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ON THE POINT SPECTRUM IN THE EKMAN BOUNDARY

LAYER PROBLEM

BORBALA GERHAT, ORIF O. IBROGIMOV, AND PETR SIEGL

Abstract. New eigenvalue enclosures for the block operator problem arising
in the study of stability of the Ekman boundary layer are proved. This solves

an open problem in [19] on the existence of open sets of eigenvalues in domains

of Fredholmness of the analyzed operator family.

1. Introduction

The stability of the Ekman boundary layer was studied in several works, ranging
from experimental physics to a rigorous operator-theoretic approach, see in particu-
lar [13, 19, 22, 23, 24]. The system of coupled differential equations on R+ := (0,∞)
which arises in this analysis has the form

A

(
f1
f2

)
= λB

(
f1
f2

)
,

where

A =

(
(−∂2 + α2)2 + iαRV (−∂2 + α2) + iαRV ′′ 2∂

2∂ + iαRU ′ −∂2 + α2 + iαRV

)
,

B =

(
−∂2 + α2 0

0 I

) (1.1)

with formal boundary conditions

f1(0) = f ′
1(0) = f2(0) = 0, f1(∞) = f ′

1(∞) = f2(∞) = 0.

Here α > 0 is the wave number, R ≥ 0 is the Reynolds number, λ is the spectral
parameter and in the physical setting U, V are known real-valued smooth and ex-
ponentially decaying functions, see e.g. [19, 22, 24] for the derivations and further
details. In particular in [22], the one-parametric class of functions

Uϵ(x) = cos(ϵ)− e−x cos(x+ ϵ),

Vϵ(x) = e−x sin(x+ ϵ), x ∈ R, ϵ ∈ R
(1.2)

is considered.
The rigorous spectral analysis can be performed in the Hilbert space

H = L2(R+)⊕ L2(R+),
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disregarding the precise form of U , V and assuming merely that

U ′, V, V ′, V ′′ ∈ L1(R+) ∩ L∞(R+), (1.3)

see [19, 23]. From the operator theoretic point of view, the system (1.1) can be
viewed as a spectral problem for the operator family

T (λ) = A− λB,

Dom(T (λ)) = {(f1, f2) ∈ W 4,2(R+)×W 2,2(R+) :

f1(0) = f ′
1(0) = f2(0) = 0}, λ ∈ C;

(1.4)

recall that the spectrum of an operator family is defined as

σ(T ) = {λ ∈ C : 0 ∈ σ(T (λ)}
and analogously for various parts of the spectrum.

The following result is known on the spectrum of the operator family T in (1.4),
precise references to individual claims are given below Theorem 1.1. Throughout
the paper, we denote by ∥ · ∥Lp the standard Lp-norm over R+ for p ∈ [1,∞].

Theorem 1.1. Let U and V satisfy (1.3) and let T (λ), λ ∈ C, be as in (1.4). Then
the following hold.

i) The essential spectrum of T reads as

σess(T ) = {λ ∈ C : ∃ ξ ∈ R, pλ(ξ) = 0} (1.5)

where

pλ(ξ) = (ξ2 + α2)(ξ2 + α2 − λ)2 + 4ξ2, ξ ∈ R. (1.6)

ii) The point spectrum of T satisfies

σp(T ) ⊂ {λ ∈ C : Reλ ≥ γ, | Imλ| ≤ η} (1.7)

where

γ = α2 − R

2
(∥U ′∥L∞ + ∥V ′∥L∞)

(
α+

1

α

)
− αR∥V ∥L∞ ,

η = 2 + 2αR∥V ∥L∞ +
R

2
(∥U ′∥L∞ + ∥V ′∥L∞)

(
α+

1

α

)
+

R

α
∥V ′′∥L∞ .

iii) Let
Ω = C \ σess(T ) (1.8)

and let Ω+ and Ω− be the two connected components of Ω such that

Ω = Ω− ∪ Ω+, (−∞, α2) ⊂ Ω−, (α2,∞) ⊂ Ω+.

Then σp(T ) ∩ Ω− is a discrete set.

The essential spectrum was calculated non-rigorously in [24]; in [19, Thm. 3.6]
and [23, Thm. 3.1] this was proved using singular sequences and a relative com-
pactness argument, respectively. To be more precise, the essential spectrum used
in [19, 23] is

σess(T ) = σe3(T ) = {λ ∈ C : T (λ) is not Fredholm}.
Nonetheless, it readily follows from the results of [23] that (1.5) holds also for
σe4(T ), i.e. that T has index zero in its domain of Fredholmness, which implies

σ(T ) \ σess(T ) ⊂ σp(T ).

The enclosure of the point spectrum in the semi-infinite strip (1.7) was proved in
[19, Thm. 5.1]; notice that this strip always contains the essential spectrum.

Moreover, in [19, Thm. 6.2] it was established that σp(T ) ∩ Ω− is discrete and,
assuming that Ω+ does not contain any open sets of eigenvalues either, the spectral
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exactness of approximations via domain truncation was shown in [19, Thm. 8.1].
However, the question on the structure of the point spectrum in Ω+ was answered
only partially in [19, Thm. 6.3] and it remained unsolved if σp(T ) ∩ Ω+ is discrete
for arbitrary Reynolds numbers, see also [3, Open Problem 2013-13-ICMS].

Theorem 1.2 ([19, Thm. 6.3]). Assume that U ∈ C1([0,∞)), V ∈ C2([0,∞)),
U ′, V, V ′′ ∈ L1([0,∞)), and

lim
x→∞

U ′(x) = lim
x→∞

V (x) = lim
x→∞

V ′′(x) = 0.

Let ROE be the set of Reynolds numbers {R ∈ R : R ≥ 0} such that the Ekman
problem (1.4) has a non-empty open set of eigenvalues.

(1) There exists R0 > 0 such that [0, R0] ∩ROE = ∅.
(2) ROE has no accumulation points.

Notice that due to the position of Ω+ with respect to the essential spectrum,
neither numerical range nor perturbation arguments based on Neumann series and
relative boundedness apply. For the same reason, spectral exactness cannot be
established using novel essential numerical range tools recently developed in [2].

In this paper we study location and structure of the point spectrum of T in Ω
and, in particular, solve the open problem from [19] affirmatively. Our methodology
is inspired by recent results on spectral bounds for non-self-adjoint Schrödinger
type operators and benefits from an interesting interplay between operator theory,
Fourier analysis and residue calculus.

Theorem 1.3. Let U and V satisfy (1.3) and let T (λ), λ ∈ C, be as in (1.4). Then
σp(T ) ∩ Ω is a discrete and bounded set.

In fact, Theorem 1.3 is a simplified version of Theorem 3.4 below from which a
new quantitative enclosure (3.14) for σp(T ) can be obtained, see also Remark 3.5.
Figure 1 illustrates the essential spectrum, our spectral enclosure (3.14), as well as
the previously known result (1.7).

The strategy to prove Theorem 1.3 consists of two main steps. First in Section 2
we find a suitable formula for the inverse of the (unperturbed) operator family

L(λ) =
(
(−∂2 + α2)(−∂2 + α2 − λ) 2∂

2∂ −∂2 + α2 − λ

)
, λ ∈ C (1.9)

with the λ-independent domain

Dom(L(λ)) = Dom(L) =
{
(f1, f2) ∈ W 4,2(R+)×W 2,2(R+) :

f1(0) = f ′
1(0) = f2(0) = 0

}
;

(1.10)

notice that L(λ), λ ∈ C, are diagonally dominant operator matrices. In the second
step, the original operator function T is expressed as

T (λ) = L(λ) + iαRV

where

V =

(
V (−∂2 + α2) + V ′′ 0

U ′ V

)
;

the perturbation is known to be relatively compact, see [23]. Our new results are
then obtained by analyzing the Birman-Schwinger type operator

Q(λ) = V1L(λ)−1V2, λ ∈ Ω

where V = V2V1 is a suitable factorization of V, see Section 3 for details. This is
inspired by the pioneering work [1] on one-dimensional Schrödinger operators with
complex potentials.
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Figure 1. An illustration of the essential spectrum of T (in red) and
the enclosures of the point spectrum of T ((1.7) in yellow, (3.14) in
blue) for α = 1.3, R = 1.12 and U = U0, V = V0 from (1.2) and the

decomposition with W1(x) = e−x/2, see (3.1). The blue dots are the
finite set Bα, see (1.11). In Remark 3.5 ii) and iii) some details on the
performed steps in the numerical calculation are described.

It is essential to find the Green’s function of L(λ), which is done by means of the
distributional Fourier transform. Although it has a more complicated form, it shares
the same qualitative properties as the Green’s function of the one-dimensional
Laplace operator, see e.g. (2.20); in particular, it has a singularity at λ = α2,
i.e. at the tip of the essential spectrum, see Propositions 2.7 and 2.8 for the precise
formulas. Overall, our analysis resembles the original one-dimensional Schrödinger
operator case in [1] eventually. Nonetheless, the complex nature of the problem
results in several obstacles which usually do not occur simultaneously. Not only
does the Ekman boundary layer give rise to a spectral problem for a linear operator
family having an operator matrix structure with higher order differential entries,
but also boundary conditions at 0 need to be included, the essential spectrum is not
a subset of R and, even though the unperturbed problem is normal, it is not always
self-adjoint (see e.g. [4, 7, 11] on non-self-adjoint matrix differential problems).

The crucial role for both the analysis of the Green’s function of L(λ) and the
subsequent Birman-Schwinger type argument is played by the zeros µj , j = 1, . . . , 6
of the polynomial pλ in (1.6), see Lemma 2.1. Although {µj} can be expressed via
Cardano’s formula, these explicit but complicated expressions are not used; needed
properties of {µj} and their asymptotic behavior are instead proved independently,
see Section 2.1, using also the previously established results in [19].

Some arguments in [19] require special considerations when λ is in the finite set

Bα = {λ ∈ C : pλ has multiple roots}. (1.11)
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This set occurs naturally also here and it is special at least in that the formulas
for the Green’s function of L(λ) seem to have singularities; these are, however,
only apparent, as can easily be seen from the formulas in Propositions 2.7 and 2.8.
Nonetheless, these effects prevent one to give simple and explicit enclosures for the
point spectrum in terms of {µj} and the L1-norms of the coefficients (e.g. as for
one-dimensional Schrödinger operators), see Remark 3.5.

The Birman-Schwinger type argument used to prove Theorem 1.3 relies on the as-
ymptotic behavior of the L∞-norms of the Green’s function of L(λ), see Lemma 3.3,
which in turn requires the knowledge of the asymptotic behaviour of the zeros {µj}
for large λ. Interestingly, due to a peculiar asymptotic behavior of the Green’s
function, the norm of the Birman-Schwinger operator is merely bounded in λ and
thus the standard approach to show the invertibility of I + iαRQ(λ) does not im-
mediately yield the result. Instead, one can estimate the spectral radius of Q(λ)
which decays as λ → ∞, see Lemma 3.3 and Theorem 3.4 below for details.

Using known techniques, our result can be extended in several directions. In
particular, the integrability conditions on the coefficients U , V can be relaxed to Lp

conditions with p ∈ [1,∞) and the estimate of the Birman-Schwinger operator can
be modified accordingly by employing Stein’s interpolation theorem, see e.g. [6, 8,
9, 10, 12, 16, 17, 21]. The L∞ assumption is as usual only technical. Moreover, one
can obtain bounds on (possibly) embedded eigenvalues by establishing a limiting-
absorption type principle e.g. as in [14, 15].

2. Inverse of the operator family L

For the explicit description of the inverse of L(λ), it is convenient to first reflect
and extend the problem to the whole real line. Nonetheless, we keep the boundary
conditions and so the extended operator remains disconnected at 0. In more detail,
we consider the Hilbert space

H0 = L2
even(R)⊕ L2

odd(R)

and define an operator family L0(λ), λ ∈ C, in H0 as

L0(λ) =

(
(−∂2

0 + α2)(−∂2
0 + α2 − λ) 2∂0

2∂0 −∂2
0 + α2 − λ

)
,

Dom(L0(λ)) = Dom(L0)

=
{
(f1, f2) ∈ (W 4,2(R \ {0})×W 2,2(R \ {0})) ∩H0 :

f1(0) = f ′
1(0) = f2(0) = 0

}
;

(2.1)

here ∂0 denotes the distributional derivative on R \ {0}. Note that, by the Sobolev
embedding theorem, f1 is continuous on R \ {0} and f1(0−) and f1(0+) exist; the
same follows for f ′

1, f ′′
1 , f ′′′

1 , f2 and f ′
2. The imposed boundary conditions are

understood accordingly, e.g. as f1(0−) = 0 = f1(0+).
A suitable formula for the inverse of the family L0 is derived via the distributional

Fourier transform. We adopt here the conventions of [25, 26], see in particular [25,
§9]. Namely, the Fourier transform is defined on the Schwartz space S(R) by

F [ϕ(x)](ξ) =

∫
R
eiξxϕ(x) dx, ϕ ∈ S(R), (2.2)
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and extended in the standard way to the space S ′(R) of tempered distributions.
For all ϕ ∈ S(R) and f ∈ S ′(R), we have the following well-known identities

F−1[ϕ(ξ)](x) =
1

2π

∫
R
e−iξxϕ(ξ) dξ,

F [f ′(x)](ξ) = −iξF [f(x)](ξ), (2.3)

F [f ∗ ϕ] = F [f ]F [ϕ] (2.4)

Moreover, it is well-known that

F [δ(x)](ξ) = 1, (2.5)

F [e−ν|x|](ξ) =
2ν

ξ2 + ν2
, Re ν > 0. (2.6)

In our analysis, a naturally appearing object is the matrix funcion (a formal
symbol of L(λ))

Mλ(ξ) =

(
(ξ2 + α2)(ξ2 + α2 − λ) −2iξ

−2iξ ξ2 + α2 − λ

)
, λ ∈ C, ξ ∈ R.

The inverse of Mλ reads as

M−1
λ (ξ) =

1

pλ(ξ)

(
ξ2 + α2 − λ 2iξ

2iξ (ξ2 + α2)(ξ2 + α2 − λ)

)
(2.7)

where pλ is as in (1.6). Note that M−1
λ is bounded if and only if λ ∈ Ω, as expected.

2.1. Zeros of pλ. In order to find L0(λ)
−1, we need certain properties of the zeros

of pλ. Recall that Bα is defined as the finite set where roots of the polynomial pλ
are multiple, see (1.11).

Lemma 2.1. Let pλ, λ ∈ C, be as in (1.6) and let Ω and Bα be as in (1.8) and
(1.11), respectively. Then pλ can be factorized as

pλ(ξ) = (ξ2 − µ1(λ)
2)(ξ2 − µ2(λ)

2)(ξ2 − µ3(λ)
2), ξ ∈ R. (2.8)

If λ ∈ Ω, there are three roots of pλ with negative imaginary parts given by

µj(λ) ≡ µj =
√
µj(λ)2, j = 1, 2, 3

where the complex square root is understood as a mapping

C \ [0,∞) → {z ∈ C : Im z < 0};
the remaining roots are given by −µj, j = 1, 2, 3. Moreover, if λ ∈ Ω \Bα, we can
decompose

1

pλ(ξ)
=

c1
ξ2 − µ2

1

+
c2

ξ2 − µ2
2

+
c3

ξ2 − µ2
3

(2.9)

where

c1(λ) ≡ c1 =
1

(µ2
1 − µ2

2)(µ
2
1 − µ2

3)
,

c2(λ) ≡ c2 =
1

(µ2
2 − µ2

1)(µ
2
2 − µ2

3)
,

c3(λ) ≡ c3 =
1

(µ2
3 − µ2

1)(µ
2
3 − µ2

2)
.

Proof. As pλ is cubic in ξ2, it can clearly be factorized as in (2.8). If λ ∈ Ω, then
pλ has no real roots, thus µ2

j /∈ [0,∞) and the zeros in the lower half plane are
obtained by the claimed branch of the complex square root. The decomposition
(2.9) immediately follows from the partial fraction expansion (recall that if λ /∈ Bα

and i ̸= j then µ2
j − µ2

i ̸= 0). □
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For later use, we derive asymptotic formulas for the roots of pλ as λ → ∞.

Lemma 2.2. Let µj, j = 1, 2, 3, be as in Lemma 2.1. Then

µ2
1 = −α2 +

4α2

λ2
+O(λ−4),

µ2
2 = λ− α2 − 2i +O(λ−1), µ2

3 = λ− α2 + 2i +O(λ−1), λ → ∞.

(2.10)

Hence, as λ → ∞,

|µ1| = α+O(λ−2), |µ2| = |λ| 12 +O(λ− 1
2 ), |µ3| = |λ| 12 +O(λ− 1

2 ),

|c1| =
1

|λ|2
+O(λ−4), |c2| =

1

4|λ|
+O(λ−2), |c3| =

1

4|λ|
+O(λ−2).

(2.11)

Proof. Clearly, we have pλ(ξ) = Pλ(ξ
2) with

Pλ(z) = (z + α2)(z + α2 − λ)2 + 4z, z ∈ C.

In what follows, all asymptotic relations shall be understood for λ → ∞.
Relying on Rouché’s theorem, see e.g. [5, Thm. V.3.8], we prove that Pλ has a

simple root

zλ = uλ +O(λ−4), uλ = −α2 +
4α2

λ2
.

Consider the polynomials

qλ(z) = Pλ(uλ + z), rλ(z) = z(uλ + z − λ)2

and let C > 16α2. For |z| = C|λ|−4, one can easily compute and estimate

|qλ(z)− rλ(z)| = |16α2λ−2 +O(1)z2 +O(λ)z +O(λ−3)|
≤ 16α2|λ|−2 +O(λ−3).

(2.12)

On the other hand, an easy calculation yields the estimate

|rλ(z)| = |λ2z + z3 +O(λ)z2 +O(λ)z| ≥ C|λ|−2 +O(λ−3). (2.13)

Since C > 16α2, it follows from (2.12) and (2.13) that

|qλ(z)− rλ(z)| < |rλ(z)|, |z| = C|λ|−4

if |λ| is sufficiently large. By Rouché’s Theorem, we conclude that qλ has exactly
one root in the ball BC|λ|−4(0). Equivalently, if |λ| is sufficiently large, then Pλ has
exactly one root zλ in BC|λ|−4(uλ), which then satisfies

|zλ − uλ| ≤ C|λ|−4.

Setting µ1(λ)
2 := zλ, this proves the first claim in (2.10); the remaining two are

proven analogously.
The asymptotic expansions in (2.11) follow in a straightforward way from (2.10)

and the relation (1 + x)β = 1 +O(x) as x → 0. □

The following lemma on the roots of pλ is analogous to a part of [19, Thm. 6.1],
where only λ ∈ Ω+ was considered; some modifications of the proof therein allow
us to extend the claim to the whole Ω.

Lemma 2.3. Let µj, j = 1, 2, 3 be as in Lemma 2.1 and Ω as in (1.8). Then

(α2 − λ)(µ1 + µ2 + µ3)− µ1µ2µ3 ̸= 0, λ ∈ Ω.
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Proof. We proceed by contradiction, i.e. we assume that

(α2 − λ)(µ1 + µ2 + µ3) = µ1µ2µ3. (2.14)

By expanding the polynomial pλ(ξ) in ξ2 and applying Vieta’s theorem, we get

µ2
1 + µ2

2 + µ2
3 = 2λ− 3α2, (2.15)

µ2
1µ

2
2 + µ2

2µ
2
3 + µ2

3µ
2
1 = λ2 − 4λα2 + 3α4 + 4, (2.16)

µ2
1µ

2
2µ

2
3 = −α2(α2 − λ)2. (2.17)

Notice that λ ̸= α2, since otherwise pλ would have the real root ξ = 0, which is
impossible as λ ∈ Ω. In view of this, we square (2.14) and use the trinomial identity

(µ1 + µ2 + µ3)
2 = µ2

1 + µ2
2 + µ2

3 + 2(µ1µ2 + µ2µ3 + µ3µ1)

together with (2.15), (2.17) and obtain

µ1µ2 + µ2µ3 + µ3µ1 = α2 − λ. (2.18)

Next, using the square of (2.18), the trinomial identity and (2.16), as well as (2.14),
(2.17) and λ ̸= α2, we get

(α2 − λ)2 = λ2 − 4λα2 + 3α4 + 4 + 2µ1µ2µ3(µ1 + µ2 + µ3)

= λ2 − 4λα2 + 3α4 + 4− 2α2(α2 − λ)

= (α2 − λ)2 + 4.

However, this is a contradiction. □

2.2. Inverse of L0(λ). We start with finding the inverse Fourier transform ofM−1
λ .

Lemma 2.4. Let Ω and Bα be as in (1.8) and (1.11), respectively, let M−1
λ be as

in (2.7) and let F be the Fourier transform as in (2.2). Then

F−1[M−1
λ (ξ)](x) = Gλ(x) =

(
G11 G12

G21 G22

)
(x), x ∈ R (2.19)

depends analytically on λ ∈ Ω (for fixed x ∈ R). Moreover, for all λ ∈ Ω, the
convolution with Gλ is a bounded operator on H0. If λ ∈ Ω \Bα, then

G11(x) = − i

2

3∑
j=1

cj
µj

(µ2
j + α2 − λ)e−iµj |x|,

G12(x) = G21(x) = sgnx

3∑
j=1

cje
−iµj |x|,

G22(x) = − i

2

3∑
j=1

cj
µj

(µ2
j + α2 − λ)(µ2

j + α2)e−iµj |x|, x ∈ R

(2.20)

with µj, cj, j = 1, 2, 3 as in Lemma 2.1.

Proof. Since Re(iµj) > 0, see Lemma 2.1, employing formula (2.6) gives

− i

2µj
e−iµj |x| = F−1

[ 1

ξ2 − µ2
j

]
, j = 1, 2, 3.

Taking into account the decomposition (2.9), we find that, for λ ∈ Ω \Bα,

τ(x) := F−1[p−1
λ (ξ)](x) = − i

2

(
c1
µ1

e−iµ1|x| +
c2
µ2

e−iµ2|x| +
c3
µ3

e−iµ3|x|
)
.
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To get (2.20), we calculate distributional derivatives of τ , namely,

τ ′(x) = −1

2

(
c1e

−iµ1|x| + c2e
−iµ2|x| + c3e

−iµ3|x|
)
sgnx,

τ ′′(x) =
i

2

(
c1µ1e

−iµ1|x| + c2µ2e
−iµ2|x| + c3µ3e

−iµ3|x|
)
− (c1 + c2 + c3)δ.

It is obvious from (2.9) that c1 + c2 + c3 = 0, thus

τ ′′(x) =
i

2

(
c1µ1e

−iµ1|x| + c2µ2e
−iµ2|x| + c3µ3e

−iµ3|x|
)
. (2.21)

Analogously, using the relation c1µ
2
1 + c2µ

2
2 + c3µ

2
3 = 0, we find

τ ′′′(x) =
1

2

(
c1µ

2
1e

−iµ1|x| + c2µ
2
2e

−iµ2|x| + c3µ
2
3e

−iµ3|x|
)
sgnx,

τ (4)(x) = − i

2

(
c1µ

3
1e

−iµ1|x| + c2µ
3
2e

−iµ2|x| + c3µ
3
3e

−iµ3|x|
)
.

The formulas in (2.20) are now obtained in a straightforward way by applying the
rule (2.3) successively.

The holomorphicity of Gλ on Ω can be verified in a straightforward way from
its definition in (2.19) by applying the dominated convergence theorem. It remains
to show the boundedness of the convolution operator Gλ ∗ · on H0. Let therefore
G = (g1, g2) ∈ H0. As G11 and G22 are even and G12 = G21 is odd, it follows that the
first and second components of Gλ ∗G are even and odd, respectively. By Young’s
convolution inequality,

∥Gλ ∗G∥2H0
≲

2∑
i,j=1

∥Gij ∗ gj∥2L2(R) ≤
2∑

i,j=1

∥Gij∥2L1(R)∥gj∥
2
L2(R)

≲
2∑

i,j=1

∥Gij∥2L1(R)∥G∥2H0
.

The proof is concluded by checking the integrability of Gλ, which follows from (2.19),
(2.7) and the properties of the Fourier transform (we remark that for λ ∈ Ω \ Bα,
this is immediate from (2.20) and the choice of µj , j = 1, 2, 3, see Lemma 2.1). □

To find the inverse of L0(λ) we further need the two following lemmas.

Lemma 2.5. Let Ω be as in (1.8), let M−1
λ be as in (2.7) and let

A(λ) =

∫
R

(
−iξ 0
0 1

)
M−1

λ

(
iξ 0
0 1

)
dξ, λ ∈ Ω. (2.22)

Then detA(λ) ̸= 0, λ ∈ Ω.

Proof. We first find a suitable formula for detA(λ) when λ ∈ Ω \ Bα. It can be
easily verified from the definition (2.22) that detA(λ) is a continuous function of
λ ∈ Ω and so one can obtain a formula for detA(λ), λ ∈ Ω∩Bα, by passing to the
limit in λ; see (2.31) for the final formula.

The determinant of A(λ) can be written as

detA(λ) = I1(λ)I2(λ) + I3(λ)
2, Ii(λ) =

∫
R
p−1
λ (ξ)fi(ξ)dξ

where the functions fi, i = 1, 2, 3, are given by

f1(ξ) = ξ2(ξ2 + α2 − λ), f2(ξ) = (ξ2 + α2)(ξ2 + α2 − λ), f3(ξ) = 2ξ2.

We determine I1(λ) by a standard residue calculation. Let r > 0 and Γr be a
negatively oriented, simple parametrization of the boundary of the semi-disc

Br(0) ∩ {z ∈ C : Im z < 0}.
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Since f1 is entire, Reµj < 0, j = 1, 2, 3, and the remaining roots of pλ lie in the
upper half plane, the residue theorem yields, for sufficiently large r,

−2πi

3∑
j=1

res(p−1
λ f1;µj) =

∫
Γr

p−1
λ (z)f1(z)dz

=

∫ r

−r

p−1
λ (ξ)f1(ξ)dξ +

∫ 0

−π

ireiξp−1
λ (reiξ)f1(re

iξ)dξ

(2.23)

where the last integral along the semi-circle tends to 0 as r → ∞; this is a conse-
quence of the dominated convergence theorem and the fact that the integrand is
continuous, uniformly bounded in r and converges pointwise to 0. From (2.23), we
thus obtain

I1(λ) = lim
r→∞

∫ r

−r

p−1
λ (ξ)f1(ξ)dξ = −2πi

3∑
j=1

res(p−1
λ f1;µj). (2.24)

It remains to calculate the residues. Since we assumed that λ /∈ Bα, we use the
decomposition (2.9) and as µj are simple roots of pλ in this case, we derive

res(p−1
λ f1;µj) = lim

z→µj

(z − µj)p
−1
λ (z)f1(z) =

cjf1(µj)

2µj

and further, by (2.24),

I1(λ) = −πi

3∑
j=1

cjµj(µ
2
j + α2 − λ). (2.25)

In the same way, one calculates the integrals

I2(λ) = −πi

3∑
j=1

cj
µj

(µ2
j + α2)(µ2

j + α2 − λ), I3(λ) = −2πi

3∑
j=1

cjµj .

Combining this with (2.25), we conclude that

detA(λ)

−π2
=

3∑
i,j=1

cicj

(
µi

µj
(µ2

i + α2 − λ)(µ2
j + α2 − λ)(µ2

j + α2) + 4µiµj

)
. (2.26)

Recall that as λ ∈ Ω, all roots of pλ are non-zero and so the calculations above are
justified. Moreover, pλ(µj) = 0 then implies that µ2

j + α2 − λ ̸= 0 and

(µ2
j + α2 − λ)(µ2

j + α2) = −
4µ2

j

µ2
j + α2 − λ

.

Using this identity, (2.26) simplifies to

detA(λ)

−π2
= 4

3∑
i,j=1

cicjµiµj

µ2
j − µ2

i

µ2
j + α2 − λ

.

Introducing the notations

C ≡ C1C2C3 ≡ (µ2
2 − µ2

3)(µ
2
3 − µ2

1)(µ
2
1 − µ2

2) ̸= 0,

D ≡
3∏

j=1

(µ2
j + α2 − λ), Dj ≡

3∏
k=1, k ̸=j

(µ2
k + α2 − λ),

(2.27)

and using that cjC = −Cj , we infer

detA(λ)

−4π2
=

3∑
i,j=1,i̸=j

CiCjDj

C2D
µiµj

(
µ2
j − µ2

i

)
. (2.28)



ON THE POINT SPECTRUM IN THE EKMAN BOUNDARY LAYER PROBLEM 11

Expanding the right hand side of (2.28) and using (2.27), we further obtain that

detA(λ)

−4π2
=

1

CD
(µ1µ2(D1 −D2) + µ2µ3(D2 −D3) + µ3µ1(D3 −D1)) .

By inserting the formulas for Dj , we get

detA(λ)

−4π2
=

1

CD

(
µ1µ2(µ

2
3 + α2 − λ)(µ2

2 − µ2
1)

+ µ2µ3(µ
2
1 + α2 − λ)(µ2

3 − µ2
2)

+ µ3µ1(µ
2
2 + α2 − λ)(µ2

1 − µ2
3)
)
.

(2.29)

Using (2.29), by elementary manipulations (more precisely, expanding and simpli-
fying the right-hand side of (2.30)), we see that

detA(λ)

−4π2
=

(µ1 − µ2)(µ2 − µ3)(µ3 − µ1)

CD
((α2−λ)(µ1+µ2+µ3)−µ1µ2µ3). (2.30)

Hence, we finally obtain for all λ ∈ Ω that

detA(λ) = −4π2 (α2 − λ)(µ1 + µ2 + µ3)− µ1µ2µ3

(µ1 + µ2)(µ2 + µ3)(µ3 + µ1)
∏3

j=1(µ
2
j + α2 − λ)

; (2.31)

notice that we include also λ ∈ Ω ∩Bα since the formula has no longer (apparent)
singularities for multiple roots. Finally, we conclude by Lemma 2.3 that detA(λ) ̸=
0 for λ ∈ Ω. □

Lemma 2.6. Let Ω and Gλ be as in (1.8) and (2.19), respectively. Then

G11(0) =
i

2

µ1µ2µ3 − (α2 − λ)(µ1 + µ2 + µ3)

µ1µ2µ3(µ1 + µ2)(µ2 + µ3)(µ3 + µ1)
̸= 0, λ ∈ Ω. (2.32)

Proof. We show the first equality in (2.32), the claim then follows by Lemma 2.3.
Let λ ∈ Ω \Bα, then we get from (2.20)

G11(0) = − i

2

3∑
j=1

cj
µj

(µ2
j + α2 − λ)

=
i

2Cµ1µ2µ3

(
µ2µ3(µ

2
2 − µ2

3)(µ
2
1 + α2 − λ)

+ µ3µ1(µ
2
3 − µ2

1)(µ
2
2 + α2 − λ)

+ µ1µ2(µ
2
1 − µ2

2)(µ
2
3 + α2 − λ)

)
where C as in (2.27). The formula in (2.32) for λ ∈ Ω\Bα follows by manipulations
analogous to (2.29) and (2.30); moreover, it can be extended to λ ∈ Bα ∩ Ω by
continuity of both left and right hand side. □

The inverse of L0(λ) is found via Fourier transform and by employing Lemmas 2.5
and 2.6; notice that the second term in (2.33) is a rank-one operator.

Proposition 2.7. Let Ω be as in (1.8) and let the family L0 be as in (2.1). Then,
with Gλ as in (2.19), we have for all λ ∈ Ω

L0(λ)
−1G =

∫
R
Gλ(· − y)G(y) dy +

∫
R
Kλ(·, y)G(y) dy, G ∈ H0 (2.33)

where (with x, y ∈ R)

Kλ(x, y) =
1

G11(0)

(
−G11(x)G11(y) G11(x)G12(y)
−G12(x)G11(y) G12(x)G12(y)

)
. (2.34)
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Proof. We find the formula for L0(λ)
−1 by taking the Fourier transform of the

resolvent equation

L0(λ)F = G, F ∈ Dom(L0), G ∈ H0 ∩ S(R)2. (2.35)

To this end, we rewrite (2.35) as an equation in tempered distributions. Using the
boundary conditions which F = (f1, f2) satisfies, see (2.1), we derive the following
identities between its distributional derivatives on the whole real line and on R\{0}

f ′
1 = ∂0f1, f ′′

1 = ∂2
0f1,

f ′′′
1 = ∂3

0f1 + [f ′′
1 ]0 δ, f

(4)
1 = ∂4

0f1 + [f ′′′
1 ]0 δ + [f ′′

1 ]0 δ
′,

f ′
2 = ∂0f2, f ′′

2 = ∂2
0f2 + [f ′

2]0 δ;

here [g]0 = g(0+)−g(0−) is the jump of a piece-wise continuous function g at 0 and
δ is the Dirac δ at 0. Hence, denoting by LR(λ) the operator L0(λ) with standard
distributional derivatives on whole R instead of ∂0, (2.35) reads

LR(λ)F = G+

(
[f ′′′

1 ]0 δ + [f ′′
1 ]0 δ

′

−[f ′
2]0 δ

)
. (2.36)

Applying the Fourier transform F on (2.36) and using the standard rules for F ,
see (2.3) and (2.5), we obtain

MλF [F ] = F [G] +

(
[f ′′′

1 ]0 − iξ[f ′′
1 ]0

−[f ′
2]0

)
.

Hence, inverting the matrix Mλ for λ ∈ Ω, we get

F [F ] = M−1
λ F [G] +M−1

λ

(
[f ′′′

1 ]0 − iξ[f ′′
1 ]0

−[f ′
2]0

)
. (2.37)

Applying the inverse Fourier transform to (2.37) and using the convolution theorem
(2.4), it follows that

F = (F−1M−1
λ ) ∗G+ F−1

[
M−1

λ

(
[f ′′′

1 ]0 − iξ[f ′′
1 ]0

−[f ′
2]0

)]
. (2.38)

Recalling Lemma 2.4 and M−1
λ = F [Gλ], we thus obtain the first term in (2.41).

We proceed by finding the formula for Kλ. The function F in (2.38) must be an
element of Dom(L0), in particular, it must satisfy the boundary conditions at 0. In
the Fourier space, these can be expressed as

fj(0) = 2π

∫
R
F [fj ](ξ) dξ = 0, j = 1, 2,

f ′
1(0) = −2πi

∫
R
ξF [f1](ξ) dξ = 0.

Combining the relations above with (2.37), we obtain three equations. Namely,
(with A(λ) is as in Lemma 2.5)(

0
0

)
=

∫
R

(
−iξ 0
0 1

)
M−1

λ (ξ)

(
F [G](ξ) +

(
[f ′′′

1 ]0
0

))
dξ −A(λ)

(
[f ′′

1 ]0
[f ′

2]0

)
(2.39)

and (with M−1
λ = F [Gλ] and G = (g1, g2))

0 =

∫
R
(F [G11](ξ)F [g1](ξ) + F [G12](ξ)F [g2](ξ)) dξ

+

∫
R
((M−1

λ )11(ξ)([f
′′′
1 ]0 − iξ[f ′′

1 ]0)− (M−1
λ )12(ξ)[f

′
2]0) dξ.

(2.40)
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Since G ∈ H0 ∩ S(R)2, considering the defining formula (2.2), we have F [G] ∈ H0

and both components of the integrand in (2.39) are odd functions. Thus the integral
vanishes and equation (2.39) simplifies to

A(λ)

(
[f ′′

1 ]0
[f ′

2]0

)
= 0,

which in turn by Lemma 2.5 implies [f ′′
1 ]0 = [f ′

2]0 = 0. Consequently, using that
G11 = F−1[(Mλ)

−1
11 ] and that G11(0) ̸= 0 by Lemma 2.6, equation (2.40) reads

[f ′′′
1 ]0 = −

⟨F [g1],F [G11]⟩L2(R) + ⟨F [g2],F [G12]⟩L2(R)

2πG11(0)
.

Using in addition that F [f ] = F [f ] if f is even and F [f ] = −F [f ] if f is odd, as
well as the identity

⟨F [f ],F [g]⟩L2(R) = 2π⟨f, g⟩L2(R), f, g ∈ L2(R),
we obtain the kernel Kλ in (2.34). Combining this with (2.38), we see that F is
equal to the right-hand side of (2.33), which in particular implies that L0(λ) is
injective and its left inverse is given by (2.33). Moreover, considering the definition
of Gλ in (2.19), using the properties of the Fourier transform, Fubini’s theorem and
the dominated convergence theorem, one can verify in a straightforward way that
F = L0(λ)

−1G defined by (2.33) with arbitrary G ∈ H0 satisfies F ∈ Dom(L0) and
L0(λ)F = G, i.e. that the operator in (2.33) is also a right inverse of L0(λ). We
conclude that L0(λ) is bijective and its inverse is given by the formula in (2.33). □

2.3. Inverse of L(λ). The inverse of L(λ) can be found by rewriting the formula
for L0(λ)

−1 in (2.33).

Proposition 2.8. Let Ω be as in (1.8), let the family L be as in (1.9) and (1.10),
let Gλ be as in (2.19) and let Kλ be as in (2.34). Then

L(λ)−1Ψ =

∫
R+

Lλ(·, y)Ψ(y) dy, Ψ ∈ H, λ ∈ Ω (2.41)

where (with x, y ∈ R+)

Lλ(x, y) = G+
λ (x, y) + 2Kλ(x, y),

G+
λ (x, y) =

(
G11(x− y) + G11(x+ y) G12(x− y)− G12(x+ y)
G12(x− y) + G12(x+ y) G22(x− y)− G22(x+ y)

)
.

(2.42)

Proof. We aim to solve the equation

L(λ)Ψ = Φ, Φ ∈ H, Ψ ∈ Dom(L). (2.43)

To this end, we extend Φ,Ψ ∈ H uniquely to Φ0,Ψ0 ∈ H0 so that Φ0 ↾ R+ = Φ
and Ψ0 ↾ R+ = Ψ. Then it is not difficult to see that

Ψ0 ∈ Dom(L0), (L0(λ)Ψ0) ↾ R+ = L(λ)Ψ.

Moreover, solving (2.43) (uniquely) is equivalent to solving L0(λ)Ψ0 = Φ0 (uniquely)
and restricting Ψ0 to R+, i.e.

Ψ = (L0(λ)
−1Φ0) ↾ R+. (2.44)

Using that the components of Φ0 are even and odd, we can further simplify the
terms in (2.44), namely, for x ∈ R+,

(Gλ ∗ Φ0)(x) =

∫
R+

Gλ(x− y)Φ(y) dy +

∫
R+

Gλ(x+ y)Φ0(−y) dy

=

∫
R+

G+
λ (x, y)Φ(y) dy
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and similarly∫
R
Kλ(x, y)Φ0(y) dy =

∫
R+

Kλ(x, y)Φ(y) dy +

∫
R+

Kλ(x,−y)Φ0(−y) dy

= 2

∫
R+

Kλ(x, y)Φ(y) dy

where we have used in addition that G11 and G12 are even and odd. □

Remark 2.9. Notice that the entries of the kernel G+
λ can be simplified. In detail,

for λ ∈ Ω \Bα, we have (with x, y ∈ R+)

G+
11(x, y) = −i

3∑
j=1

cj
µj

(µ2
j + α2 − λ)

{
e−iµjx cos(µjy), y < x,

e−iµjy cos(µjx), y > x,

G+
12(x, y) = 2i

3∑
j=1

cj

{
e−iµjx sin(µjy), y < x,

ie−iµjy cos(µjx), y > x,

G+
21(x, y) = −2i

3∑
j=1

cj

{
ie−iµjx cos(µjy), y < x,

e−iµjy sin(µjx), y > x,

G+
22(x, y) =

3∑
j=1

cj
µj

(µ2
j + α2 − λ)(µ2

j + α2)

{
e−iµjx sin(µjy), y < x,

e−iµjy sin(µjx), y > x.

3. Birman-Schwinger operator

Let λ ∈ Ω, thus L(λ)−1 exists and is given by (2.41) in Proposition 2.8. To
employ a Birman-Schwinger type argument, we factorize the perturbation V = V2V1

with

V2 =

(
W1 0
0 W1

)
, V1 =

(
W2(−∂2 + α2) +W3 0

W4 W2

)
(3.1)

where

W1 = max{|V | 12 , |V ′′| 12 , |U ′| 12 } (3.2)

and

W2 =
V

W1
, W3 =

V ′′

W1
, W4 =

U ′

W1
.

It follows from the assumptions on U and V , see (1.3), that

Wj ∈ L2(R+) ∩ L∞(R+), j = 1, . . . , 4,

and
∥W1∥2L2 = ∥max{|V |, |V ′′|, |U ′|}∥L1 , ∥W2∥2L2 ≤ ∥V ∥L1 ,

∥W3∥2L2 ≤ ∥V ′′∥L1 , ∥W4∥2L2 ≤ ∥U ′∥L1 .
(3.3)

The choice of W1 in (3.2) guarantees that Wj ∈ L2(R+), j = 1, . . . , 4, which is
essential in the next steps. Nonetheless, in particular situations, like in the physical
setting with U = Uϵ and V = Vϵ as in (1.2), it can be more convenient to choose a
different and simpler W1, e.g. W1(x) = e−x/2.

We next analyze the Birman-Schwinger type operator

Q(λ) = V1L(λ)−1V2, λ ∈ Ω. (3.4)

To express the integral kernel of Q(λ), we first derive terms produced by the dif-
ferential operator (−∂2 + α2) in V1.
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Lemma 3.1. Let Gλ and G+
λ be as in (2.19) and (2.42), respectively. Then

G22 = (−∂2 + α2)G11, rλ := (−∂2 + α2)G12 (3.5)

are analytic in λ on Ω (for every x ∈ R). Moreover, for x ∈ R and λ ∈ Ω \Bα,

rλ(x) = sgn(x)

3∑
j=1

cj(µ
2
j + α2)e−iµj |x|. (3.6)

Proof. From the definition of Gλ in (2.19) and the properties of the Fourier trans-
form, it can be derived easily that

(−∂2 + α2)G11 = G22, (−∂2 + α2)G12 = F−1

[
2iξ(ξ2 + α2)

pλ(ξ)

]
which in turn yields the claimed analyticity in λ by the dominated convergence
theorem. Moreover, using c1 + c2 + c3 = 0 for λ ∈ Ω \ Bα, one obtains (3.6)
similarly to (2.21). □

Lemma 3.2. Let Ω be as in (1.8), let V1 and V2 be as in (3.1) with Dom(V1) =
Dom(L) and Dom(V2) = H and let the families L−1 and Lλ be as in (2.41) and
(2.42), respectively. Then

Q(λ) = V1L(λ)−1V2, λ ∈ Ω

is a holomorphic family of Hilbert-Schmidt integral operators on H with kernel

Qλ(x, y) =

(
W3(x) 0
W4(x) W2(x)

)
Lλ(x, y)W1(y)

+W2(x)

(
q11(x, y) q12(x, y)

0 0

)
W1(y)

(3.7)

where

q11(x, y) = G22(x− y) + G22(x+ y)− 2

G11(0)
G22(x)G11(y),

q12(x, y) = rλ(x− y)− rλ(x+ y) +
2

G11(0)
G22(x)G12(y), x, y ∈ R+

(3.8)

with rλ and Gλ as in (3.5) and (2.19), respectively.

Proof. Let λ ∈ Ω. We first note that V1L(λ)−1V2 is everywhere defined in H.
The formula (3.7) for its integral kernel follows by composing V1L(λ)−1V2 and
using Lemma 3.1 together with the dominated convergence theorem (in order to
interchange −∂2 and the integral).

To show that V1L(λ)−1V2 is a Hilbert-Schmidt operator, it suffices to consider
its kernel in (3.7), notice that Gij , i, j = 1, 2, q11 and q12 are bounded functions
and that Wj ∈ L2(R+), j = 1, . . . , 4, see (3.3). Moreover, going back to the
definitions of the functions G+

λ , q11, q12 and rλ, see (2.42), (3.8) and (3.5), as
well as Gλ originally given via the inverse Fourier transform in (2.19), using the
dominated convergence theorem one can verify in a straightforward way that all
these functions are holomorphic in λ ∈ Ω and that V1L(λ)−1V2, λ ∈ Ω, is indeed a
bounded analytic family in Ω. □

In the next lemma we show that the spectral radius r(Q(λ)) decays as λ → ∞
in Ω. Notice that the method we use does not yield a decay of the norm of Q(λ),
for which we merely obtain ∥Q(λ)∥ = O(1) as λ → ∞ in Ω.

Lemma 3.3. Let Q(λ) be the integral operator with the kernel in (3.7). Then

r(Q(λ)) = O(|λ|− 1
2 ), λ → ∞ in Ω. (3.9)
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Proof. Let Gλ, Lλ and q11, q12 be as in (2.19), (2.42) and (3.8), respectively. By
estimating the Hilbert-Schmidt norms of Q(λ)ij , i, j = 1, 2, one obtains

∥Q(λ)11∥ ≤ (∥W3∥L2∥(Lλ)11∥L∞ + ∥W2∥L2∥q11∥L∞) ∥W1∥L2 ,

∥Q(λ)12∥ ≤ (∥W3∥L2∥(Lλ)12∥L∞ + ∥W2∥L2∥q12∥L∞) ∥W1∥L2 ,

∥Q(λ)21∥ ≤ (∥W4∥L2∥(Lλ)11∥L∞ + ∥W2∥L2∥(Lλ)21∥L∞) ∥W1∥L2 ,

∥Q(λ)22∥ ≤ (∥W4∥L2∥(Lλ)12∥L∞ + ∥W2∥L2∥(Lλ)22∥L∞) ∥W1∥L2 .

(3.10)

Moreover, from (2.20), (3.6) and Lemma 2.2, it follows readily that

∥G11∥L∞ = O(|λ|−1), |G11(0)|−1 = O(|λ|),

∥G12∥L∞ = O(|λ|−1), ∥q11∥L∞ = O(|λ|− 1
2 ),

∥G22∥L∞ = O(|λ|− 1
2 ), ∥q12∥L∞ = O(1), λ → ∞ in Ω;

(3.11)

recall that Bα is a finite set, so (2.20) and (3.6) can be used for λ with sufficiently
large modulus. From (3.10) and (3.11), we derive

∥Q(λ)11∥ = O(|λ|− 1
2 ), ∥Q(λ)12∥ = O(1),

∥Q(λ)21∥ = O(|λ|−1), ∥Q(λ)22∥ = O(|λ|− 1
2 ), λ → ∞ in Ω.

(3.12)

Next, we employ a simple similarity transform of Q(λ) and obtain

Q̃(λ) = diag(I, |λ| 12 I)Q(λ) diag(I, |λ|− 1
2 I) =

(
Q(λ)11 |λ|− 1

2Q(λ)12
|λ| 12Q(λ)21 Q(λ)22

)
.

Since similarity transforms leave the spectrum and thus the spectral radius invari-
ant, we have

r(Q(λ)) = r(Q̃(λ)) ≤ ∥Q̃(λ)∥ (3.13)

and the asymptotic relation in (3.9) follows from (3.13) and (3.12). □

The following is our main result.

Theorem 3.4. Let U and V satisfy (1.3), let T (λ), λ ∈ C, be as in (1.4) and let
Q(λ) be as in (3.4). Then

σp(T ) ∩ Ω ⊂ {λ ∈ Ω : αR r(Q(λ)) ≥ 1}. (3.14)

Moreover, the asymptotic relation

r(Q(λ)) = O(|λ|− 1
2 ), λ → ∞ in Ω (3.15)

implies that σp(T ) ∩ Ω is a bounded and discrete set.

Proof. We first show that if λ ∈ Ω and

αR r(Q(λ)) < 1, (3.16)

then λ ∈ ρ(T ); our proof relies on a Birman-Schwinger argument, cf. [18] for its
discussion in full generality.

If (3.16) holds, then I + iαRQ(λ) is invertible and the inverse is bounded on H.
Moreover, one can easily show that V1 is relatively bounded with respect to L(λ).
The latter implies that V1L(λ)−1 is bounded on H, and thus

R(λ) := L(λ)−1 − iαRL(λ)−1V2(I + iαRQ(λ))−1V1L(λ)−1 (3.17)

is a bounded operator on H; notice that 0 ∈ ρ(L(λ)) by Lemma 2.4. Using (3.17),
it is straightforward to show that

Ran(R(λ)) ⊂ Dom(T ), T (λ)R(λ) = I, R(λ)T (λ) ⊂ I,

i.e. that R(λ) = T (λ)−1 and thus λ ∈ ρ(T ). From this we conclude (3.14).
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The asymptotic relation (3.15) is showed in Lemma 3.3 and implies that the set
{λ ∈ Ω : αR r(Q(λ)) ≥ 1} is indeed bounded. It remains to show that σp(T ) ∩ Ω
is discrete. This however, is a consequence of [20, Thm. VII.1.9]; indeed, since
Q(λ) is a holomorphic family of compact operators on Ω and since there exist
points λ± ∈ Ω± such that I + iαRQ(λ±) are boundedly invertible, we conclude
that I + iαRQ(λ±) is not boundedly invertible only for λ in a discrete subset of Ω.
Regarding (3.17), this proves the claim. □

Remark 3.5. i) Notice that (3.15) resembles an analogous asymptotic bound

for one-dimensional Schrödinger operators A = − d2

dx2 +V in L2(R) with V ∈ L1(R),
see (3.19) below. Indeed, in this case, it is well known that the corresponding
Birman-Schwinger operator has the kernel

Pλ(x, y) = V1(x)
e−k|x−y|

2k
V2(y), (3.18)

where λ = −k2, Re k > 0, V2 = |V | 12 and V1 is defined by V1V2 = V , see [1] for
details. Estimating the Hilbert-Schmidt norm of the integral operator P(λ) with
kernel Pλ in (3.18) yields

∥P(λ)∥ ≤ ∥V1∥L2∥V2∥L2

1

2|λ| 12
=

∥V ∥L1

2|λ| 12
. (3.19)

The estimate (3.19) immediately gives the enclosure

σp(A) \ [0,∞) ⊂
{
λ ∈ C \ [0,∞) : |λ| ≤ 1

4
∥V ∥2L1

}
(3.20)

for the point spectrum of A, which is known to be optimal (in a suitable sense).
ii) The spectral enclosure (3.14) can be made more explicit to resemble (3.20)

by estimating r(Q(λ)) by ∥Q̃(λ)∥ and employing (3.10). For λ outside of Bα, one
can further estimate the norms ∥Gij∥L∞ , i, j = 1, 2, using (2.20) and |e−iµj |x|| ≤ 1.

Such an estimate results in a formula analogous to (3.19), exhibiting an explicit
dependence on the L2-norms ofWj , j = 1, . . . , 4, and the zeros {µj} of pλ. However,
Cardano’s formula for the latter provide only a limited insight. More importantly,
in such an analogue of (3.19), artificial singularities for λ ∈ Bα are created, implying
that a neighborhood of Bα would automatically be included in an eigenvalue enclo-
sure. This drawback is illustrated in Figure 1, where the parameters are selected
such that two points of Bα are not included in the enclosure (1.7).

iii) Our illustration of (3.14) in a particular case in Figure 1 avoids the steps
described in ii). Instead, using the decomposition (3.1) with W1(x) = e−x/2, we
compute directly the Hilbert-Schmidt norms of Q(λ)ij , i, j = 1, 2, for λ on a square
grid (with edges of length 0.03) in the box [0, 3] × i[−2.7, 2.7] ⊂ C calling “NIn-
tegrate” in Mathematica. In this computation, we employ the formulas for the
explicit integral kernels {Gij} in (2.42), (2.20), (2.34). The spectral radius of Q(λ)
is then estimated using Gelfand’s formula and inequality ∥Qk∥ ≤ ∥Qk

HS∥, k ∈ N,
with QHS ∈ R2×2 being a matrix with elements ∥Q(λ)ij∥HS, i, j = 1, 2; for our
calculation the upper bound with k = 20 is chosen. The result is interpolated by
“ListInterpolation” on the box and “RegionPlot” is called to produce the blue set
in Figure 1. The numerical integration seems to be less stable near the essential
spectrum, resulting in numerical artifacts visible in Figure 1.

iv) Numerical computation of the enclosure (3.14) complies with numerically
found eigenvalues in [19, Table 1] for the special case (1.2) with various values of ϵ,
α = 0.5 and corresponding critical R, see [19, Sec. 10.1] for more details.
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Mathematics in Engineering 4 (2021), 1–29.
[7] Cuenin, J.-C. Estimates on complex eigenvalues for Dirac operators on the half-line. Integral

Equations Operator Theory 79 (2014), 377–388.
[8] Cuenin, J.-C. Eigenvalue bounds for Dirac and fractional Schrödinger operators with complex

potentials. J. Funct. Anal. 272 (2017), 2987–3018.

[9] Cuenin, J.-C. Sharp Spectral Estimates for the Perturbed Landau Hamiltonian with Lp

Potentials. Integral Equations Operator Theory 88 (2017), 127–141.

[10] Cuenin, J.-C. Improved Eigenvalue Bounds for Schrödinger Operators with Slowly Decaying

Potentials. Comm. Math. Phys. 376 (2019), 2147–2160.
[11] Cuenin, J.-C., Laptev, A., and Tretter, C. Eigenvalue Estimates for Non-Selfadjoint

Dirac Operators on the Real Line. Ann. Henri Poincaré 15 (2014), 707–736.
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