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Abstract

Background: There is a clear need for assays that can predict the risk of metastatic prostate cancer following
curative procedures. Importantly these assays must be analytically robust in order to provide quality data for
important clinical decisions. DNA microarray based gene expression assays measure several analytes simultaneously
and can present specific challenges to analytical validation. This study describes the analytical validation of one
such assay designed to predict metastatic recurrence in prostate cancer using primary formalin fixed paraffin
embedded tumour material.

Methods: Accuracy was evaluated with a method comparison study between the assay development platform
(Prostate Disease Specific Array) and an alternative platform (Xcel™ microarray) using 50 formalin-fixed, paraffin-
embedded prostate cancer patient samples. An additional 70 samples were used to establish the assay reportable
range. Determination of assay precision and sensitivity was performed on multiple technical replicates of three
prostate cancer samples across multiple variables (operators, days, runs, reagent lots, and equipment) and RNA/
cDNA inputs respectively using the appropriate linear mixed model.

Results: The overall agreement between the development and alternative platform was 94.7% (95% confidence
interval, 86.9–98.5%). The reportable range was determined to be 0.150 to 1.107 for core needle biopsy samples
and − 0.214 to 0.844 for radical prostatectomy samples. From the precision study, the standard deviations for assay
repeatability and reproducibility were 0.032 and 0.040 respectively. The sensitivity study demonstrated that a total
RNA input and cDNA input of 50 ng and 3.5 μg respectively was conservative.

Conclusion: The Metastatic Assay was found to be highly reproducible and precise. In conclusion the studies
demonstrated an acceptable analytical performance for the assay and support its potential use in the clinic.
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Background
Prostate cancer is one of the most common cancers
in men in the United States with an estimated
161,000 new cases of prostate cancer in 2017, ac-
counting for 21% of all new cancers diagnosed [1].
Furthermore, prostate cancer represents 4% of all
cancer deaths, with approximately 26,700 deaths due
to the disease [1]. Despite the high cure rate that ac-
companies the use of active surveillance, radical pros-
tatectomy or radiotherapy as initial therapies for
localised prostate cancer, approximately 35% of pa-
tients experience biochemical recurrence, as defined
by an increase in Prostate Specific Antigen (PSA)
levels within 10 years of treatment. One third of these
patients present with metastatic disease within 8 years
of PSA elevation [2, 3]. Current assessment of meta-
static risk includes tumour histopathological assess-
ment (Gleason grading) and tumour staging following
PSA elevation. However, these are often limited due
to their prognostic variability [4] meaning that there
is a clear requirement for additional prognostic strat-
egies that estimate the likelihood of metastasis. The
role of both single gene and molecular signature
biomarkers in identifying cancer and predicting treat-
ment response is increasing. The MammaPrint® Breast
Cancer Recurrence Assay represents one of a number
of commercially available tests with prognostic and/or
predictive utility in breast cancer. These have paved
the way for the emergence of additional tests focused
in other disease indications including prostate cancer
(Oncotype DX, Decipher®).
Almac Diagnostics Ltd. have developed a microarray-

based assay that measures the expression of 70 genes
(See Additional file 1: Table S1) to prospectively identify
a molecular subgroup of prostate cancer patients at
increased risk of metastatic disease recurrence following
radical surgery or radiotherapy with curative intent. The
70-gene assay (known as the Metastatic Assay) has been
defined as having an underlying biology driven by
processes that promote prostate cancer progression
and metastasis e.g. WNT signaling and FOXM1 regu-
lation [5, 6].
Diagnostic core needle biopsies (CNB) or primary

tumour resections followed by formalin fixation repre-
sent the primary source of tumour tissue in the prostate
cancer setting and represent a significant challenge to
molecular analysis due to limited tissue quantity, nucleic
acid/protein cross-linking and nucleic acid degradation
[7]. The Metastatic Assay has been developed on
Almac’s formalin fixed paraffin embedded (FFPE) opti-
mized Prostate Cancer Disease Specific Array (DSA) and
classifies a patient sample as either having metastatic-
like biology (assay positive) or non-metastatic (assay
negative) based on a predefined threshold. DNA

microarrays are a collection of oligonucleotide probes
complimentary to target sequences and are used to
quantify gene expression from a nucleic acid solution. In
application, RNA is extracted from tissue, converted to
labelled cDNA before being applied to the microarray
where the target sequences bind to their complimentary
probes in a process known as hybridization. The
microarray is then washed and stained with fluorescently
labelled streptavidin before being scanned and the
strength of the fluorescent signal measured. The
strength of the signal is dependent on the amount of
target sequences bound to their complimentary probe(s).
The presence of a large number of probes, representing
thousands of genes on a single microarray is why DNA
microarrays have long been used as a discovery tool to
identify differences in gene expression between diseased
and normal tissue, particularly in prostate cancer [8].
Using this platform, the Metastatic Assay has been

clinically validated through two large independent
retrospective clinical cohorts and in-silico analysis has
been performed in three independent public micro-
array datasets [5, 6]. The assay demonstrates strong
prognostic utility that could improve patient risk
stratification and identify those patients that may
benefit from treatment intensification (assay positive)
from those patients that should be considered for ac-
tive surveillance (assay negative).
For an assay to be considered suitable for use

within clinical practice it must be analytically robust.
Analytical validation of a DNA microarray assay can
be challenging as several analytes are measured simul-
taneously, each with a different weighted effect on the
assay algorithm and ultimately the final assay score.
This study aimed to evaluate the analytical perform-
ance of the assay following the established guidelines
published by the Clinical and Laboratory Standards
Institute (CLSI). Although the analytical validation of
other prostate cancer assays have been published pre-
viously, to the best of our knowledge this is the first
evidence based analytical validation of such an assay
on a cDNA microarray platform [9, 10]. The assay’s
analytical accuracy, reportable range, precision and
analytical sensitivity are reported.

Methods
Sample selection
A total of 60 prostate tumour FFPE CNB samples and
60 FFPE radical prostatectomy (RP) samples were used
in the analytical validation studies. Specimens were
sourced from multiple European sites including Oslo
University Hospital, Cardiff University, University
College Dublin and Northern Ireland Biobank (Queen’s
University Belfast/Belfast Health and Social Care Trust).
Overarching ethical approval for this study was obtained
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from the Health Research Authority (HRA) NRes Com-
mittee East of England (Norfolk) Research Ethics Com-
mittee (Ref: 15/EE/1066) with waived need for consent
due to the retrospective nature of this study.

Gene expression microarray profiling
All FFPE samples were sectioned into 5 × 5 μm sections
and mounted on slides. The first slide was haematoxylin
and eosin (H&E) stained and the region(s) of viable pros-
tate carcinoma were marked by a board certified patholo-
gist. Markings were transferred to the corresponding
unstained slides and the tumour area was macrodissected
into a microcentrifuge tube using a scalpel, in preparation
for ribonucleic acid (RNA) extraction.
Total RNA was isolated using the Roche High Pure

RNA Paraffin kit (Roche, Basel, Switzerland). Samples
with a minimum concentration of 12.5 ng/μl, quantified
using a Nanodrop Spectrophotometer (ThermoFisher,
Santa Clara, CA), proceeded to cDNA generation using
the Ovation FFPE WTA System kit (NuGEN Technolo-
gies Inc., San Carlos, CA). 3.5 μg of cDNA product was
fragmented and labelled with the Encore Biotin Module
(NuGEN Technologies Inc., San Carlos, CA) and hybrid-
ized overnight to the Almac Diagnostics proprietary
Xcel™ microarray (Affymetrix, Santa Clara, CA). Each
microarray underwent a series of washing and staining
steps prior to being scanned on the Affymetrix 7G Scan-
ner (Affymetrix, Santa Clara, CA). The resulting micro-
array data was pre-processed and a number of quality
control (QC) steps were applied.
Figure 1 outlines the sample workflow for the Meta-

static Assay.

Assay quality control
A number of QC steps were implemented during the
protocol to ensure reliability of the assay performance
(Fig. 1). The initial QC begins at pathological review
followed by pathologist guided macrodissection. Samples
were excluded if there were no viable tumour cells
present. Secondly, total RNA concentration was assessed
following extraction and a minimum concentration of
12.5 ng/μl of total RNA was required. Following amplifi-
cation, cDNA yield was measured and a minimum yield
of 3.5 μg was required. cDNA fragment length was
assessed using capillary gel electrophoresis to confirm
the presence of a fragment length profile typical of an
FFPE sample. These QC limits were determined based
on the manufacturer’s input requirements for the
NuGEN Ovation FFPE WTA amplification kit and En-
core Biotin Module respectively. The performance of the
cDNA fragmentation reaction was assessed using the
Agilent 2100 Bioanalyzer system to ensure at least 80%
of cDNA transcripts are ≤200 nt in length prior to
microarray hybridization. The hybridization controls

BioB, BioC, BioD and Cre were applied to the cDNA
prior to hybridization and assessed for their presence
and expressing at increasing intensity. Finally, a range of
QC metrics were applied to microarray data including
array image analysis (AIA) for detection of surface and
background artefacts, assessment of percent present,
array intensity distribution analysis and principal com-
ponent analysis. A percent present value below the QC
limit of 15% disqualified a specimen from further ana-
lysis. Further detail is provided in the Additional file 2:
Supplementary Methods. Assay scores were calculated
as previously described [6].
An FFPE ES-2 cell line (ATCC, England, UK), serving

as a gene expression control, was included in each pro-
cessing batch from extraction through to microarray
profiling. Almac Diagnostics have developed a gene
expression signature with pre-defined limits of accept-
ance for this gene expression control sample ((mean tar-
get signature score 0.3542 +/− 3 standard deviations
(SD)). These limits have been established over multiple
analytical runs within Almac Diagnostics. This signature
score was then used as control limits for the FFPE ES-2
cell line. In addition, a Universal Human Reference
(UHR) RNA (Agilent Genomics, Santa Clara, CA) sam-
ple was included in each amplification batch. Each UHR
was assessed using surveillance charts established

Fig. 1 Overview of the Metastatic Assay workflow and quality
control (QC)
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through > 500 analytical runs. These charts monitor the
Affymetrix parameters percent present and average sig-
nal absent. Westgard rules were applied to determine
any violations outside of the mean +/− 3*SD [11]. An
assay positive or UHR control that breached the
pre-defined limits would result in repeat testing of all
controls and batch of specimen samples.

Analytical accuracy
The assessment of analytical accuracy for a given test is
often determined through the quantification of systemic
error between the candidate method and a reference
method [12]. Due to the novelty of the assay, no refer-
ence method was available. In line with the CLSI
EP09-A3 guideline, a method comparison study was
performed as a surrogate for analytical accuracy to cal-
culate the agreement in assay outcome between the
development platform (Prostate DSA™, Affymetrix, Santa
Clara, CA) and an alternative platform (Almac Xcel™
microarray, Affymetrix, Santa Clara, CA) [12]. The Pros-
tate DSA and the Almac Xcel microarray contain
137,066 and 126,787 probe sets respectively. These
probe sets target 19,944 unique gene transcripts in the
Prostate DSA and 20,406 in the Xcel array. 19,465 of
these genes overlap between the two array types of
which the 70 genes targeted by the Metastatic Assay are
included. RNA was isolated from 55 prostate tumour
FFPE CNB (n = 15) and RP (n = 40) samples followed by
microarray genomic profiling on both platforms. A
selection of samples (10 CNB, 10 RP) were processed in
duplicate giving a total sample number of 75 samples
profiled on each platform. The assay was applied to each
sample and the strength of agreement was estimated by
the overall percent agreement in assay outcome between
the development and Xcel™ microarray platforms. The
positive percent agreement and negative percent agree-
ment, both with respect to the development platform,
were also calculated. Furthermore, exact 95% binomial
confidence intervals were calculated for each measure of
agreement. The flexibility of the Metastatic Assay to
migrate to alternative technology platforms was further
assessed on the Nanostring nCounter® platform and an
RNA sequencing platform (Roche NimbleGen SeqCap
RNA Targeted kit and Illumina MiSeq® Sequencer). Both
platforms have the ability to quantify gene expression al-
beit through different chemistries. RNA sequencing uses
next generation sequencing technology to sequence
short strands of cDNA, aligning them back to a refer-
ence genome and counting the number of aligned reads.
Alternatively Nanostrings’ nCounter® technology uses
microscopic imaging to detect and count transcripts that
have been hybridized to complimentary probes contain-
ing a unique barcoded identifier. These technologies
overcome some of the disadvantages of the DNA

microarray by being able to quantify both low and high
expressed transcripts that may not be detected by DNA
microarray technology due to background noise and
hybridization saturation respectively. The correlation of
assay scores and agreement in assay call between the
development platform and both Nanostring and RNA se-
quencing platforms were calculated (See Additional file 2:
Supplementary Methods).

Reportable range
The reportable range of an assay is described as “the
range of test result values over which the laboratory can
establish or verify the accuracy of the instrument, kit, or
test system measurement response” and encompasses
the full range of reportable values for a given assay [13].
Our sample set represented only a subpopulation of
prostate cancer samples. As such the lower and upper
limits of assay range could not be determined. Therefore
the reference sample group was used to establish the ref-
erence interval for each sample type (CNB and RP) as a
surrogate for the assay reportable range.
A total of 120 prostate tumour FFPE samples were

analysed using the assay. Sample selection incorporated
a cohort of prostate cancer specimens from RP (n = 60)
and a separate cohort of prostate cancer specimens from
radical radiotherapy CNB (n = 60) which were identified
by ensuring a balanced range of clinical characteristics
(See Additional file 1: Table S2) and a representative dis-
tribution of Metastatic Assay scores from previous gene
expression profiling. To minimise the influence of tech-
nical variability, samples were processed by a single
operator using single reagent lots. Following the recom-
mendations as outlined by the CLSI EP28-A3C guideline
for sample numbers < 120 the robust method of estima-
tion was used to determine a 95% reference interval for
each sample type [14]. These are defined as the intervals
that contain the central 95% of the assay scores for CNB
samples and RP samples. In addition, 90% bootstrap
confidence intervals were also calculated for the esti-
mated lower and upper limits of the 95% reference inter-
vals. A t-test was used to calculate any difference in
mean Metastatic Assay score between CNB and RP
samples.

Analytical precision
A single site experimental design based on the CLSI
guideline EP05-A3 was implemented to analytically
validate assay precision [15]. This study was designed to
measure intra-assay and inter-assay precision by introdu-
cing a number of variables including operator (n = 2), days
(n = 20), runs (2 per day), critical reagent lots (n = 3), ther-
mal cyclers (n = 2) and scanners (n = 2). This study used
three pooled RNA samples, generated from either FFPE
CNB (n = 1) or RP (n = 2) prostate cancer tissue, to
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comprise a sample set that represented each assay output
(assay positive (CNB), assay negative (RP)) and a sample
with an assay score close to the sample type specific med-
ical decision point (RP). An assay positive FFPE ES-2 cell
line sample was included within each run to identify assay
score limits for use as a Metastatic Assay positive control
in future clinical sample testing. Each of the three RNA
pooled samples and the ES-2 FFPE cell line sample were
tested in duplicate during each run at the nominal assay
input of 50 ng. Assay variability due to reagent lots and
equipment was assessed by randomly assigning one of two
lots of reagents (Ovation FFPE WTA System kit, Encore
Biotin Module and Xcel™ microarrays) and one of two
pieces of equipment (thermal cyclers and Affymetrix 7G
Genechip scanners) to each operator for a given run. A
total of 40 valid runs were completed, 20 by each
operator.
Based on the 20 × 2 × 2 study design (days x runs per

day x replicates per run) where replicates are nested
within runs, runs within days and equipment, reagent
lot and operator nested within a run, a nested linear
mixed model was used to estimate the sources of vari-
ability [16]. All components (day, run, equipment,
reagent lot and operator) were treated as random effects.
The formula for the linear mixed effects model imple-
mented was:

Yijklmn ¼ μþ Di þ Rj ið Þ þ Ek ijð Þ þ Ll ijð Þ þOm ijð Þ þ εn ijð Þ

, where:
Yijklmn: observed Metastatic Assay score for the nth

replicate, by operator m, reagent lot l, equipment com-
bination k, in the jth run, on the ith day.
μ: mean Metastatic Assay score.
Di: between-day variability.
Rj (i): between-run variability nested in day.
Ek (i j): between-equipment variability nested in run,

which is nested in day.
Ll (i,j): between-lot variability nested in run, which is

nested in day.
Om (i,j): between-operator variability nested in run,

which is nested in day.
εn (i,j): within-run (between-replicate) variability.
Bootstrap confidence intervals were derived for the pa-

rameters of the linear mixed effects model while confi-
dence intervals for the total SD estimates were estimated
using the method of Satterthwaite [17]. Repeatability
was quantified by the within-run SD and reproducibility
was quantified by the total SD, calculated by taking the
square root of the sum of all variance component point
estimates. Analytical imprecision is most prominent
when assay scores are close to the medical decision
point (threshold). A misclassification assessment, based

on the analytical precision study and reportable range
study data, was performed to estimate the effect of assay
imprecision on clinical sample call. To perform this mis-
classification assessment, the estimated reproducibility
of the threshold scoring sample was used to represent
the imprecision of the Metastatic Assay. In particular, a
normally distributed error using the total SD of the
threshold scoring sample was added to the assay scores
of the samples processed as part of the determination of
the reference intervals and an assay call was made based
upon the updated assay score. By comparing the assay
call before and after the introduction of the assumed
imprecision error, the proportion of samples that were
misclassified due to imprecision was determined.

Analytical sensitivity
The lower limit of quantification (LLOQ), described as
“the lowest actual amount at which the analyte is reliably
detected”, is used to define the analytical sensitivity of
an assay [18]. However, evaluation of microarray sensi-
tivity is complicated by the large number of separate
analytes evaluated simultaneously and limited by cross
hybridization and sources of biochemical and instru-
mentation noise [19, 20]. As such, treating the analyte of
the assay as the total RNA, sensitivity was determined
by assessing the effect of different total RNA inputs on
assay score. Using three pooled RNA samples, represent-
ing each assay output (assay positive (CNB), assay nega-
tive (RP)) and a sample close to the sample specific
medical decision point (RP), total RNA inputs were
assessed both at the specification input (50 ng) and
outside (12.5 ng, 25 ng and 100 ng) the specifications of
the Ovation FFPE WTA System amplification kit. As an
additional measure, the assay score was also assessed
following manipulation of cDNA input. Using the same
three pooled RNA samples, cDNA was generated and
input into the fragmentation process at both the
nominal assay input (3.5 μg) and outside (0.88 μg,
1.75 μg and 7 μg) the specifications of the Encore Biotin
Module. Each sample was processed in triplicate using a
single lot of assay reagents. A linear mixed effects model
was used to investigate the effect of varying the level of
RNA and cDNA input on assay score. In particular, esti-
mates were calculated comparing the assay score at
non-specification total RNA input amounts (12.5 ng, 25
ng and 100 ng) and cDNA input amounts (0.88 μg,
1.75 μg and 7 μg) to the assay score at the nominal total
RNA input amount (50 ng) and cDNA input amount
(3.5 μg) respectively.

Results
Analytical accuracy
75 samples, incorporating 50 unique patient samples,
were profiled on the development platform (Prostate
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DSA™) and on the alternative platform (Xcel™ array) for
the analytical accuracy study. All samples and process
controls profiled satisfied the QC criteria. A Bland-Altman
plot was used to visualise the bias between the assay
scores on both platforms (Fig. 2a) where the assumption
of a constant bias between the platforms was found to be
violated following a test of constant difference (p < 0.05)
[21]. To account for the non-constant bias, a linear bias
correction, given by the line of regression through the
paired assay score observations, was applied to success-
fully migrate the assay between the platforms (Fig. 2b)
(See Additional file 2: Supplementary Methods). After
applying the linear bias correction, agreement between the

platforms was estimated using the coefficient of individual
agreement (CIA) [22] and satisfied the pre-defined criteria
(δ = 0.78 < 1.24). The removal of the non-constant bias
can also be observed from the post linear bias correction
Bland-Altman plot (Fig. 2c) and scatter plot of paired
assay scores (Fig. 2d). The overall percent agreement in
assay call between the Prostate DSA™ and the Xcel™
microarray platforms was 94.7% (calculated using results
displayed in Table 1) (95% CI, 86.9–98.5%). Furthermore,
the positive and negative percent agreements were
calculated as 91.7% (95% CI, 77.5–98.2%) and 97.4%
(95% CI, 86.6–99.9%) respectively. The results of the
migration and analytical accuracy analyses indicated

Fig. 2 Bland-Altman plot of Metastatic Assay scores on the development and Xcel™ microarray platforms prior to (A) and post (C) linear bias
correction. Scatter plot of Metastatic Assay scores from prostate cancer patients (n = 55) processed on the development and Xcel™ microarray
platforms prior to (B) and post (D) linear bias correction. The dotted line is the estimated regression line. The solid line is the line of equality. Each open
circle represents the assay score of the same sample profiled on the development and Xcel™ microarray platforms. Open circles connected by a solid
line represent replicate samples
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the suitability of performing the analytical validation
studies on the Xcel™ microarray platform, after applying
the linear bias correction to the Metastatic Assay scores.
A high degree of correlation in assay scores and overall
percent agreement in assay calls was also demonstrated
with both the Nanostring nCounter® platform (Pearson
correlation r = 0.94 (See Additional file 1: Figure S1) and
overall percent agreement = 94.2% (see Additional file 1:
Table S3A and S3B)) and the RNA sequencing platform
(Pearson correlation r = 0.94 (See Additional file 1: Fig. S2)
and overall percent agreement = 87.9% (See Additional
file 1: Table S4A and S4B)).

Reportable range
Sixty prostate cancer CNB and 60 RP samples were
used to establish sample type specific reference
intervals (Fig. 3). Table 2 summarises the 95% refer-
ence intervals for CNB and RP samples. Also dis-
played are the 90% confidence intervals for the
estimated lower and upper limits of the 95% refer-
ence intervals. The 95% reference interval limits for

CNB and RP samples were calculated as (0.150, 1.107)
and (− 0.214, 0.844) respectively. A significant difference
(ANOVA p < 0.001) in mean Metastatic Assay scores
between CNB (mean = 0.6216) and RP (mean = 0.3159)
samples was noted. Differences in the distribution of
DDRD scores was also evident in the clinical valid-
ation studies from which different thresholds for CNB
and RP had been established [5, 6]. These differences
may be due to a number of factors including the
sample collection methodology used, differences in
the size of the sample tumour area, tumour hetero-
geneity and variability in Gleason scores. Those
patient samples with assay scores falling at or within
their respective reference intervals can be reliably
reported within our CLIA laboratory.

Precision
The repeatability and reproducibility of the assay was
determined using one FFPE cell line (ES-2), repre-
senting high assay scores and three pooled clinical
samples (assay positive (RP), assay negative (CNB)
and one sample close to its sample specific medical
decision point (RP)) (Fig. 4). All QC criteria were
satisfied. Table 3 summarises the results obtained
from the nested linear mixed model, displaying the
model-based mean and the SD point estimates for all
sources of variation, including the reproducibility of
the assay (total SD), and the repeatability (within run
SD). Following an assessment of misclassification the
percentage of clinical samples estimated to change
assay call due to assay imprecision was only 4.3, 95%
CI (1.7, 7.5%). Conversely 95.7% of clinical sample
scores were correctly classified.

Analytical sensitivity
In direct comparisons to the total RNA input of the
Ovation FFPE WTA System amplification kit (50 ng),
no statistically significant difference was found in the
assay score at total RNA inputs of 25 ng and 100 ng.
A significant difference in the assay score was
observed for 12.5 ng (Table 4).
Furthermore, a significant difference in the assay

score was observed at a cDNA input of 0.88 μg in
comparison to the nominal assay input (3.5 μg) while
no significant difference was detected at cDNA inputs
of 1.75 μg or 7 μg (Table 5).

Discussion
Prostate cancer is one of the most common malig-
nancies in adult men in the developed world. Further-
more, patients often develop metastasis despite the
initial success of primary treatment. An assay that
stratifies patients based on metastatic risk would be
a valuable tool for physicians to inform treatment

Table 1 Agreement in Metastatic Assay outcome between the
development and alternative platforms

Alternative Platform
(Xcel™ Array)

Assay
Positive

Assay
Negative

Total

Development Platform
(Prostate DSA™)

Assay Positive 33 3 36

Assay Negative 1 38 39

Total 34 41 75

Abbreviations: DSA = disease specific array

Fig. 3 Box plots showing the distribution of the Metastatic Assay
scores for core needle biopsy (CNB) and radical prostatectomy (RP)
samples. Each open circle represents the assay score of each sample
profiled on the Xcel™ microarray platform
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decisions. The Metastatic Assay can quantify gene
expression to identify a subgroup of primary prostate
cancer patients that are at risk of metastatic disease
recurrence. Incorporation of such a biomarker within
clinical practice requires evidence of analytical valid-
ity to ensure decisions around patient management
are based on precise and reliable data. The assay
was therefore evaluated through a series of analytical
studies and all specified acceptance criteria were
met.
The use of CNB samples in the clinical diagnosis

of prostate cancer is standard practice. Viable
tumour material from CNB samples that can be
used for molecular analysis is often limited and is
further hindered by its fixation in formalin leading

to a highly fragmented RNA template [23, 24]. The
Metastatic Assay has been developed to utilise small
amounts of tumour material from FFPE CNB and
RP specimens. More specifically, the assay uses both
3′ end and random priming throughout the whole
transcriptome making it suitable for amplification of
degraded RNA. One of the challenges in analytically
validating novel biomarkers is demonstrating the
accuracy of an assay where no accepted standard
exists. In this study accuracy was demonstrated by a
94.7% concordance between the development plat-
form and the Xcel™ microarray, an FFPE optimized
microarray containing probes targeting cancer
specific content from multiple cancer types. Given
the overlap of genes targeted by each of the two
array types (n = 19,465), of which 70 are the Meta-
static Assay genes, the high concordance is not
surprising. Similarly there was a high level of agree-
ment between the cDNA microarray and the
Nanostring nCounter® platforms (94.2%) while a
lower overall agreement with the RNA sequencing
platform (87.9%) was noted. However, we believe
that following optimization of assay parameters the
Nanostring nCounter® and RNA sequencing
platforms could be alternative platforms for delivery
of the Metastatic Assay.

Fig. 4 Results of duplicate runs (n = 40) of an ES-2 cell line sample, an Assay Positive (CNB) sample, an Assay Negative (RP) sample and a sample
close to the medical decision point (RP) for precision evaluation

Table 2 95% reference intervals for the Metastatic Assay

CNB RP

Estimate Lower
90% CI

Upper
90% CI

Estimate Lower
90% CI

Upper
90% CI

Lower 95%
Reference Interval

0.150 0.054 0.233 −0.214 − 0.311 − 0.127

Upper 95%
Reference Interval

1.107 1.020 1.195 0.844 0.758 0.943

Abbreviations: CI= confidence interval, CNB= core needle biopsy, RP= radical
prostatectomy
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Assay precision and reproducibility was assessed
over an extensive period of time (20 weeks) and
estimated as a SD while taking into account all
potential sources of variation (operator, day, reagent
lot, equipment, run and within-run). The true inter-
pretation of an assay’s performance is only meaningful
when applied clinically. To test this we applied the
quantified assay variation to clinical sample scores
from the reportable range study where 95.7% of clin-
ical samples were correctly classified after introducing
the estimated level of assay imprecision into the assay
scores. These results demonstrate a robust assay
capable of reproducing results regardless of the
influence of potential variability in the processing of
clinical samples.
Use of a dilution series for determination of assay

sensitivity of a microarray-based assay can be challen-
ging due to the multiplex nature of the assay, the
binary format of the microarray output and the
potential influence of biochemical and instrumental
noise on signal amplification. As such, assay LLOQ
was determined by treating the total RNA as a single
analyte and determining the influence of total RNA
input on assay score. Despite yielding sufficient cDNA
product (3.5 μg) to permit microarray analysis, an
assay input of 12.5 ng of RNA (3.1 ng/μl) had a
significant effect on assay score. Similarly, a signifi-
cant difference in assay score was apparent when
0.88 μg of cDNA was applied to the microarray. With
application of around one quarter of the manufacturer’s

recommended total RNA and cDNA amounts this
outcome is not surprising. Despite the multiple probe
set design of the array aimed at improving sensitivity,
this significant change in assay score is possibly due
to a random distribution of the Metastatic Assay spe-
cific transcripts as a consequence of sample dilution
[25, 26]. Nonetheless, the LLOQ of the assay input is
at most 50 ng (12.5 ng/μl) and whilst the total RNA
amount is appropriate it may be conservative. Signifi-
cant consistency in assay score was demonstrated
with 25 ng of total RNA. Therefore the Metastatic
Assay may be suitable for use in a clinical setting
where RNA yield from FFPE biopsies is limited. Fur-
thermore, the microarray platform on which the assay
has been developed has high gene content with probe
sets targeting over 20,000 genes. This provides the
opportunity to evaluate additional biomarkers in a re-
search setting that may complement the prognostic
utility of the assay, thereby maximising the diagnostic
information from little sample material.

Conclusion
The Metastatic Assay has been clinically validated to
predict the risk of prostate cancer metastasis. The
assay uses FFPE tissue from both radical prostatec-
tomy and biopsies to generate an assay score and di-
chotomized call based on the presence or absence of
metastatic like biology. This study provides evidence
for the robustness and analytical reproducibility of

Table 4 Linear mixed effects model estimates comparing assay
score at varying total RNA inputs

Comparison (ng) Estimate Standard
Error

Lower
95% CI

Upper
95% CI

p-value

12.5 vs 50 0.0310 0.0150 0.0010 0.0600 0.0429

25 vs 50 0.0180 0.0150 −0.0120 0.0480 0.2311

100 vs 50 −0.0220 0.0150 −0.0520 0.0080 0.1403

Abbreviations: CI =confidence interval

Table 5 Linear mixed effects model estimates comparing assay
score at varying total cDNA inputs

Comparison (μg) Estimate Standard
Error

Lower
95% CI

Upper
95% CI

p-value

0.88 vs 3.50 0.0230 0.0070 0.0090 0.0370 0.0030

1.75 vs 3.50 0.0110 0.0070 −0.0040 0.0250 0.1370

7.00 vs 3.50 0.0002 0.0070 −0.0140 0.0140 0.9800

Abbreviations: CI =confidence interval

Table 3 Analytical Precision

Sample Model
Mean

Day SD
(95% CI)

Run SD
(95% CI)

Equipment SD
(95% CI)

Reagent Lot SD
(95% CI)

Operator SD
(95% CI)

Within Run SD
(95% CI)

Total SD
(95% CI)

ES-2 cell line 1.418 0 (0, 0.006) 0 (0, 0.002) 0 (0, 0.002) 0 (0, 0.002) 0 (0, 0.007) 0.014
(0.011, 0.015)

0.014
(0.012, 0.016)

Assay Negative −0.123 0.010
(0, 0.024)

0.006
(0, 0.014)

0.014
(0, 0.022)

0.010
(0, 0.017)

0.016
(0, 0.021)

0.027
(0.022, 0.033)

0.038
(0.031, 0.048)

Medical Decision Point 0.307 0 (0, 0.022) 0.010
(0, 0.016)

0.010
(0, 0.016)

0.013
(0, 0.022)

0.015
(0, 0.020)

0.032
(0.026, 0.039)

0.040
(0.035, 0.053)

Assay Positive 1.090 0 (0, 0.014) 0.008
(0, 0.011)

0.008
(0, 0.012)

0.009
(0, 0.013)

0.007
(0, 0.009)

0.019
(0.015, 0.023)

0.025
(0.021, 0.031)

Model mean and standard deviation (SD) point estimates from nested linear mixed model. CI confidence interval
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the Metastatic Assay and further supports its poten-
tial use as a clinical tool for prostate cancer risk
stratification.
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