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QUADrATiC: scalable gene expression
connectivity mapping for repurposing
FDA-approved therapeutics
Paul G. O’Reilly1, Qing Wen1, Peter Bankhead1, Philip D. Dunne1, Darragh G. McArt1,
Suzanne McPherson1, Peter W. Hamilton1, Ken I. Mills1* and Shu-Dong Zhang1,2 *

Abstract

Background: Gene expression connectivity mapping has proven to be a powerful and flexible tool for research. Its
application has been shown in a broad range of research topics, most commonly as a means of identifying potential
small molecule compounds, which may be further investigated as candidates for repurposing to treat diseases. The
public release of voluminous data from the Library of Integrated Cellular Signatures (LINCS) programme further
enhanced the utilities and potentials of gene expression connectivity mapping in biomedicine.

Results: We describe QUADrATiC (http://go.qub.ac.uk/QUADrATiC), a user-friendly tool for the exploration of gene
expression connectivity on the subset of the LINCS data set corresponding to FDA-approved small molecule
compounds. It enables the identification of compounds for repurposing therapeutic potentials. The software is
designed to cope with the increased volume of data over existing tools, by taking advantage of multicore computing
architectures to provide a scalable solution, which may be installed and operated on a range of computers, from
laptops to servers. This scalability is provided by the use of the modern concurrent programming paradigm provided
by the Akka framework. The QUADrATiC Graphical User Interface (GUI) has been developed using advanced Javascript
frameworks, providing novel visualization capabilities for further analysis of connections. There is also a web services
interface, allowing integration with other programs or scripts.

Conclusions: QUADrATiC has been shown to provide an improvement over existing connectivity map software, in
terms of scope (based on the LINCS data set), applicability (using FDA-approved compounds), usability and speed. It
offers potential to biological researchers to analyze transcriptional data and generate potential therapeutics for
focussed study in the lab. QUADrATiC represents a step change in the process of investigating gene expression
connectivity and provides more biologically-relevant results than previous alternative solutions.
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Background
Connectivity mapping and LINCS
Gene expression connectivity mapping has proven, since
its introduction [1], to be a powerful and flexible tool
for research. Its application has been shown in a broad
range of research topics, most commonly as a means of
identifying potential small molecule compounds, which
may be further investigated as candidates for repurpos-
ing to treat diseases [2, 3]. Connectivity mapping has
been demonstrated for transcriptomic signatures derived
from microarray and Next Generation Sequencing (NGS)
platforms [4], and, as such, holds promise as an impor-
tant downstream analysis. The CMap database [5] con-
sists of 6100 gene expressions for 1309 perturbagens
over 5 cell lines. However, in 2014 the Broad Institute
released the Library of Integrated Network-based Cellu-
lar Signatures (LINCS) covers a vastly broader range of
cell types (18) and perturbagens (20413 small molecules
and 22119 genetic perturbagens), resulting in approxi-
mately 1.3M experimental reference profiles, with each
containing the measured expression of the 978 landmark
genes, along with the inferred expression (based on a lin-
ear model) of a further 21305 probes (to make up the
entire Affymetrix HGU133A microarray probe set). With
this larger database, it is necessary to develop a frame-
work which scales beyond the implementations developed
previously for the CMap data, and QUADrATiC (QUB
Accelerated Drug And Transcriptomic Connectivity) is
one such software package. It makes use of advanced Big
Data technologies to parallelize the discovery of connec-
tions from gene expression signatures and small-molecule
compounds, producing an increase in performance of at
least an order of magnitude. It is also flexible in deploy-
ment, and is capable of being deployed and operated on a
range of platforms and operating systems. QUADrATiC is
freely-available from (http://go.qub.ac.uk/QUADrATiC)
for non-commercial use.

Connectivity mapping concept and algorithms
The basic concept of connectivity mapping is a simple one
- namely that of using the transcriptomic profile of differ-
ential gene expression as a proxy for the molecular state
of cells. A connection is considered as a measure of the
similarity, or difference, between the state observed in a
set of experiments (application of small molecule com-
pounds to cell- lines) and that of a condition under study
(e.g. disease vs control). Since the original connectivity
mapping paper [1], and following the availability of the
associated original dataset through the CMap platform,
other researchers have been motivated to develop and
implement connectivity mapping algorithms in order to
improve upon the Kolmogorov-Smirnov non-parametric
score implemented in CMap [6]. One popular alterna-
tive to the standard CMap software is sscMap [7], a novel

rank-based algorithm, which has overcome some of the
perceived disadvantages of the original CMap algorithm.
Its ability to provide estimated p-values for connections
at individual instance or treatment set level, coupled with
its demonstrated specificity, has resulted in its success-
ful application to a number of biological problems [8–10].
The data set used by the sscMap software is based on
the CMap data, and likewise consists of 6100 reference
profiles. The relatively small number of profiles makes it
feasible for the software to be used on a wide variety of
computers, from laptops to higher- specification desktop
machines, with reasonable execution times (minutes or
hours).

Multicore CPU technology
Because of its use of many independent calculations (per
reference profile and per signature) sscMap, in common
with many bioinformatic algorithms such as bootstrap-
ping, lends itself to parallel implementation. Such algo-
rithms are known as ’embarrassingly parallel’. Indeed,
previous work has shown that parallel implementation on
concurrent processing platforms such as General Purpose
Graphics Processing Units (GPGPU) [11] can provide
great performance advantages in the calculation of con-
nection strengths and p-value estimates. In recent years,
other options for parallel concurrent implementation of
algorithms in software have come to the fore, including
the use of Field-Programmable Gate Arrays (FPGA) and,
as applied here, multi-core CPU architectures from Intel
and other suppliers [12]. With the advent of processors
containing multiple cores and utilizing ’hyperthreading’
technology, it has become possible to take advantage of
these capabilities using standard programming languages
and frameworks, without the specialized implementations
required for FPGA and GPGPU.

Software models for concurrency
The most common model of software concurrency over
the past 20 years has been to use threads. However,
complications with the model of threads (due to data
corruption and locking issues with shared data across
thread contexts) has led to slower adoption and much
software tends to be still written for serial execution [13].
An alternative abstraction has recently become of interest
within the community and has been increasingly adopted.
This paradigm implements software in independent units
of work which have their own state, communicate with
other units of work using messages and have no globally-
shared data (unlike threads). These implementation units
are called ‘Actors’, and if defined at a sufficient level
of granularity, allow concurrent tasks to be distributed
across multiple processing units (or cores) [14]. Thus this
model of concurrency is highly suited to algorithms which
can be parallelized and run on multicore processors. In

http://go.qub.ac.uk/QUADrATiC
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addition, its programming model is a simpler abstraction
than threads and allows for better separation of concerns
between code for concurrency and that for the algorithms,
and eases issues with locking and concurrent access to
shared data [15]. One particular implementation of actors
is provided within the Java Virtual Machine (JVM) by
an open-source library called Akka [16, 17]. Akka is
a lightweight and efficient implementation of the actor
paradigm, which also provides for ’remote actors’, easily
allowing deployment of software in a distributed fashion
across a networked cluster of computers. These remote
actors provide scope for scalability above and beyond that
allowed for by traditional threads on a single machine.
Akka is a popular library, in use in a wide range of software
solutions, but has made little impact on bioinformatics
software to-date [18]. However, given that many advanced
bioinformatics algorithms have the capability to be paral-
lelized for concurrent execution, Akka is a candidate for
doing this in a simple, intuitive manner.

Implementation
LINCS data processing
The LINCS data contains a large number of data points
over a range of genetic and small-molecule compounds.
This is the source of the ∼1.3M instances in the entire
LINCS set. Initial analyses are often directed towards the
identification of small-molecule compounds which have
already been approved by the FDA for human therapeutic
use, with the aim of repurposing these to treat disease [2].

Identifying and using the subset of data derived from these
FDA-approved drugs has two effects - a. the production
of more-readily available candidates for lab investigation,
and b. the reduction in the size of the data, from 1.3M
instances to 83,939, which is more easily manageable from
a scalability point of view. Figure 1 shows an overview of
the processing applied to the LINCS data set to extract
the subset of data associated with FDA-approved drugs (as
identified using the DrugBank database [19]), and make it
available for use within QUADrATiC. The source data is
the Level 3 data as obtained from the LINCS download
site and consists of the normalized and inferred expres-
sion values for the full set of Affymetrix HGU133A probes
for each experiment instance. The differential expression
profiles for each instance were created by calulating the
differential expression against all controls on the same
plate and finding the signed rank of these.

Improved connectivity mapping algorithm
The determination of the connection score for an instance
is similar to that used by the sscMap software [7] -

c(R, s) =
∑m

i=1 R(gi)s(gi)∑m
i=1N − i + 1

However, when grouping data into treatment sets,
based on drug/concentration/cell-line etc., the scores are
aggregated differently from the mean-value aggregation
proposed implemented in sscMap. Presenting a random
signature to the algorithm, and aggregating by reference
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list 
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DrugBank XML File FDA-approved 

drugs
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1. Find LINCS IDs 
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Fig. 1 LINCS data processing flow. LINCS data processing flow to create QUADrATiC reference database
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sets grouped by perturbagen and cell line, the Pearson’s
moment coefficient of skewness [20] was found. Using the
threshold of gamma > 1, a large proportion (more than
20 %) of treatment sets can be seen to be heavily skewed
(Fig. 2(a)). This appears to be particularly associated with
set sizes between 3 and 50. Given the amount of skewness
evident in the scores, the median value was implemented
in our framework.

Estimation of connection p-values
Previous connectivity map algorithms have implemented
a random sampling approach to estimation of P-Values for
connection scores [19]. The estimate of p-value is calcu-
lated by comparison of the connection score for a signa-
ture and the distribution of scores produced for a large
number of randomly-generated signatures. One limita-
tion of this approach is that, in order to get resolution on
the p-value estimates, the number of random signatures,

and hence the number of connection scores calculated,
must be much larger than the number of sets defined in
the data. With the original data set, this is feasible (typi-
cally 10–20k signatures were enough), but with the FDA-
approved data set, there are typically 10k treatment sets,
and hence we require 100k random signatures to produce
usable estimates. Thus, the original approach has diffi-
culty scaling to the FDA-approved subset (or indeed to
the full LINCS set). The approach taken by QUADrATiC
is somewhat different. Rather than generating multiple
random signatures, calculating a connection score and
comparing against the set connection score individually,
we propose the following:

1. Assume the random scores are normally-distributed.
This assumption was tested by generating scores for
50,000 random signatures and testing against the
normal distribution using the Kolmogorov-Smirnov

Fig. 2 Reference set statistical landscape. a the variation of skew with treatment set size with, inset, the distribution of skew values for the entire set,
and b the cumulative distribution of p-values for random signature score normality test
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test. The distribution of p-values for this normality
test are shown in Fig. 2(b), from which it can be seen
that most distributions can not be shown to be
significantly different from normal.

2. Generate a large number of connection scores per set
and find the descriptive statistics (mean, standard
deviation) for these.
Although configurable by the user, our experience is
that 2000 random signatures appears to give
consistent results between runs, although the option
is available to increase this if required.

3. Using the error function erf() to find the area under
the Gaussian distibution with the mean and standard
deviation calculated in step 2, calculate the
probability of obtaining a connection score with
absolute value greater than or equal to the absolute
value of the score for the query signature.
This is the estimated p-value for the connection
score.

Signature contribution fraction
Although the main application of connectivity mapping
is the identification of potential drugs related to the sig-
nature presented, it is often interesting from a biological
perspective to identify the importance of any particular
gene in the signature to a particular connection. This may,
for example help provide information as to the mech-
anism of action of the drug, or for grouping similar
drugs. As such, QUADrATiC enables the user to investi-
gate the effects of probes in a quantitative manner. The
determination of the effect of each probe on the con-
nection strength for a treatment set is based on a value
called the Contribution Fraction (CF) of the probe. First,
define the “diminished score”, for the kth probe in the
signature

c∗k(R, s) =
∑m

i=1,i�=k R(gi)s(gi)∑m
i=1N − i + 1

For median set scoring, as implemented by QUADrATiC,
we can then define the Contribution Fraction of the kth
probe, CFk , as follows

CFk = 1 − c̃∗k(R, s)
c̃(R, s)

i.e. the magnitude of the difference between the median
score and the median diminished score (as denoted with
a tilde, ∼) for the treatment set. Calculating the CF over
all probes for all treatment sets can be used to investi-
gate the influence of the signature probes on the result set.
We further normalize this within the individual reference
sets (where CF∗

k = 1.0 for the probe making the highest
contribution to the connection score for that set) -

CF∗
k = CFk

max
k

(CFk)

Graphical user interface (GUI)
The GUI is developed using HTML and Javascript -
providing a simple, extensible and industry- standard
approach to interfacing with the user within a modern
browser. The choice of javascript allows for easy use of
the Bootstrap framework [21], and d3 visualisation library,
[22], to provide a modern, simple interface. The GUI
was designed around a simple linear workflow, which is
shown, along with screenshots for the different stages of
the analysis, in Fig. 3. There are six screens available to the
user (Additional file 1 provides a full User Manual for the
operation of QUADrATiC) -

1. Define Signatures
The user can define, save, edit and delete signatures
as lists of up and down-regulated Affymetrix
HGU133A probe IDs.

2. Start/Monitor Runs
The user can enter an identifier for an analysis,
choose the signature (as defined in 1), the treatment
sets to use (grouping by drug across all cell lines or,
more usually, by drug and cell line), and set the
number of random signatures to be used to estimate
the p-value (usually 2000). The analysis can then be
started and its progress monitored.

3. Analyze Results
The user can view the detailed results of an analysis
and perform simple filtering (significant/all,
positive/negative/all, simple text filtering) and
ordering (ascending/descending Z-Score).

4. Visualize Results
This presents a bubble plot of the significant
connections, with simple filtering options.

5. Visualize Top30 Drug → Cell Line
This is a dynamic and interactive visualization (for
treatment sets defined by drug and cell line) of the
top 30 connections (negative or positive), showing
relationships between the drugs and cell lines.

6. Signature Fractions
This provides a heat map view of the normalized
Connection Fractions for up to top 100 connections,
matching the specified criteria. The data may be
sorted by column (alphabetically) or row (by median
value). Row sorting, in particular, is useful when
viewing the subset of connections for a particular
drug across multiple cell lines, as it can provide
further information as to which genes in the signature
are affected by the action of that drug. A spreadsheet-
readable Comma Separated Variable (CSV) file is
also produced for the data in the displayed heatmap,
and may be downloaded through the browser.
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Step 1:
Create 

Signature

Step 2:

and Start 
Connectivity 

Mapping

Step 3:
Analyze 

Connections

Step 4:
Visualize 
Results

Step 5:
Query Gene 
Contribution 

Fractions

Fig. 3 QUADrATiC Workflow and GUI. Step 1: the query signature is defined as a pair of lists of up and down-regulated Affymetrix HG-U133A probe
identifiers. Step 2: an analysis run is defined by choosing the query signature, the treatment set type (grouped by drug, or by drug and cell line), and
the number of random signatures to be used to estimate the p-value of the connections; the progress bar updates every 30 seconds. Step 3: View
the table of significant connections. Step 4: Summary visualizations are available as a bubble chart representing the top connections, or a summary
of drugs and cell lines (for treatment sets defined by drug and cell line). Step 5: View a heatmap showing the relative contribution of each probe in
the signature

QUADrATiC server
The server component is a multicore processor-enabled
parallel implementation of the algorithm, capable of han-
dling the large quantities of data associated with the
LINCS data set. It provides a web service interface using
Hypertext Transfer Protocol (HTTP), which is used by the
GUI and also capable of being used to integrate to other
software and/or scripts.

Parallel implementation
In theQUADrATiC implementation, themain work is car-
ried out by two types of actors - a single Job Controller
actor and multiple Scorer actors, which are scheduled
across multiple cores by the Akka scheduler running in
the JVM. Figure 4 shows an overview of the main inter-
actions between these actors, and a high-level statement
of the responsibilities of each. It is the decomposition into
these actors that allows multiple cores to be exercised in
parallel during the connectivity map calculations.

Web server
The implementation of the software as a web server, rather
than a standalone executable, has advantages in a num-
ber of areas. One is that it allows greater flexibility in the

choice of GUI technologies which may be used - including
the flexibility of rendering the GUI within any modern
web browser, using one of the many powerful and flexible
Javascript frameworks widely available. Having this sepa-
ration between the GUI and the main logic/computation
carried out in the web server, also gives options in deploy-
ing the software - it may be installed solely on a desktop
or laptop PC, or it may be deployed on a more power-
ful server and accessed by the user via the browser on
their own local desktop or laptop. In addition, since the
browser- based interface makes use of a standard, defined,
HTTP-based Application Program Interface (API), this
API may also be used to interact with and drive the server
using other methods, such as scripts, or for machine-
machine (M2M) integration within a larger genomics
processing pipeline.

RESTful API
RESTful Web Services, [23], is a design methodology used
widely in, but not limited to, the design and implemen-
tation of HTTP- based APIs (for GUI and M2M inte-
gration). It represents the system as a set of ’resources’,
each of which is addressed using a standard HTTP Uni-
form Resource Identifier (URI) and can be acted upon
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QUADrATiC 
Reference 

Data

ScoreScoreScoreScoreScoreScorers

Job 
Controller

Web Server

HTML/JS

Signatures Results

Ref. Sets

REST Web Services

Other Systems

Scripts (python, etc.)

GUI

CPU

File System

(a) Logical Software Components (b) Multicore Deployment
Fig. 4 QUADrATiC Software Design. The software architecture of QUADrATiC, showing (a) the main software and storage logical components, and
(b) an illustration of how these components are distributed among the cores of a multicore processor when the software runs

using the HTTP ’verbs’ - GET, PUT, POST and DELETE.
In our design, interactions with these resources use the
common JSON format for data, and each resource encap-
sulates data which is represented in JSON form. The full
API specification is provided in the Additional file 2.

Results
Performance and scalability
One of the major advantages of QUADrATiC is in per-
formance, over existing standalone implementations. In
order to demonstrate this, a series of performance tests
were carried out on two systems, as specified in Table 1. A
set of randomly-generated signatures of increasing length
were created, and run on the two systems, with the same

signatures being run on a comparable connectivity map
application [7], which was configured to use the same
LINCS subset as QUADrATiC. Figure 5 shows the varia-
tion of performance of QUADrATiC for increasing signa-
ture length on the two test systems, and comparing to the
baseline performance. These performance results show
that QUADrATiC offers substantially improved perfor-
mance over the existing software, being an order of mag-
nitude faster for the same size of signature queried. This
is true for both test systems. The detailed performance
results show evidence of the difference between the two
frameworks, and in so doing, provide insights into how
the software might be best deployed. For small signature
sizes, the CPU load is small compared to the time required
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Table 1 Systems used for performance testing

System I System II System III

Manufacturer Dell Apple Dell

CPU Intel Core i7 Intel Core i7 Intel E5645

3.7 GHz 1.7 GHz 2.4 GHz

4 Cores 2 Cores 6 cores

Hyperthreading ON Hyperthreading ON Hyperthreading ON

Cache 10 MB L3 4 MB L3 12 MB L3

256 KB (per core) L2 256 KB (per core) L2 256 KB (per core) L2

RAM 16 GB 8 GB 24 GB

1866 MHz 1600 MHz 1333 MHz

DDR3 DDR3 DDR3

Storage 3.5inch Serial ATA (7,200 Rpm) Apple SM0512F Media Dell MD1000 SATA NFS

Hard Drive SSD Hard Drive

Operating System Ubuntu OS X Scientific Linux

14.04.1 LTS 10.10 (14A389) 2.6.18-164.10.1.el5

Java Version 1.8 1.8 1.8

Browser Google Chrome Safari curl (command line)

to load the reference profiles from storage. System II, hav-
ing the advantage of using a Solid-State Drive (SSD) has an
appreciable performance advantage over system I, since
SSD storage typically has much faster read/write perfor-
mance than Hard Disk Drives (HDD). As signature sizes
increase, the amount of CPU power required to calcu-
late the connection strengths increases appropriately, and
the ability of the system to carry out these calculations

in parallel on more powerful cores becomes more impor-
tant. System I tends to perform better than system II
for larger signatures, given its greater scalability in terms
of cores. As evidenced in these performance figures, it
can be proposed that the best system configuration for
deploying QUADrATiC to its best advantage would have
aspects of the two test systems, i.e. an SSD storage for
the reference profiles like System II and many cores and

10 
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Signature Size 

System I - SSCMap 

System I - QUADrATiC 
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Fig. 5 QUADrATiC Performance Test Results. Duration of time taken for QUADrATiC to complete the connectivity map analysis for four
software/server configurations - System I (desktop PC with hard disk storage) using sscMap and QUADrATiC, System II (a laptop with solid state
storage) using QUADrATiC, and System III (a HPC server with network-attached hard disk storage) using QUADrATiC. QUADrATiC is around one order
of magnitude faster than the equivalent sscMap implementation, and, for smaller signatures, benefits from the faster file loading speeds of solid
state storage
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larger RAM like System I. However, QUADrATiC can
be configured to limit threads and actors to allow it to
run on lower-specification systems, such as laptops or
tablets, which is an increasingly important consideration
in modern translational research.

Connection validation
In order to evaluate the software, we took the approach
of using a previously-published Histone Deacetylase
(HDAC) inhibitor signature, as used in [6], for compar-
ison. We present this signature to the following three
configurations of software and data -

1. CMap
2. sscMap with CMap data set.
3. QUADrATiC with FDA-Approved Drug LINCS

subset.

The concordance between 1 & 2 allows the connec-
tions derived from the new data set to be qualitatively
evaluated, while that between 2 & 3 allows an evaluation

of the new algorithm (as outlined previously) and its
performance to be made.
QUADrATiC returns a list of 447 significant positive

connections to the HDAC signature, which comprises
231 unique compounds over a number of different cell
lines. Figure 6(a) summarizes the results and compares
to the published results from sscMap [6] (Full details
are available in Additional file 3). Note that the results
have been filtered to extract only the FDA-approved
positive connections from both CMap and sscMap. Of
the ten connections identified by sscMap, eight are also
identified by QUADrATiC. The two compounds not
identified, Exemestane and Fulvestrant are calculated by
QUADrATiC to have positive connections to the sig-
nature, but the estimated p-value does not allow these
connections to be identified as significant. In addition
to these connections, QUADrATiC identifies 223 addi-
tional compounds with significant positive connection
scores. Figure 6(b) shows the top unique compounds
with the strongest connections in this set of 223. As fur-
ther validation, the HDAC signature was presented to

(a) CMap

Vorinostat

Valproic Acid

SSCMap

Carbamazepine

Clotrimazole

Fluphenazine

Prochlorperazine

Thioridazine

Exemestane

Fulvestrant

QUADrATiC

Everolimus
Perhexiline
Crotamiton
Amiodarone
Duloxetine
Crizotinib

Mycophenolate-Mofetil
Clofarabine
Clemastine
Tamoxifen

Loteprednol
Toremifene
Menadione
Irinotecan

6

2232
2

CMap

SSCMap QUADrATiC

(b)

Compound Cell Line Standard Score

Everolimus PC3 7.56 HT29; VCAP; ASC; A375; MCF7; HA1E; SKB; HCC515; HEPG2

Perhexiline HT29 7.48 HCC515; HEPG2; NCIH2073; NCIH596; HA1E; WSUDLCL2; MCF7; A375

Crotamiton MCF7 7.04

Menadione RMGI 6.70 A375; CL34; NCIH1836; NCIH1694; LOVO; THP1; NOMO1; DV90

Fig. 6 QUADrATiC Validation against HDAC Signature. a Venn diagram showing FDA-approved positive connections for existing sscMap software
(purple) and QUADrATiC (green) and b Top QUADrATiC-only connections for treatment sets defined by drug and cell line. Results not found in the
equivalent LINCS query are highlighted in red
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the LINCS server through its query tool and the results
from that query obtained (see the Additional file 4 for
the full results). Of the ten best compounds identified
by QUADrATiC, six are also identified as having strong
positive connections in LINCS. Two of these remain-
ing compounds are highlighted in red in Fig. 6(b). Of
particular interest is Menadione, or Vitamin K3. Inter-
estingly, a review of the literature produces evidence
that Vitamin K3 acts to inhibit HDAC6, [24], suggest-
ing that this connection has been correctly identified by
QUADrATiC.

Application - drug connections for a primary myelofibrosis
signature
In order to demonstrate application of QUADrATiC,
it was applied to novel discovery for Myeloprolifera-
tive Neoplasms (MPN). In MPN, clonal proliferation of
haematopoietic stem cells is often linked with an under-
lying genetic aberration [25]. In recent years a significant
link has been uncovered between these conditions and a
range of genes, most notably JAK2 and CALR. As a result,
there is an emerging consensus that rather than being
separate conditions, the three main types of BCR-ABl
negative MPN, Essential Thrombocythaemia (ET), Poly-
cythaemia Vera (PV) and Primary Myelofibrosis (PMF)
are stages on a continuum of disease progression [26].
Around 10 % of PV cases (and 5 % in ET) are thought to
transform to the more disablingMPN-associatedMyelofi-
brosis (MF) [27], so any drugs which correlate to the
reversal of cell states associated with this phenotype may
profer a significant benefit to patients. Currently, much
effort is being expended in developing JAK inhibitors
(such as Ruxolitinib) as an alternative to first-line treat-
ment options for MPN such as Hydroxyurea or Interferon
alpha [28, 29].A publically-available dataset was identified,
which was originally used to identify up-regulated genes
in myelofibrosis [30]. This data series, GSE26049, was
sourced from Gene Expression Omnibus (GEO) [31] and
downloaded in normalized and background-corrected
form. This series consists of whole blood expression data
from 91 subjects (19 with Essential Thrombocythemia,
41 with Polycythemia Vera, 9 with Primary Myelofi-
brosis, 1 with Unclassified Myeloproliferative Disorder,
and 21 controls). Using this data, two groups were
defined: the group of subjects diagnosed with PV, and
the group of subjects with PMF. The expression data for
these two groups was extracted and analyzed using the
limma package [32] in R to identify the significantly up
and down-regulated genes. The R statistical package is
freely downloadable software [33] containing many peer
reviewed packages that can be used in different biological
statistical analyses. The signature was created using those
probes with fold change greater than two, and adjusted
for a false discovery rate of 0.05, using the Benjamini-

Hochberg criteria. The signature and the full set of genes
and Affymetrix probe IDs is available in the Additional
file 5. This signature was presented to the QUADrATiC
software, and the list of significant negative connections
(i.e. those which are seen to reverse the phenotype)
retrieved. The top connections in the list are analysed
for existing or previous use in treatment of myelofibrosis,
as detailed in two recent publications [28, 34]. Present-
ing the signature for myelofibrosis discussed above to
QUADrATiC, and calculating connections for treatments
sets aggregated by Drug resulted in 899 signficant nega-
tive connections to drug/cell line treatment sets. Table 2
shows the connections found (if any) to the combined
lists of FDA-approved drugs identified as being in cur-
rent use for the treatment of myelofibrosis (from [28, 34]).
Apart from the compounds identified in Table 2, there
are 385 other compounds with significant negative con-
nections to the myelofibrosis signature (of which 188 have
negative connections in two or more cell lines). By com-
parison, analyzing the signature using sscMap results in
412 connections for compounds in more than one cell
line, but the majority of those connections are not FDA-
approved drugs. Figure 7 shows the top five compounds
with negative connections to the PMF signature, along
with the five genes having the highest median value of
CF∗

k , across all significant negative treatment sets for the
same drug. Of these 5 drugs, 4 are also identified by
sscMap, but Pemtrexed is not, as there are no reference
profiles for that compound in the original Cmap data set,
from which sscMap derives its profiles.

1. Amiodarone is typically used to treat cardiac
arrhythmias. Its use to treat leukemia has been
investigated with some success in mice [35].
Amiodarone has been shown to have hematological
effects, and interactions with warfarin [36], so this
may provide an avenue for its investigation.

2. Pentamidine is an antiprotozoal drug, used to treat
fungal infections and pneumonia. It has been
investigated for potential anticancer activity,
including its use in treatment of chronic
myelogenous leukemia [37].
One possible mechanism of action of pentamidine
could lie in its inhibitory action on S100B [38], which
in turn interacts with p53 [39]. There is some
evidence that p53 is linked to progression of
MPN [40].

3. Azacitidine has, as mentioned earlier been used to
treat myelofibrosis in a clinical context.

4. Pemetrexed is an antifolate drug which is used in
the treatment of non-small cell lung cancer [41].
Pemetrexed has been shown to be an inhibitor of
DHFR [42]; another DHFR inhibitor, methotrexate,
has recently been shown to inhibit the JAK/STAT
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Table 2 Existing PMF treatments (from [28, 34]) in significant connection set

Drug Comments Cell lines

Anagrelide Significant negative connections found ASC, NPC

Azacitidine Significant negative connections found VCAP, PC3, MCF7

Busulfan No significant negative connections found

Cytarabine No significant negative connections found HA1E, PC3, A549, MCF7, VCAP

(indicative negative connections found)

Danazol Significant negative connections found PHH, ASC

Decitabine No significant negative connections found

Epoetin-alpha No data in LINCS set

Everolimus Significant negative connections found A549, ASC, HT29

Hydroxyurea No data in LINCS set

Interferon alpha No data in LINCS set

Lenalidomide Significant negative connections found SNUC4, A375, COV644

Melphalan No significant negative connections found HA1E

(indicative negative connection found)

Mercaptopurine Significant negative connection found MCF7

Methylprednisolone Significant negative connection found A549

Pomalidomide No data in LINCS set

Prednisone No significant negative connections found

Ruxolitinib Significant negative connection found HEPG2

Thalidomide Significant negative connections found TYKNU, PHH, CL34, HCC515

Thioguanine No data in LINCS set

pathway, which is a key biological pathway in
MPN [43].

5. Fluocinonide is a glucocorticoid used as an
anti-inflammatory in the treatment of eczema and
other skin disorders.
Prednisone, another glucocorticoid, is currently used
in the treatment of PMF [34].

Using the Contribution Fraction feature of QUADrATiC
allows these connections to be analysed further to nar-
row down the list of genes involved in returning this
drug and also allows biology-based researchers to iden-
tify and suggest possible mechanisms of action for the
drugs in a biological context. For example, taking the
five drugs highlighted above, it is possible to extract that
subset of the signature with positive CF. The biological
implications and the overall “ontotype” of these signature
subsets were further analyzed through the use of QIAGEN
Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood
City, www.qiagen.com/ingenuity). The detail of the results
from this analysis can be viewed in the Additional file 6,
which shows the results of the Canonical Pathway, Dis-
eases & Functions and Networks analyses (specifically,
given the nature of the disease, the networks correspond-
ing to haematological system development and function).

Each of the drugs appears to impact transcription of
genes associated with aspects of Haematological System
Development and Function, and NFκB-mediated Inflam-
matory Response in particular, suggesting that they may
act on these mechanisms in providing potential therapeu-
tic effect in Myelofibrosis. Using QUADrATiC allows the
analysis of 83,939 references (aggregated into 10,174 treat-
ment sets) from the LINCS data set to produce a list of 899
significant negative connections, covering 405 distinct
drugs. This list contains many of the widely-used exist-
ing clinical treatments for PMF, and suggests a multitude
of others which offer potential for further study, and pos-
sibly therapeutic benefit to patients. Since QUADrATiC
works with the subset of LINCS corresponding to the list
of currently FDA-approved drugs, the drugs correspond-
ing to these connections are likely to be more-widely
studied, with mechanisms of action which are better
understood.

Discussion and conclusions
Taking a software engineering approach to the design
and development of gene expression connectivity map-
ping, in particular making use of the concurrent actor
paradigm, allows the performance of a previously-
sequential algorithm to be scaled to handle much larger
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Compound Z- Score 
[Cell Line]

Top Genes

Amiodarone -9.59 
[A375]

AURKA( ) PRDX2( ), 
PBK( ), DHFR( ), 

SPC25( )

Pentamidine 9.57 
[HEPG2]

BCL6( ), RRM2( ), 
MAD2L1( ), MINPP1,( ) 

CRISP3( )

Azacitidine -9.43 
[VCAP]

TOP2A( ), KIAA0101( ), 
PBK( ), FSCN1( ), 

PELI1( )

Fluocinonide -9.32 
[HA1E]

C13orf15( ), CRISP3( ), 
MCL1( ), DEFA3( ), 

DEFA4( )

Pemetrexed -9.08 
[NOMO1]

CD24( ), MPO( ), 
CRISP3( ), DLK1( ), 

CEACAM8( )

Fig. 7 Top Five Negative Connections for PMF Signature. The table shows the detail of the top five negative connections found for the PMF
signature discussed here. The peripheral figures show the normalized Contribution Fraction heat map for all significant negative connections to
treatment sets with for each drug, as determined by QUADrATiC

data sets available from LINCS. The order of improve-
ment of performance is similar to that shown for previous
parallel implementation using GPGPU technology [11].
However, QUADrATiC’s performance is achieved on
widely-available standard computing hardware (including
a laptop) and does not require additional co-processor
cards, or the use of esoteric, difficult-to-use programming
models such as CUDA. This allows easier development
and debugging, using standard tools and languages such
as Java. In addition, through the use of Java interfaces,
the algorithm used by the Scorers may be updated. At
present, this requires recompilation, but in the future it
is possible that the capability to create and dynamically
update the scoring algorithm will be available to the end
user, opening up the possibility of other innovative anal-
yses of the data provided. Indeed, QUADrATiC is one of
the first applications of the Akka framework within the
genomics/bioinformatics domain and shows how it may
be used to take advantage of modern CPU-based paral-
lelism to efficiently process larger quantities of data than

is feasible with previous approaches. Akka, and the actor
paradigm, is of course only one such approach to pro-
cessing larger quantities of data, and GPGPU technology
as in [11] could also provide an alternative approach to
implementing highly parallel algorithms. However, cur-
rent GPGPU technology tends only to have limited on-
board memory capabilities, which tends not to lend itself
to larger amounts of reference data such as LINCS. Given
the current implementation, QUADrATiC will scale with
processors and memory in a single server, so in its current
form, the applicable data set will be limited by these. How-
ever, within the Akka framework, there is the capability to
distribute so-called ’remote actors’ across multiple servers
(either ’bare metal’ servers or virtual machine instances
in the cloud) and thus act in a similar manner to the
currently-popular Hadoop distributed processing plat-
form. The implementation of QUADrATiC as a web server
application, exposing a JSON interface over HTTP allows
the use of modern GUI development frameworks to pro-
vide a simple,reactive user interface, and opens the way to
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deployment on larger server systems as a shared resource.
In addition, the availability of a programmatic web ser-
vice interface brings into consideration the possibility of
using connectivity mapping within the larger Integromics
frameworks becoming available [44]. The development of
this software has integrated the requirements of the biol-
ogy end user at each stage by providing easy to understand
quantative and qualitatiove outputs, which all a rapid and
relevant interpretation of the data. Importantly, the built
in features allow the laboratory-based validation of the
mechanism of action by providing a short list of the most
relevant biomarkers which should be used when validat-
ing these results in vitro or in vivo. In addition, as we have
clearly demonstrated through the use of ontotype analysis,
this data is in a ready to use format for directly exporting
into downstream tools.
We have shown that QUADrATiC compares well to the

existing connectivity map implementations, based on the
CMap data set, and also identifies additional connections
over and above those provided as standard by the LINCS
Query Tool. Being based on a specific subset of the LINCS
data (that of FDA-approved drugs), it serves the purpose
that any connections found are likely to be more easily
obtained for study and allowing for the progress of any
successful therapeutics into clinical use. Defining a novel
signature for Primary Myelofibrosis from a high qual-
ity, publicly-available data set, we were able to identify
a large number of negative (i.e. potentially therapeutic)
connections within the QUADrATiC reference data set.
Confidence in this list of connections is greatly increased
by the presence of a large number of existing PMF treat-
ments. However, QUADrATiC returns a much larger list
of candidates, which can be studied further in vitro.
Indeed, the large number of results returned for connec-
tions, as a result of the vastly larger reference data set
will likely require development of strategies for filtering
results (based on integration with chemical data, mining
related publications and/or cell line/mutation details) to
give a manageable list. As a start, we have shown that the
new Contribution Fraction feature of QUADrATiC pro-
vides an output which is easy to interpret for end users
with limited computation knowledge a visual representa-
tion of the underlying biology and mechanisms of action
of candidate therapeutics. This feature provides the wet
lab biologist with important information for selecting the
appropriate control biomarkers to confirm the success
of drug treatment which can be analysed further using
downstream tools when testing in the laboratory, which
is, after all, the final arbiter of the utility of a drug. In
conclusion, QUADrATiC has been shown to provide an
improvement over existing connectivity map software, in
terms of scope (based on the LINCS data set), applicability
(using FDA-approved compounds), usability and speed.
It offers potential to biological researchers to analyze

transcriptional data and generate potential therapeutics
for focussed study in the lab.
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