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Abstract 

Background: Endothelin-1 (ET-1) and adrenomedullin (ADM) are commonly known as vasoactive peptides that 
regulate vascular homeostasis. Less recognised is the fact that both peptides could affect glucose metabolism. Here, 
we investigated whether ET-1 and ADM, measured as C-terminal-proET-1 (CT-proET-1) and mid-regional-proADM 
(MR-proADM), respectively, were associated with incident type 2 diabetes.

Methods: Based on the population-based Biomarkers for Cardiovascular Risk Assessment in Europe (BiomarCaRE) 
Consortium data, we performed a prospective cohort study to examine associations of CT-proET-1 and MR-proADM 
with incident type 2 diabetes in 12,006 participants. During a median follow-up time of 13.8 years, 862 participants 
developed type 2 diabetes. The associations were examined in Cox proportional hazard models. Additionally, we 
performed two-sample Mendelian randomisation analyses using published data.

Results: CT-proET-1 and MR-proADM were positively associated with incident type 2 diabetes. The multivariable 
hazard ratios (HRs) [95% confidence intervals (CI)] were 1.10 [1.03; 1.18], P = 0.008 per 1-SD increase of CT-proET-1 and 
1.11 [1.02; 1.21], P = 0.016 per 1-SD increase of log MR-proADM, respectively. We observed a stronger association of 
MR-proADM with incident type 2 diabetes in obese than in non-obese individuals (P-interaction with BMI < 0.001). 
The HRs [95%CIs] were 1.19 [1.05; 1.34], P = 0.005 and 1.02 [0.90; 1.15], P = 0.741 in obese and non-obese individuals, 
respectively. Our Mendelian randomisation analyses yielded a significant association of CT-proET-1, but not of MR-
proADM with type 2 diabetes risk.

Conclusions: Higher concentrations of CT-proET-1 and MR-proADM are associated with incident type 2 diabetes, 
but our Mendelian randomisation analysis suggests a probable causal link for CT-proET-1 only. The association of MR-
proADM seems to be modified by body composition.
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Background
Metabolic and vascular diseases commonly coexist. 
However, the pathophysiological mechanisms linking 
both diseases are not well understood. A possible link 
is the dysregulation of vasoactive peptides that could be 
implicated in both vascular and metabolic homeosta-
sis [1], such as endothelin-1 (ET-1) and adrenomedullin 
(ADM).

ET-1, a 21-amino acid peptide primarily secreted by 
vascular endothelial cells, is a potent vasoconstrictor and 
pro-inflammatory peptide [2]. ET-1 has been implicated 
in the pathogenesis of several chronic diseases, including 
hypertension and chronic kidney disease [3]. In addition 
to its known effect on the vascular function, ET-1 also 
limits insulin actions in skeletal muscles and adipocytes 
leading to insulin resistance and impaired glucose toler-
ance [4–6]. ADM, a 52-amino acid peptide that belongs 
to the calcitonin gene–related peptide family, is a vaso-
dilator. ADM is secreted by a variety of different cells, 
including vascular endothelial cells, smooth muscle 
cells, adventitial fibroblasts as well as adipocytes [7, 8]. 
In a later investigation, adipose tissue was suggested to 
be the major source of ADM [8]. ADM has several meta-
bolic actions, including counteracting oxidative stress–
induced insulin resistance [9, 10] and inhibition of insulin 
secretion from the pancreatic islets [11].

Measurements of circulating concentrations of ET-1 
and ADM are very difficult because of the short half-
life, the existence of binding proteins, and other techni-
cal difficulties. Therefore, assays have been developed to 
measure the inactive fragments of ET-1 and ADM as the 
surrogates, C-terminal-proendothelin-1 (CT-proET-1) 
and mid-regional-proadrenomedullin (MR-proADM), 
respectively, which are biologically stable and are cor-
related with the active peptides in equimolar concentra-
tions [12, 13].

In epidemiological studies using a cross-sectional 
design, both CT-proET-1 and MR-proADM were posi-
tively associated with the metabolic syndrome, insu-
lin resistance and prevalent type 2 diabetes [14–16]. 
Previously, using a prospective study design, we have 
also shown that higher circulating concentrations of 
CT-proET-1 and MR-proADM were associated with 
increased insulin resistance, suggesting that both vasoac-
tive peptides could play a role in the pathogenesis of type 
2 diabetes [17]. However, most of the existing prospective 
studies failed to provide evidence for an association of 
both CT-proET-1 and MR-proADM with incident type 

2 diabetes [17–20]. So far, only two prospective stud-
ies reported a positive association between CT-proET-1 
and incident type 2 diabetes [21, 22]. Thus, we aimed 
to examine the putative association of CT-proET-1 and 
MR-proADM with incident type 2 diabetes by perform-
ing a prospective cohort study with a larger sample size 
using data from the multinational Biomarkers for Cardio-
vascular Risk Assessment in Europe (BiomarCaRE) Con-
sortium [23] in tandem with a two-sample Mendelian 
randomisation study using published data on genetic var-
iants that are specific for CT-proET-1 or MR-proADM, 
to allow a more robust analysis.

Methods
Study population
BiomarCaRE is an EU-funded consortium that aims to 
determine the value of established and emerging bio-
markers in improving risk estimation of cardiovascu-
lar disease. BiomarCaRE relies on the Monitoring of 
Trends and Determinants in Cardiovascular Diseases 
(MONICA) Risk Genetics Archiving and Monograph 
(MORGAM) Project [24], which includes harmonized 
data from a large number of population-based cohorts. 
All participating cohorts were approved by local ethi-
cal review boards and written informed consent was 
obtained from all study participants. The study was con-
ducted according to the Declaration of Helsinki.

In the prospective cohort study, we included three Bio-
marCaRE population-based cohorts involving 12,006 
participants initially without diabetes and cardiovascular 
diseases and with follow-up data on type 2 diabetes. The 
exclusion criteria are described in Additional file 1: Fig. 
S1. The participating cohorts were the FINRISK Study 
(Finland), the Prospective Epidemiological Study of Myo-
cardial Infarction (PRIME) Belfast (UK), and the Coop-
erative Health Research in the Region of Augsburg Study 
(KORA) F4 (Germany). An overview of each participat-
ing cohort is provided in Additional file 1: Table S1. The 
following harmonized variables were available for each 
cohort: age, sex, body mass index (BMI), waist circumfer-
ence, systolic and diastolic blood pressure, antihyperten-
sive medication, smoking status, total and high-density 
lipoprotein (HDL) cholesterol and diabetes status.

Ascertainment of type 2 diabetes cases
We defined prevalent diabetes as a documented diagno-
sis of diabetes at baseline, either identified by record link-
age or through self-report of the participants that were 

Keywords: Adrenomedullin, C-terminal-proendothelin-1, Endothelin-1, Epidemiology, Incident type 2 diabetes, 
Mendelian randomisation, Mid-regional-proadrenomedullin, Cohort study
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verified by medical chart review or through information 
obtained from the treating physician. Incident type 2 dia-
betes was defined as a new diagnosis of type 2 diabetes 
during follow-up, either identified by record linkage or 
through self-report of the participants initially without 
diabetes at baseline that were verified by medical record 
review or through information obtained from the treat-
ing physician. Details of the assessment of type 2 diabetes 
in each participating cohort are provided in Additional 
file 1: Table S1.

Laboratory measurements
Baseline concentrations of CT-proET-1 and MR-
proADM were measured from plasma with immunolu-
minometric assay (BRAHMS/Thermo Fisher Scientific, 
Hennigsdorf, Berlin, Germany) on the BRAHMS KRYP-
TOR automated system. The data were measured cen-
trally in the MORGAM/BiomarCaRE core laboratory 
for FINRISK and PRIME Belfast (in 2008) and locally 
for KORA F4 (in 2010). The cohort-specific intra- and 
interassay coefficients of variation for CT-proET-1 and 
MR-proADM are described in Additional file 1: Table S2. 
Laboratory procedures for other diabetes-related bio-
markers used in the analyses are provided in Additional 
file 1: Text S1.

Statistical analysis
Measurement values below the limit of detection (LOD) 
(N = 121 for CT-proET-1 and N = 166 for MR-proADM, 
all from the FINRISK study) were set to the lower LOD 
(i.e. 9.44 pmol/l for CT-proET-1 and 0.24 nmol/l for MR-
proADM). Other missing values of the vasoactive pep-
tides or missing values of diabetes risk factors (Additional 
file  1: Table  S3) were handled with multiple imputation 
by chained equations (MICE), performed using R pack-
age mice [25], version 3.13. The imputation was done 
separately for each cohort. A total of 200 imputed data 
sets were created. Additional variation due to imputation 
was taken into account according to the Rubin’s rules for 
multiple imputation [26].

Descriptive statistics are reported for the participants 
stratified by incident type 2 diabetes during follow-up 
and shown as frequency (percentage) for categorical 
variables and as mean (standard deviation (SD)) for con-
tinuous variables. Continuous variables with skewed dis-
tributions are presented as geometric mean (antilog SD).

The associations of both CT-proET-1 and MR-
proADM with incident type 2 diabetes were estimated 
by calculating hazard ratios (HRs) with 95% confidence 
intervals (95% CIs) in Cox proportional hazard (PH) 
models. The models were stratified by study cohort and 
were adjusted for age (continuous, in years) and sex 
(men/women) in model 1 and were further adjusted 

for current smoking (yes/no), total and HDL choles-
terol (continuous, in mmol/l), actual hypertension (yes/
no) and BMI (continuous, in kg/m2) in model 2. Actual 
hypertension was defined as having systolic blood pres-
sure ≥ 140  mmHg, diastolic blood pressure ≥ 90  mmHg 
or using antihypertensive medication. The distribution 
of MR-proADM was right-skewed (Additional File 1: Fig. 
S2) and thus was log-transformed to approximate nor-
mality. Both peptides were (0,1)-standardized to estimate 
the HRs per 1-SD increase. To further evaluate whether 
other diabetes-related biomarkers might account for 
the observed associations, we additionally included the 
baseline measurement of estimated glomerular filtra-
tion rate (eGFR), insulin, high-sensitivity C-reactive 
protein (hsCRP), leptin, and fasting glucose individually 
and simultaneously in model 2. The PH assumption was 
tested by plotting scaled Schoenfeld residuals against 
follow-up time for each covariate. No indication of non-
proportionality was observed.

We tested for interactions of both peptides with BMI, 
sex and actual hypertension by creating cross-product 
terms and evaluating the significance level. Addition-
ally, we also tested for the interaction with waist cir-
cumference as an alternative to BMI. False discovery 
rate (FDR) with the Benjamini–Hochberg method 
was used to correct for multiple testing. An interac-
tion was considered relevant at FDR < 0.05. Subgroup 
analyses were conducted by examining the associations 
across BMI (≥ 30 kg/m2 vs < 30 kg/m2), waist circumfer-
ence (men: ≥ 102  cm, women: ≥ 88  cm vs men: < 102, 
women: < 88 cm), sex (men vs women) and actual hyper-
tension (yes vs no) categories. We also calculated the 
associations of CT-proET-1 and MR-proADM with inci-
dent type 2 diabetes for each participating cohort. Heter-
ogeneity in the association across cohorts were examined 
by testing the interaction by study cohort and by examin-
ing Cochran’s Q and  I2.

To examine the associations of genetically predicted 
CT-proET-1 and MR-proADM with type 2 diabetes 
risk, we performed two-sample univariate Mendelian 
randomisation analyses using results from published 
genome-wide association (GWA) studies. We identified 
single nucleotide polymorphisms (SNPs) with effects 
specific to either CT-proET-1 or MR-proADM at a 
P-value < 5E-8 as the genetic instrumental variables (IVs) 
from a published GWA study of European ancestry from 
Verweij, et  al. [27]. Estimates of the genetic association 
with type 2 diabetes were extracted from meta-analyses 
of GWA studies for populations of European ancestry by 
Mahajan et al. [28] and Bonàs-Guarch et al. [29], depend-
ing on the data availability. The procedure for the Men-
delian randomisation analysis is provided in detail in 
Additional file 1: Text S2.
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All statistical analyses were performed using R version 
4.0.3 [30]. P-values less than 0.05 were considered statis-
tically significant.

Results
Baseline characteristics of study participants
Baseline characteristics of participants according to inci-
dent type 2 diabetes status during follow-up are sum-
marized in Table  1. During a median follow-up time of 
13.8 years (interquartile range of 4.8), 862 out of 12,006 
participants developed type 2 diabetes. Participants who 
developed type 2 diabetes were more frequently men. At 
baseline, in comparison to non-cases, the cases of inci-
dent type 2 diabetes were on average older, had higher 
concentrations of CT-proET-1 and MR-proADM, had 
a higher BMI and waist circumference, were more fre-
quently hypertensive, had lower eGFR, had lower concen-
trations of HDL cholesterol and higher concentrations of 

total cholesterol, hsCRP, insulin and leptin. Participant 
characteristics for each participating cohort are pre-
sented in Additional file 1: Table S4.

Associations of CT‑proET‑1 and MR‑proADM with incident 
type 2 diabetes
Both CT-proET-1 and MR-proADM were positively 
associated with incident type 2 diabetes in the overall 
study population. The HRs [95% CIs] in model 1 were 
1.30 [1.21; 1.39] per 1-SD increase of CT-proET-1 and 
1.57 [1.45; 1.69] per 1-SD increase of log MR-proADM. 
The associations were attenuated, but remained statisti-
cally significant after additional adjustment for diabe-
tes risk factors according to model 2 (HR [95% CI]: 1.10 
[1.03; 1.18] per 1-SD increase of CT-proET-1 and 1.11 
[1.02; 1.21] per 1-SD increase of log MR-proADM). The 
association for CT-proET-1 remained stable when we 
further adjusted for eGFR, insulin, hsCRP, leptin, and 

Table 1 Participant characteristics in the total study population and stratified by incident type 2 diabetes status

Data are presented as frequency (percentage) for categorical variables and as mean (SD) for continuous variables. Continuous variables with skewed distributions are 
presented as geometric mean (antilog SD)

CT-proET-1 C-terminal-proendothelin-1, eGFR estimated glomerular filtration rate, HDL high-density lipoprotein, hsCRP high-sensitivity C-reactive protein, KORA 
Cooperative Health Research in the Region of Augsburg Study, MR-proADM mid-regional-proadrenomedullin, PRIME Prospective Epidemiological Study of Myocardial 
Infarction, SD standard deviation
a Actual hypertension was defined as having systolic blood pressure ≥ 140 mmHg, diastolic blood pressure ≥ 90 mmHg or using antihypertensive medication
b Data were available and calculated in 9112 participants of FINRISK and KORA F4 who fasted at least 4 h (593 cases and 8519 non-cases of incident type 2 diabetes)

Overall Incident type 2 diabetes

Cases Non‑cases

Number of individuals 12,006 862 11,144

Cohort (N (%))

 FINRISK 7336 (61.1) 531 (61.6) 6805 (61.1)

 PRIME Belfast 2496 (20.8) 240 (27.8) 2256 (20.2)

 KORA F4 2174 (18.1) 91 (10.6) 2083 (18.7)

CT-proET-1, in pmol/l [mean (SD)] 50.7 (13.4) 55.5 (14.2) 50.3 (13.3)

MR-proADM, in nmol/l [geometric mean (antilog SD)] 0.46 (1.31) 0.52 (1.30) 0.45 (1.30)

Age, in years [mean (SD)] 49.4 (11.8) 54.7 (9.2) 49.0 (11.8)

Male [N (%)] 7072 (58.9) 615 (71.3) 6457 (57.9)

Body mass index, in kg/m2 [mean (SD)] 26.5 (4.25) 30.6 (5.04) 26.1 (4.01)

Waist circumference, in cm [mean (SD)] 88.9 (12.8) 101 (12.9) 87.9 (12.3)

Actual hypertension [N (%)]a 4899 (40.8) 608 (70.5) 4,291 (38.5)

Systolic blood pressure, in mmHg [mean (SD)] 132.1 (20.1) 144.0 (20.7) 131.2 (19.8)

Diastolic blood pressure, in mmHg [mean (SD)] 81.0 (11.3) 87.2 (11.4) 80.5 (11.2)

Use of antihypertensive medication [N (%)] 1,308 (10.9) 225 (26.1) 1,083 (9.7)

Current smoker [N (%)] 3,234 (26.9) 234 (27.1) 3,000 (26.9)

Total cholesterol, in mmol/l [mean (SD)] 5.59 (1.05) 5.89 (1.06) 5.56 (1.05)

HDL, in mmol/l [mean (SD)] 1.37 (0.37) 1.19 (0.33) 1.39 (0.37)

eGFR (ml/min/1.73m2) [mean (SD)] 89.1 (19.4) 84.8 (21.3) 89.4 (19.2)

Insulin (microU/ml) [geometric mean (antilog SD)] 5.79 (1.85) 9.04 (1.89) 5.60 (1.82)

hsCRP (mg/l) [geometric mean (antilog SD)] 1.23 (3.03) 2.19 (2.83) 1.18 (3.01)

Leptin (ng/ml) [geometric mean (antilog SD)] 7.30 (2.69) 11.07 (2.52) 7.07 (2.69)

Fasting glucose (mmol/l) [geometric mean (antilog SD)]b 5.01 (1.13) 5.45 (1.23) 4.98 (1.12)
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fasting glucose (Table 2 and Additional File 1: Table S5). 
However, it was no longer significant for MR-proADM 
when insulin, hsCRP or leptin were added to the model 
(Table  2). The associations of CT-proET-1 and MR-
proADM with incident type 2 diabetes were also exam-
ined in each participating cohort with a negligible level 
of heterogeneity (Additional File 1: Figs. S3 and S4, 
respectively).

We observed significant interactions of MR-proADM 
with BMI and waist circumference with respect to the 
association with incident type 2 diabetes (FDR < 0.05) 
(Table  3). When stratified by BMI, the positive asso-
ciation between MR-proADM and incident type 2 dia-
betes was only significant in obese participants. The 
HRs [95%CIs] per 1-SD increase of log MR-proADM 
were 1.19 [1.05; 1.34] in obese and 1.02 [0.90; 1.15] in 

non-obese participants. The results were similar when we 
stratified by waist circumference (Table  3). In an analy-
sis where we further adjusted for eGFR, insulin, hsCRP 
and leptin, the association between MR-proADM and 
incident type 2 diabetes was attenuated, but remained 
significant in obese participants (HRs [95% CIs] per 1-SD 
increase of log MR-proADM: 1.14 [1.01; 1.29] in obese 
and 1.00 [0.88; 1.13] in non-obese participants). No sig-
nificant differences could be detected in the associa-
tion between MR-proADM and incident type 2 diabetes 
across sex and hypertension categories (Table 3).

For CT-proET-1, no relevant interactions with BMI, 
waist circumference, sex and hypertension were observed 
with respect to incident type 2 diabetes under FDR < 0.05 
(Table  3). The distribution of CT-proET-1 and MR-
proADM by subgroup are presented in Additional file 1: 
Fig. S5.

Mendelian randomisation analysis
We identified one SNP that is specific for CT-proET-1 in 
the EDN-1 gene (rs5370) and one SNP that is specific for 
MR-proADM in the ADM gene (rs2957692) and included 
them as the genetic IVs. The genetic associations with 
each vasoactive peptide and with type 2 diabetes were 
extracted from the previously mentioned GWA studies 
[27–29].

In line with the findings from the time-to-event anal-
ysis, our Mendelian randomisation analysis showed a 
significant positive association between genetically pre-
dicted CT-proET-1 and type 2 diabetes risk. The OR [95% 
CI] was 1.12 [1.03; 1.22]. Conversely, we did not observe 
a significant association between genetically predicted 
MR-proADM and type 2 diabetes risk. The OR [95%CI] 
for MR-proADM was 0.97 [0.74; 1.27]. Sensitivity analy-
ses using the likelihood-based method yielded similar 
results (OR [95%CI]: 1.12 [1.02; 1.22] for CT-proET-1 
and 0.96 [0.73; 1.27] for MR-proADM) (Table 4).

Discussion
In the current study, we observed that higher concen-
trations of both CT-proET-1 and MR-proADM were 
significantly associated with a higher incidence of type 
2 diabetes. This is the first study to demonstrate a posi-
tive association between MR-proADM and incident type 
2 diabetes independently of classical diabetes risk factors 
and that the association was more apparent in obese than 
in non-obese individuals. Using Mendelian randomisa-
tion approaches, we added further evidence that geneti-
cally predicted CT-proET-1 was significantly associated 
with a higher risk of type 2 diabetes. No significant asso-
ciation between genetically predicted MR-proADM and 
type 2 diabetes risk was documented.

Table 2 Association of CT-proET-1 and MR-proADM with 
incident type 2 diabetes

The associations were computed using Cox regression models per 1-SD 
increment of log (MR-proADM) and CT-proET-1. The distributions of 
MR-proADM, insulin, hsCRP, and leptin were right-skewed and thus, were log-
transformed to approximate normality

CI confidence interval, CT-proET-1 C-terminal-proendothelin-1, eGFR estimated 
glomerular filtration rate, hsCRP high-sensitivity C-reactive protein, MR-proADM 
mid-regional-proadrenomedullin

Model 1: adjusted for age (continuous, in years), sex (man/woman) and cohort 
(as a stratum variable);

Model 2: Model 1 + actual hypertension (yes/no), total and high-density 
lipoprotein cholesterol (continuous, in mmol/l), current smoking status (yes/no) 
and body mass index (continuous, in kg/m2)
a 97% of study participants were fasting at least 4 h and the exclusion of those 
who were not fasting or whose fasting status was unknown did not change the 
results

Adjustment Hazard ratio [95% CI]
N cases/person‑years = 862/149,937

CT-proET-1

 Model 1 1.30 [1.21; 1.39], P < 0.001

 Model 2 1.10 [1.03; 1.18], P = 0.008

 Model 2 + eGFR 1.10 [1.03; 1.19], P = 0.007

 Model 2 +  insulina 1.10 [1.02; 1.18], P = 0.012

 Model 2 + hsCRP 1.08 [1.01; 1.16], P = 0.026

 Model 2 + leptin 1.09 [1.02; 1.17], P = 0.018

 Model 2 + eGFR, insulin, 
hsCRP, leptin

1.09 [1.01; 1.17], P = 0.021

MR-proADM

 Model 1 1.57 [1.45; 1.69], P < 0.001

 Model 2 1.11 [1.02; 1.21], P = 0.016

 Model 2 + eGFR 1.12 [1.02; 1.22], P = 0.013

 Model 2 +  insulina 1.09 [1.00; 1.18], P = 0.061

 Model 2 + hsCRP 1.08 [0.99; 1.18], P = 0.073

 Model 2 + leptin 1.08 [0.99; 1.18], P = 0.089

 Model 2 + eGFR, insulin, 
hsCRP, leptin

1.07 [0.98; 1.17], P = 0.153



Page 6 of 10Sujana et al. Cardiovascular Diabetology           (2022) 21:99 

Our results corroborate the few existing prospective 
analyses reporting a positive association of CT-proET-1 
with incident type 2 diabetes [21, 22] and added evidence 
for a similar association for MR-proADM, particularly 
in obese individuals. In a previous study using data from 
7953 participants of the Prevention of Vascular and Renal 
End-stage Disease Cohort [18], the authors also reported 
a significant positive association between MR-proADM 
and incident type 2 diabetes in a model adjusted for age 
and sex. However, the association was no longer signifi-
cant in a multivariable model adjusted for classical diabe-
tes risk factors. Compared with the previous prospective 

studies, our study represents the largest population-
based cohort study examining the association of CT-
proET-1 and MR-proADM with incident type 2 diabetes.

Factors underlying the association between CT-
proET-1 and incident type 2 diabetes are not well under-
stood. Studies conducted thus far have demonstrated that 
overexpression of ET-1 directly limits insulin actions. In 
skeletal muscles, the activation of endothelin receptor 
type-A by ET-1 suppresses insulin-mediated Akt phos-
phorylation and reduces glucose uptake [5, 31]. ET-1 also 
disrupts insulin-regulated glucose transporter 4 trans-
location to the plasma membrane [32]. In adipocytes, 

Table 3 Subgroup analysis of the association of CT-proET-1 and MR-proADM with incident type 2 diabetes

The associations were computed using Cox regression models per 1-SD increment of log (MR-proADM) and CT-proET-1

The models included study cohort as a stratum variable and were adjusted for age (continuous, in years), sex (men/women), actual hypertension (yes/no), total and 
HDL cholesterol (continuous, in mmol/l), current smoking status (yes/no) and BMI (continuous, in kg/m2) (waist circumference (continuous, in cm) instead of BMI in 
models for waist circumference)

Actual hypertension was defined as having systolic blood pressure ≥ 140 mmHg, diastolic blood pressure ≥ 90 mmHg or using antihypertensive medication

BMI body mass index, CI confidence interval, CT-proET-1 C-terminal-proendothelin-1, MR-proADM mid-regional-proadrenomedullin, PY person-years
a Remained significant (FDR < 0.05) after correcting for multiple testing with the Benjamini–Hochberg method
b Actual hypertension was defined as systolic blood pressure ≥ 140 mmHg, diastolic blood pressure ≥ 90 mmHg or using antihypertensive medication

N cases/PY CT‑proET‑1 MR‑proADM

Hazard ratio [95%CI] P‑interaction Hazard ratio [95%CI] P‑interaction

Overall 862/149,937 1.10 [1.03; 1.18], P = 0.008 1.11 [1.02; 1.21], P = 0.016

BMI (kg/m2) 0.020  < 0.001 a

 Obese (≥ 30) 420/22,897 1.09 [0.99; 1.20], P = 0.070 1.19 [1.05; 1.34], P = 0.005

 Non-obese (< 30) 442/127,040 1.11 [1.00; 1.24], P = 0.058 1.02 [0.90; 1.15], P = 0.741

Waist circumference (cm) 0.348 0.001 a

 Obese (Men: ≥ 102, Women: ≥ 88) 470/30,126 1.09 [1.00; 1.20], P = 0.055 1.15 [1.03; 1.28], P = 0.013

 Non-obese (Men: < 102, Women: < 88) 392/119,811 1.10 [0.98; 1.24], P = 0.116 1.01 [0.88; 1.15], P = 0.909

Sex 0.145 0.157

 Men 615/91,156 1.07 [0.97; 1.17], P = 0.164 1.06 [0.96; 1.19], P = 0.257

 Women 247/58,781 1.19 [1.05; 1.35], P = 0.006 1.25 [1.08; 1.46], P = 0.004

Actual  hypertensionb 0.161 0.374

 Yes 608/60,423 1.10 [1.01; 1.19], P = 0.026 1.12 [1.02; 1.24], P = 0.023

 No 254/89,513 1.16 [0.99; 1.35], P = 0.069 1.10 [0.93; 1.30], P = 0.267

Table 4 Results for the two-sample Mendelian randomisation analysis

a Standardized β estimates

CI confidence interval, CT-proET-1 C-terminal-proendothelin-1, MR-proADM mid-regional-proadrenomedullin, SE standard error, SNP single nucleotide polymorphism

SNP (Gene) Effect allele Phenotype Association estimates 
with vasoactive 
peptides per 1‑SD 
difference

Association 
estimates with type 
2 diabetes

Methods Mendelian 
randomisation estimates 
on odds ratio scale [95% 
CI]

β (SE)a P‑value β (SE) P‑value

rs5370 (EDN1) T CT-proET-1 0.213 (0.020) 1.49E−27 0.024 (0.009) 0.002 Wald ratio 1.12 [1.03; 1.22]; P = 0.011

Maximum likelihood 1.12 [1.02; 1.22]; P = 0.013

rs2957692 (ADM) G MR-proADM − 0.115 (0.015) 1.05E−12 0.004 (0.016) 0.798 Wald ratio 0.97 [0.74: 1.27]; P = 0.798

Maximum likelihood 0.96 [0.73; 1.27]; P = 0.798
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ET-1 blocks free fatty acid uptake and induces lipolysis, 
resulting in increased free fatty acid concentrations [33, 
34]. Moreover, the interplay between increased free fatty 
acids and impaired glucose uptake may further exacer-
bate the dysregulation of lipid metabolism and energy 
homeostasis in insulin-resistant states [33]. Conversely, 
the inhibition of ET-1 signalling improves insulin sen-
sitivity [35, 36]. Altogether, these biological effects sug-
gest that ET-1 promotes insulin resistance and impaired 
glucose tolerance and thereby increases the risk of type 
2 diabetes.

Furthermore, ET-1 is a potent vasoconstrictor, which 
plays an important role in the pathogenesis of hyperten-
sion and chronic kidney disease [3, 37], both are known 
to be associated with type 2 diabetes. ET-1 signalling also 
has been linked to increased leptin production [38] and 
stimulates the secretion of pro-inflammatory cytokines 
known to be involved in the development of metabolic 
disorders [6, 39]. However, in the present study, the posi-
tive association between CT-proET-1 and incident type 2 
diabetes remained stable after additional adjustment for 
eGFR, insulin, hsCRP, leptin, and fasting glucose suggest-
ing other possible explanations.

With regard to ADM, the underlying mechanisms link-
ing higher concentrations with an increased risk of type 
2 diabetes seem to be less straightforward. Evidence 
from in vivo and in vitro studies suggest that ADM could 
counteract insulin resistance through its antioxidant 
effects and the inhibition of insulin secretion [9, 11]. The 
latter notion also implicates ADM in maintaining insu-
lin homeostasis [11]. ADM also has anti-inflammatory 
actions [40]. In obesity, ADM expression is upregulated 
in adipocytes and circulating ADM concentrations are 
increased [10]. Evidence from previous epidemiologi-
cal studies also suggest positive associations of ADM 
with BMI and waist circumference [41, 42]. Factors that 
upregulate ADM production in obesity are incompletely 
understood. In an experimental study using a euglycae-
mic-hyperinsulinemic clamp technique, acute hyperin-
sulinemia was demonstrated to induce circulating ADM 
concentrations in obese, but not in lean individuals [43]. 
This evidence could explain the more apparent asso-
ciation of MR-proADM with incident type 2 diabetes in 
obese than in non-obese individuals seen in the current 
study. Furthermore, oxidative stress, insulin resistance, 
low-grade inflammation and dyslipidaemia, conditions 
that are commonly found in obesity, were also associated 
with increased MR-proADM concentrations [16, 44]. The 
increased ADM release in adipocytes seems to be a com-
pensatory action attempting to restrain insulin homeo-
stasis rather than a causal factor of insulin resistance 
thus, type 2 diabetes. Of note, in our data, the associa-
tion between MR-proADM and incident type 2 diabetes 

was attenuated when we further controlled for insulin, 
hsCRP and leptin. We also did not observe a significant 
association between genetically predicted MR-proADM 
and type 2 diabetes risk in our Mendelian randomisation 
analysis. However, a non-significant association is not 
evidence for no association. Further studies are needed to 
confirm our findings.

Our study has some limitations that should be con-
sidered. As only single measurements of CT-proET-1 
and MR-proADM were available at baseline we could 
not take into account the intra-individual variation. This 
could have led to exposure misclassification and regres-
sion dilution bias. In the current study, the harmonized 
data on several known diabetes risk factors, such as 
physical activity, diet and family history of diabetes, were 
lacking, which could have led to some degree of residual 
confounding. Our study participants were predominantly 
of European descent, which means that further stud-
ies need to confirm our findings in other ethnic groups. 
Finally, due to a very limited number of genetic IVs, we 
were unable to perform more robust analyses for our 
Mendelian randomisation.

Our study also has several strengths including the pro-
spective, population-based design and the long-term 
follow-up with a median of 13.8  years. The use of har-
monized data from the population-based cohorts partici-
pating in the BiomarCaRE project allows us to include a 
large sample size. To our knowledge, our study represents 
the so far largest population-based cohort study exam-
ining the association of CT-proET-1 and MR-proADM 
with incident type 2 diabetes. Furthermore, standard-
ized epidemiological and laboratory procedures based on 
individual level data also allow for the best possible data 
analyses, including thorough adjustments for different 
diabetes risk factors and subgroup analyses.

Conclusions
In conclusion, higher concentrations of CT-proET-1 
and MR-proADM were associated with incident type 
2 diabetes. However, the positive association between 
MR-proADM and incident type 2 diabetes seemed to 
be modified by body composition, with a more appar-
ent association in obese than in non-obese individuals. 
Our Mendelian randomisation analysis further suggests 
a probable causal link between CT-proET-1 and type 2 
diabetes. These findings raise the possibility that ET-1 
might be implicated in the pathogenesis of type 2 diabe-
tes. Future studies are warranted to examine the utility of 
both peptides in risk stratification of type 2 diabetes for a 
better health care decision and their potential as targets 
for antidiabetic therapy.
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