional LP 647 237 116 52

Table 1. Tracker statistics with stage 1 only (Conventional LP),
and with stages 1,2 and 3 (Our Method), shown as a histogram of
the number of gaps present, up to a given gap-length.

5. Conclusion

In this paper we have proposed a novel way of incor-
porating motion modeling into a min-cost network flow
tracker, by adding edges to the tracking graph to repre-
sent links between widely separated detections. The link-
ing costs are based on a novel energy function that takes
velocity into account. We show that this method can be
used to complete large tracking gaps caused by occlusion
or detector failure. The proposed method has shown good
performance on the Oxford town-centre and PETS S2.L1
sequences, outperforming conventional LP methodologies
and matching state of the art performances.
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