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A B S T R A C T   

Invasive species managers utilise species records to inform management. These data can also be used in Species 
Distribution Models (SDM) to predict future spread or potential invasion of new areas. However, issues with non- 
equilibrium (also called disequilibrium) can cause difficulties in modelling invasive species that have not fully 
colonised their potential distribution and, in addition, sampling bias can result from a lack of information on 
survey effort, a particular issue for presence only modelling techniques. Geographical confounds are unavoidable 
when building iSDMs but there are methods that allow prediction to be optimised. We used maximum entropy 
(Maxent) to model suitable habitat for invasive Reeve's muntjac deer (Muntiacus reevesi) throughout Great Britain 
and Ireland comparing several methods that aimed to address invasive Species Distribution Modelling (iSDM) 
bias including spatial filtering, weighted background points and targeted background points built at varying 
spatial extents. Model evaluation metrics suggested that the model, which explicitly failed to account for non- 
equilibrium at the full extent of Great Britain and Ireland using random background points, predicted the spe-
cies' current invasive range best. This highlighted that negative environmental relationships are likely to 
represent uncolonised areas rather than habitat selection and thus, low predicted suitability of uncolonised areas 
was misleading. Of the models that dealt with non-equilibrium conceptually best, by restricting the training 
extent to their current invasive range or core range, and utilised targeted background points accounting for 
survey effort (cells with other deer species recorded as present yet with no records for muntjac) as the best model 
evaluation metric, yielded relatively poor predictive performance. This implied limited habitat selectivity or 
avoidance within the colonised range which, when spatially extrapolated, suggested virtually all regions in Great 
Britain and Ireland may be vulnerable to future muntjac invasion.   

1. Introduction 

Knowledge and understanding of current distribution, spread and 
likely ultimate distribution of alien invasive species are prerequisite to 
their successful management (Hulme, 2009). Current distributions and 
species spread can be estimated using empirical survey data including 
species records, often sightings, and the rate of change in their range. 
Estimating an invasive species' likely ultimate distribution in an as yet 
uninvaded area is more challenging. Species Distribution Models (SDMs) 
are a widely used analytical technique in estimating the extent of suit-
able environmental niche envelopes for a given species; correlating 
species occurrence data with environmental variation (e.g., Guisan and 
Zimmermann, 2000). SDMs like all statistical analyses have inherent 

assumptions that must be met if the output results and spatial pro-
jections are to be robust, yet these are often ignored or broken when 
SDMs are used for alien invasive species (Elith et al., 2010). 

SDMs utilise species record data that can be either: 1) presence-only 
that includes species occurrence data only (McDonald, 2013; McDonald 
et al., 2013) or ii) presence/absence that includes both species occur-
rence (presence) and data for sites surveyed but at which the species was 
not detected and thus assumed absent (Pearson, 2007). Species occur-
rence data are increasingly available for download from easily acces-
sible online biological record centre databases, thus the use of presence- 
only data for SDM input has become common (Warton and Aarts, 2013). 
Moreover, the availability of easily downloaded and used freeware, for 
example, the machine learning maximum entropy platform, Maxent 
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(Elith et al., 2011; Phillips and Dudík, 2008), has made SDM available to 
the masses (there were 5720 papers that included the word ‘Maxent’ of 
which 413 had the word in their title on the Web of Science Core 
Collection during May 2022). Maxent typically uses randomly generated 
‘background points’ distributed throughout the spatial extent of the 
analysis when defining the range of environmental variation relative to 
the environmental envelope suitable for species presence (Phillips et al., 
2009). However, the complexity of multiple processes in invasion 
ecology presents significant difficulties when attempting to use SDM for 
predicting the extent of suitable environmental conditions for non- 
native species currently at non-equilibrium (also referred to as 
disequilibrium). Alien invasive species still in the process of invasion, 
have an actively expanding range edge boundary (wave front) such that 
their presence within their current range reflects their invasion history, 
rate of spread and habitat selection. However, areas beyond their cur-
rent range cannot be characterised within any SDM as (pseudo) absence, 
by the use of background points, as such regions do not represent species 
absence or habitat avoidance but merely that the species has yet to 
invade such areas. Invasive Species Distribution Models (iSDMs) are 
often built to assume that the input data cover the full extent of the area 
over which spatial extrapolation is to take place (i.e., prediction into 
novel environments) yet frequently ignore the problem of species non- 
equilibrium (Gallien et al., 2012; Kelly et al., 2014). 

Another concern with presence-only data is spatial autocorrelation 
resulting from sampling bias, as the lack of true absence data results in 
no information on the distribution or density of sampling effort (Dor-
mann et al., 2007; Merow et al., 2013; Raes and Ter Steege, 2007). 
Spatial autocorrelation can result in over-representation of more 
accessible habitats or extensively sampled areas (Kramer-Schadt et al., 
2013) and violates the assumption of independence leading to Type I 
errors or false positives (Dormann et al., 2007). Almost all species re-
cords suffer from potential sampling bias due to the methodology used 
in surveys or due to the focal species being either elusive, rare, common 
(thus under-represented in public sighting surveys), invading or 
understudied (Kramer-Schadt et al., 2013). Using SDMs for highly 
elusive invading species early in their colonisation process, therefore, 
presents an even greater source of potential bias due to recent inocula-
tion, lag periods and limited spread i.e., habitat selectivity (Siesa et al., 
2011). Thus, there is a danger that any iSDM is ultimately modelling 
sampling effort constrained by the species wave front rather than actual 
habitat selectivity and the species' ultimate range at full colonisation. 
Inaccurate model outputs due to ignored survey bias and error may in-
fluence invasive species management plans, erroneously. 

Sampling bias using presence-only data can be addressed using three 
different methods: i) spatial filtering of the input data (Engler et al., 
2004), ii) weighting background points (Elith et al., 2010) and iii) tar-
geting background points (Phillips et al., 2009). Spatial filtering of input 
data (reducing either the spatial resolution i.e., cell or pixel size or 
reducing the density of species records in densely recorded clusters) 
helps to control potential spatial autocorrelation bias prior to model 
building. Kramer-Schadt et al. (2013) found that reducing the resolution 
of species records, to one record per 10km2, increased the predictive 
power of their model. Taking one record within a cell or pixel at a lower 
spatial resolution than the original species record data is often used to 
filter spatial bias but also reduces fine-scale environmental variation 
obscuring local ecological relationships in the process. A different 
method is to thin out clustered records based on their geographical 
density, whereby the probability of a record removal is proportional to 
the density of occurrence records in the area of a kernel density grid 
(Verbruggen et al., 2013). Weighting background point selection allows 
for the manipulation of the model building process itself; altering the 
selection of background points to match the bias in species records. 
Some software programmes, including Maxent, allow the inclusion of a 
bias file to offset the effects of clustering by increasing the selection of 
background points from high-density locations (Elith et al., 2010). 
Alternatively, linear modelling approaches can be weighted to 

incorporate dispersal probabilities (Sullivan et al., 2012). Targeting 
background points is conceptually similar but allows the modeller to 
direct the selection of background points to specifically defined cells in a 
manner that reduces the probability of Type II errors i.e., false negatives. 
For example, using species records for similar, related taxa, from which 
to draw background points assumes that a surveyor or observer was 
present at a location from which they would have reported the focal taxa 
had they encountered it, by virtue of having recorded and reported a 
sister taxon. Thus, such locations are more closely allied to being true 
absences for the focal taxa than randomly selected background points 
and, therefore, presence-only models can include some attempt to ac-
count for bias due to survey or observer effort (e.g., Anderson and 
Gonzalez, 2011). 

Here, we use a factorial combination of a range of techniques to 
explicitly test the comparative impact of a) spatial filtering input data, b) 
weighting background points and c) targeting background points when 
attempting to develop an iSDM for a highly elusive, invasive species 
whose range is expanding and is thus at non-equilibrium; Reeves' 
muntjac deer (M. reevesi) throughout Great Britain and Ireland. This 
species originated from China and Taiwan and a known population was 
introduced to Bedfordshire by the release of 11 individuals in 1901 
(Chapman et al., 1994) with as few as 4–5 founding females (Freeman 
et al., 2016). Muntjac have since expanded to colonise most of England 
except the north-west, western region of Wales and most of Scotland. 
More recently, muntjac have become established in Ireland since around 
ca. 2008 (Dick et al., 2010) with multiple sightings but a highly 
restricted distribution i.e., they have yet to spread significantly (Na-
tional Biodiversity Data Centre, 2021). Muntjac have been well docu-
mented since their introduction in both Great Britain and Ireland and as 
such are an ideal subject by which to test iSDM techniques. 

2. Methods 

2.1. Species record data 

All species records for Reeves' muntjac deer (M. reevesi) throughout 
Great Britain and Ireland were collated from a wide range of data 
recording centres (Table S1). Only records with a spatial resolution of 
<1km2 were retained for analysis and any duplicated records (those 
exact matches of recorder, date and location that appeared in different 
databases) were removed. In Great Britain, there were a total of 9905 
records covering 4244 x 1km2 squares whilst in Ireland there were 46 
records in 17 x 1km2 squares (Fig. 1a). Additionally, a total of 4970 
species records were also collated for non-muntjac deer species, namely, 
red deer (Cervus elaphus), fallow deer (Dama dama), sika deer (Cervus 
nippon), roe deer (Capreolus capreolus), and Chinese water deer (Hydro-
potes inermis) throughout Great Britain and 691 records from Ireland. 

2.2. Environmental parameters 

All environmental data were summarised at a raster cell (pixel) 
resolution of 1 km matching the spatial resolution of the species records. 
A total of nine variables were chosen as potential predictors of muntjac 
distribution (Fig. S1). Habitat coverage data were obtained from the 
CORINE Land Cover map (EEA, 2007) and extracted using ArcGIS 10.5 
(ESRI, California, USA), namely: the percentage (%) cover of: arable, 
broad-leaved woodland, coniferous plantations, scrub, grassland, and 
urban areas. These specific habitats were chosen as likely ecological 
determinants of muntjac presence due to their importance in previous 
ecological studies of the species (Chapman et al., 1994) and to deer in 
Britain and Ireland more generally. Bioclimatic factors, sourced from 
Worldclim (Hijmans et al., 2005) were also included, specifically, mean 
annual temperature (Bio1) and mean annual precipitation (Bio12). 
Altitude was explicitly excluded as animals have no direct sensory 
perception of elevation above sea level (i.e., air pressure) but instead 
perceive its correlates of temperature and precipitation. Nevertheless, 
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topography was captured as average slope (in degrees) per 1km2, 
extracted from a Digital Elevation Model (EEA, 2007). The datasets were 
checked for multicollinearity using pairwise Pearson correlations within 
each spatial extent tested as model inputs i.e., i) throughout Great 
Britain and Ireland, ii) Great Britain only, iii) within the 95% kernel 
range of muntjac records in Great Britain (their invasive range only) and 
iv) within the 50% kernel range in Great Britain (their invasive core 
range only; Fig. S2). Bivariates with significant correlations and a co-
efficient of rp > 0.75 were deemed collinear. 

2.3. Invasive Species Distribution Models (iSDMs) 

iSDMs were built using the software R v. 3.6.3 (Team, 2020) and the 
package dismo (Hijmans et al., 2017) linking with Maxent v. 3.4.1 

(Phillips et al., 2017). 
To examine the effect of input data, four spatial extents were used 

with training (species record) datasets that matched each extent 
(Fig. 1b); i) muntjac records from throughout Great Britain and Ireland 
(i.e. 100% of records from Great Britain plus records from Ireland) with 
background points selected from throughout Great Britain and Ireland 
explicitly ignoring the problem of non-equilibrium, ii) 100% of records 
from throughout Great Britain only with background points selected 
from throughout Great Britain only; again ignoring non-equilibrium but 
focusing the model on the landmass with the best quality data i.e. largest 
number of records, iii) records from the 95% kernel range in Great 
Britain with background points selected from within this range i.e. 
restricted to the extent of the colonised area making some effort to ac-
count for non-equilibrium, iv) records from the 50% kernel range (i.e. 

Fig. 1. a) Distribution of records Reeve's muntjac (Muntiacus reevesi) in Great Britain and Ireland, b) different extents used to select background points, c) kernel 
density of muntjac occurrences before thinning and d) after thinning. 
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the species' core range) in Great Britain with background points selected 
from within the core range, again accounting for non-equilibrium but 
more completely than in the 95% kernel model. In the latter case, it 
could be assumed that muntjac have fully colonised their core range and 
thus any cells without species presence records (especially those with 
some form of surveyor or observer effort i.e., other deer species having 
been recorded) may represent habitat avoidance thus informing models 
more meaningfully before spatial extrapolation into areas beyond the 
species invasion wave front. In all cases, 10,000 background points were 
used and each model was projected (i.e., spatially extrapolated) to the 
entire extent of Great Britain and Ireland to examine variation in the 
predicted extent of suitable habitat beyond the species' colonised area. 
In each case, models were built using a training set comprising 75% of 
the species records randomly selected and evaluated using a test set 
comprising the remaining 25% of species records (Test dataset #1) with 
a further independent test comprising the 17 verified locations of 
muntjac records from Ireland only (Test dataset #2). The latter was to 
test the utility of a model built in one region with good data (Great 
Britain) in predicting the appearance of muntjac early in the establish-
ment and colonisation phase in another region with poor data (Ireland). 
Environmental response curves were generated using a combination of 
linear, quadratic and product features. 

Each of the iSDMs at the four different spatial extents were further 
subject to five treatments to test the impact of potential biases and error: 
a) Random backgrounds where 100% of training records were used, and 
background points were selected at random from the full extent of the 
model. b) Spatial filtering input data to reduce problems of spatial 
autocorrelation, where all species records were thinned using the soft-
ware OccurrenceThinner (Verbruggen et al., 2013), in a manner to filter 
out a greater proportion of sightings where the density of records was 
highest based on their kernel density (Fig. 1c; with densities per cell 
rescaled to an index from 0 to 1). Species records were selected for 
deletion randomly from those cells with a kernel density index between 
0.5 and 1.0 giving an increased chance of removing records from the 
highest density areas. Over 10 cross-validated model runs, an average of 
2139 data points were retained per run (Fig. 1d). Random background 
points were selected for the model. c) Targeting background points i.e., 
use of non-random points (Phillips et al., 2009). In another attempt to 
account for likely sampling effort, background points were extracted 
from cells within which at least one record of another deer species was 
recorded i.e., someone visited those cells and was predisposed to 
reporting deer, if seen, but happened not to report muntjac (assumed 
absent). d) Spatial filtering (of presence records only) with targeted 
background points to assess their impact when combined. e) Weighting 
background points based on an estimated proxy for likely survey effort 
(Elith et al., 2010). A bias file was created to weight records on whether 
survey effort (sufficient to assume lack of presence is absence) was 
known for each cell. Some data recording centers provided a measure of 
sampling effort e.g., some species records were sourced from surveys 
that recorded absence in addition to presence-only incidental records 
from the public. All records were combined to create a bias grid (using 
the previous upweighted area combined with a weighted distribution of 
occurrences), calculated using the Gaussian function: 

exp
(
− [d]2

)

2s2 (1)  

where d = nearest neighbour distance to each survey point and s =
standard deviation based on the dispersal distance of muntjac taken as 1 
km per year (Chapman et al., 1994) over a maximum of 10 years per 
survey (to reflect the variation in survey rate from the historically 
collected data), thus a value of 10,000 was chosen (see Elith et al., 
2010). 

Various thresholds can be chosen by which to render continuous 
predicted probability surfaces into binary maps indicative of likely 
presence or absence (suitable vs unsuitable habitat). The literature 

suggests convergence on the maximum test sensitivity plus specificity 
(TSSmax) as the single most appropriate threshold (Guisan et al., 2017). 
However, in this case we used two different test data sets and thus two 
different thresholds would have been generated making each non- 
comparable to the other. Thus, in this case we used the 10th percen-
tile training presence (Elith et al., 2010) which was the same across both 
test datasets allowing model evaluation metrics to be directly compared. 

2.4. Model evaluation 

There are many varying opinions in the literature as to the most 
suitable SDM evaluation statistic to use. The most commonly used is the 
Area Under the Curve (AUC value) of the Receiver Operating Charac-
teristic (ROC) curve as this is threshold and scale invariant (Merow 
et al., 2013). However, AUC values are influenced by the extent of model 
prediction (Smith, 2013). If the extent of the model is large and the 
species has a restricted distribution within that extent, then AUC values 
will be artificially inflated (as would be expected for an invasive species 
at non-equilibrium). Thus, we used a corrected AUC (cAUC) as suggested 
by Hijmans (2012). Alternative metrics of model fit are not without their 
own issues (Allouche et al., 2006) such as sensitivity (proportion of 
presences which are correctly predicted, or True Positive Rate (TPR)), 
specificity (proportion of absences which are correctly predicted) or 
True Skill Statistic (TSS), a prevalence independent model metric 
calculated using sensitivity and specificity. False negatives (omissions) 
and false positives (commission) can lead to errors, arising from species 
not being at equilibrium and can affect such metrics. On the other hand, 
Kappa (k) utilises input species occurrences and background points that 
have been adjusted for a random proportion of correct predictions, thus 
is as objective a measure of prediction accuracy as any metric (Monserud 
and Leemans, 1992). The Kappa statistic involves the use of commission 
and omission errors (Manel et al., 2001), and although it does take into 
account prevalence like the True Skill Statistic (Allouche et al., 2006), 
the thresholds are widely accepted and so useful in model evaluation 
(Altman, 1990; Landis and Koch, 1977; Monserud and Leemans, 1992). 
Due to all the issues associated with the various evaluation statistics and 
no consensus on the best measure, all model statistics (AUC, TPR, TSS, 
Omission, and Kappa values) are presented here, to allow for 
comparison. 

An AUC value ≥0.9 was considered an excellent model fit, a value 
between 0.7 and 0.9 was deemed good and ≤ 0.5 no better than random 
(Hosmer et al., 2013). TPR should be closer to 1 reflecting high sensi-
tivity. TSS lies between 0 and 1 with >0.9 considered perfect, 0.85–0.9 
excellent, 0.7–0.85 very good, 0.5–0.7 good, 0.4–0.5 fair and ≤ 0.4 
representing a poor fit (Landis and Koch, 1977). Omission values should 
be closer to 0 to reflect low false negative scores (Peterson, 2006). A 
Kappa score, based on the 10th percentile training presence logistic 
threshold, of 1 indicated models fitted perfectly, 0.85–0.99 excellent, 
0.70–0.85 very good, 0.55–0.70 good, 0.40–0.55 fair 0.20–0.40 poor 
0.05–0.20 very poor and < 0.05 indicated no agreement. Negative 
values indicated an especially poor model fit (Landis and Koch, 1977). 

2.5. Multivariate Environmental Similarity Surface (MESS) 

In order to understand the extent to which models are transferable 
over the range of environmental conditions they are fitted to; a Multi-
variate Environmental Similarity Surface (MESS) analysis was under-
taken using the ‘Dismo’ package in R using muntjac presence locations. A 
score of <0 indicates dissimilar conditions to the training sample. 

3. Results 

Multicollinearity between environmental variables, tested indepen-
dently at each of the four spatial extents modelled, was not deemed a 
substantial problem with only one pair of significant bivariates at one 
spatial extent (Fig. S2). Mean annual temperature (Bio_1) and annual 
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precipitation (Bio_12) were negatively correlated only at the full extent 
of Great Britain and Ireland (rp = 0.7) but as this was not >0.75 both 
were retained. This also ensured all models, at all extents, had the same 
environmental parameters facilitating direct comparability; a necessity 
when comparing modelling techniques. In addition, the Multivariate 
Environmental Similarity Surface (MESS) map (Fig. 2) suggested that 
environmental combinations of only the highest altitudes (the Scottish 
Highlands and Islands, Cambrian mountains of Wales, Pennines of 
northern England and the uplands of Donegal and Kerry in Ireland) and 
the urban centre of London were not adequately captured by training 
models. 

Across all spatial extents and all model treatments, mean annual 
precipitation (Bio12) had the highest median permutation importance at 
66.5% (Fig. 3). All other variables had substantially lower importance 
values, however, broad-leaved woodland, mean annual temperature 
(Bio1) and arable were the next most important variables (contributing 
3.9%, 3.6% and 3.5% respectively). The muntjac iSDMs built at the full 
spatial extent of Great Britain and Ireland with random background 
points had the highest training AUC and test set cAUC, TPR and TSS 
values and lowest Omission rates of any model (Table 1). Using kappa as 
the most conceptually optimal evaluation metric and the test set 
(randomly withheld 25% of species records) to be the most rigorous test 
of each model, then the single best model was at the full extent of Great 
Britain and Ireland using 100% of species records with weighted back-
ground points (weighted, based on an estimated proxy for likely survey 
effort) with a fair k = 0.509. This value was notably larger than any 
other kappa value from the other models but was confirmed as accurate 
after double checking model inputs and structure. The best kappa value 

for models built using the 95% and 50% kernel core ranges (those 
models that were conceptually least vulnerable to false negatives of 
background points beyond their invasive wave front boundary) was for 
the targeted 50% core range weighted by likely survey effort by using 

Fig. 2. Multivariate Environmental Similarity Surface (MESS) analysis with white areas indicating regions whose bioclimatic habitat envelope were poorly captured 
by model training potentially limiting the value of model spatial extrapolation. 

Fig. 3. Permutation importance of environmental parameters used to build 20 
Maxent models using different spatial extents and bias treatments. Bold line 
represents the median, boundaries are at the first and last quartile and whiskers 
are at 1.5 inter-quartile range. 
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Table 1 
iSDM evaluation metrics for a) the training sets representing 75% of presence data selected at random, b) Test dataset #1 representing 25% of presence data selected at random and c) Test dataset #2 representing presence 
data from Ireland only for four spatial extents with five model treatments with i) random background points, ii) filtered (pre-thinned) input records adjusted for presence record density using OccurrenceThinner, iii) 
targeted selection of background points drawn from only those 1 km squares with a deer record, iv) filtered (pre-thinned) and targeted background point selection and v) weighted background points based on an estimated 
proxy for likely survey effort derived from a bias grid, throughout Great Britain and Ireland (GB & Ireland), Great Britain or restricted to the area currently colonised by muntjac (95% kernel range) or its core range (50% 
kernel range). The threshold used was the 10th percentile training presence. For each metric the best model is highlighted in bold where higher was better for AUC, TPR, TSS and Kappa and lower better for Omission.  

Model 
evaluation 
metrics 

i) Random background  ii)Filtered  iii) Targeted  iv) Filtered and Targeted  v) Weighted 

GB & 
Ireland 

Isles 

Great 
Britain 

Muntjac 
range  

GB & 
Ireland 

Isles 

Great 
Britain 

Muntjac 
range  

GB & 
Ireland 

Isles 

Great 
Britain 

Muntjac 
range  

GB & 
Ireland 

Isles 

Great 
Britain 

Muntjac 
range  

GB & 
Ireland 

Isles 

Great 
Britain 

Muntjac 
range 

100% 100% 95% 50%  100% 100% 95% 50%  100% 100% 95% 50%  100% 100% 95% 50%  100% 100% 95% 50% 

TSSmax 0.204 0.251 0.403 0.52  0.264 0.331 0.481 0.592  0.55 0.556 0.489 0.508  0.579 0.579 0.51 0.532  0.487 0.466 0.503 0.582 

a) Training set (75% random)                       
AUC 0.875 0.847 0.777 0.785  0.849 0.824 0.727 0.708  0.783 0.780 0.806 0.787  0.692 0.705 0.722 0.707  0.791 0.790 0.744 0.743 
Omission 0.024 0.027 0.053 0.181  0.042 0.041 0.122 0.330  0.167 0.164 0.112 0.099  0.223 0.222 0.127 0.093  0.101 0.097 0.113 0.213 
TPR 0.977 0.974 0.949 0.819  0.958 0.959 0.878 0.670  0.833 0.836 0.888 0.901  0.777 0.778 0.873 0.907  0.899 0.903 0.887 0.787 
k 0.635 0.565 0.407 0.485  0.459 0.393 0.242 0.275  0.553 0.547 0.607 0.591  0.365 0.382 0.433 0.388  0.518 0.386 0.033 0.409 
TSS 0.750 0.692 0.552 0.571  0.698 0.647 0.454 0.415  0.566 0.560 0.611 0.574  0.384 0.409 0.444 0.414  0.582 0.579 0.489 0.485 
b) Test set #1 (25% random)                       
cAUC 0.780 0.753 0.662 0.691  0.757 0.729 0.584 0.599  0.691 0.689 0.712 0.688  0.607 0.622 0.658 0.613  0.687 0.701 0.621 0.663 
Omission 0.014 0.014 0.083 0.172  0.028 0.033 0.211 0.350  0.152 0.147 0.102 0.099  0.193 0.189 0.058 0.082  0.112 0.084 0.108 0.173 
TPR 0.986 0.986 0.917 0.828  0.972 0.967 0.789 0.650  0.848 0.853 0.898 0.901  0.807 0.811 0.942 0.918  0.888 0.916 0.892 0.827 
k 0.210 0.166 0.094 0.144  0.104 0.080 0.211 0.052  0.226 0.237 0.287 0.316  0.078 0.080 0.105 0.108  0.509 0.131 0.072 0.119 
TSS 0.758 0.704 0.522 0.580  0.713 0.655 0.365 0.396  0.581 0.576 0.621 0.574  0.413 0.442 0.514 0.425  0.571 0.599 0.441 0.525 
c) Test set #2 (Irish records only)                       
cAUC 0.687 0.701 0.621 0.663  0.515 0.693 0.599 0.525  0.531 0.557 0.613 0.528  0.535 0.539 0.539 0.565  0.598 0.586 0.615 0.648 
Omission 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000  1.000 1.000 1.000 0.923 
TPR 0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.077 
k − 0.003 0.000 − 0.003 − 0.003  − 0.003 − 0.003 − 0.003 − 0.003  − 0.005 − 0.005 − 0.006 − 0.011  − 0.005 − 0.005 − 0.006 − 0.011  − 0.003 − 0.003 − 0.003 − 0.002 
TSS − 0.228 − 0.585 − 0.394 − 0.248  − 0.260 − 0.312 − 0.424 − 0.255  − 0.267 − 0.277 − 0.276 − 0.328  − 0.394 − 0.369 − 0.428 − 0.494  − 0.317 − 0.317 − 0.451 − 0.225  

M
.S. Freem

an et al.                                                                                                                                                                                                                             



Ecological Informatics 69 (2022) 101683

7

record density of other deer as a surrogate of potential observer bias, but 
model performance was poor (k = 0.316). Equally, the best cAUC value 
for models within these restricted spatial extents was for the targeted 
95% range with a good level of model performance (cAUC = 0.712). 
Models evaluated using test dataset #2 (Irish records only), regardless of 
their extent or conditions, failed to predict the appearance of the first 
muntjac records in Ireland with high omission rates (>0.923), and 
negative kappa values suggesting notably poor fit. Models with 
restricted ranges (95 or 50%) and specified background points (either 
targeted or weighted) offered the best visualisation (Fig. 4). 

4. Discussion 

Despite sampling bias being widely acknowledged as a concern in 
invasive Species Distribution Models (iSDM) and a large number of 
studies attempting to address the problem, no conclusion has been 
drawn as to the best method to deal with it (Kramer-Schadt et al., 2013; 
Verbruggen et al., 2013). Here, three very different options to reduce 
sampling bias were examined i) weighted background points, ii) filtered 
(pre-thinned) records and iii) targeted background points, fitted to 
various spatial extents. AUC values were, in the main, higher when 
adopting more expansive input extents than restricted extents. However, 
it is known that these can be misleading; reflecting artificial inflation as 

Fig. 4. MaxEnt spatial predictions of landscape suitability across different modelling extents (rows); Great Britain and Ireland, Great Britain only, the species' 
invasive range (95% kernel of species records) and core invasive range (50% kernel) and data bias treatments (columns); random background points, pre-filtered 
points, targeted background points, pre-filtered data with targeted background points and weighted background points. The random and weighted models 
covering Great Britain and Ireland predicted the species current invasive range best (but are conceptually problematic drawing background points from beyond the 
species invasion wave front) while the targeted models spatially restricted to the 95% and 50% kernel species ranges and extrapolated to the rest of Great Britain and 
Ireland (the models that conceptually dealt with non-equilibrium best) suggested few regions are invulnerable to future invasion by range expansion with the possible 
exception of the highest elevations (though these were notably poorly captured by model training; see Fig. 2). 
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background points are drawn from areas beyond the area colonised by 
muntjac and thus do not represent real non-selection or avoidance of 
habitats but a statistical artefact created by non-uniform coverage of 
habitats leading to apparently strong, but erroneous, species responses 
(Allouche et al., 2006; Merow et al., 2013; Smith, 2013). 

Despite high AUC scores for background points taken from the whole 
of Great Britain and Ireland, the most biologically suitable extent to take 
background points for a range shifting species such as muntjac is the 
reachable area they have had the opportunity to encounter so far (Elith 
et al., 2010). Thus, the restricted kernel range of their current distri-
bution is the most suitable option to avoid discounting environmental 
variable gradients that have not yet been encountered. The single best 
model using the restricted area colonised by muntjac, was targeted with 
selection of background points drawn from 1 km squares with deer re-
cords (those with known survey effort) yielding a spatial extrapolation 
that suggested most of Great Britain and Ireland is vulnerable to invasion 
by range expansion with the exception of the highest elevations. How-
ever, the Multivariate Environmental Similarity Surface (MESS) analysis 
suggested that model training failed to adequately capture the 
bioclimatic-habitat envelope of the highest elevations (as these are 
missing from the species present invasive range) and thus the lower 
predicted suitability of higher elevations may be an unavoidable artefact 
of the input data and model construction and may not represent lower 
actual suitability in the event of their range expansion. Whether muntjac 
colonise the highlands of Great Britain and Ireland remains to be seen. 
The lower performance of the 50% core range model may suggest that 
within their fully colonised range few areas that are available for colo-
nisation remain unoccupied and that no major area or habitat is invul-
nerable to invasion. Indeed, Ward et al. (2021) demonstrate that the 
pattern of range expansion observed currently is consistent with 
continuous expansion and in-filling. Naturally such models fail to 
discriminate clear bioclimatic or habitat associations and as such are 
equally poor in predicting the appearance of records in Ireland, which 
was likely driven by the locations of introduction (for example, prox-
imity to captive herds and potential escapees as well as movement by 
human agency) more than colonisation of optimal habitat. 

Importance permutations values suggested the only variable that 
consistently and strongly effected models was annual precipitation with 
muntjac exhibiting a negative association with rainfall. Muntjac, in their 
native range in Southeast China, are used to high rainfall similar in 
range to that of much of Scotland, where rainfall is highest in Great 
Britain and Ireland. However, this area is currently uncolonized, with 
the drier south-west of England having lowest rainfall, yet the highest 
muntjac record density, by virtue that this was the location of their 
introduction from Bedfordshire. There is a confounding geographical 
effect where muntjac have yet to colonise the full gradient of precipi-
tation in Great Britain which is unavoidable in any iSDM. The species 
may be at a climatic disequilibrium and so this failure to colonise has 
either resulted from strong associations with non-climatic factors that 
correlate or a dispersal lag. Whilst, overall, the models have poor per-
formance they are, nevertheless, useful. If muntjac had a clear and 
specific bioclimatic-habitat envelope this would have been captured by 
models yielding good predictive fit. As this was not the case, we 
conclude that muntjac do not exhibit a strong pattern in their distribu-
tion within their invasive range and within the environmental condi-
tions in those areas that are as yet uncolonized but lie within the range of 
conditions in their native range. This suggests that nowhere in Great 
Britain or Ireland will be imperious to invasion. Thus, it is reasonable to 
assume that muntjac will continue their south-east to north-west colo-
nisation of Great Britain and, where introductions have occurred in 
Ireland, with subsequent inaction, it is reasonable to expect muntjac to 
colonise the whole of the island of Ireland in time spreading from known 
locations in the east in a westerly direction. 

Invasive deer distributions are difficult to predict due to increasing 
species spread that violates Species Distribution Model assumptions 
(Elith et al., 2010) and in many cases human-mediated dispersal, over 

large ranges, is involved (Dolman and Wäber, 2008). Difficulties in 
modelling human dispersed species have previously been encountered 
(Richardson et al., 2011; Rödder, 2009; Wilson et al., 2009). Chivers and 
Leung (2012) demonstrated the difference in species distribution pre-
dictive abilities based on the chosen human-mediated vector and sug-
gest a modelling framework that incorporates human behaviour to 
better predict invasion, while Croft et al. (2019) included a spatial factor 
to account for the anthropogenic effect on presence and absence. The 
specific mode of continuous invasion of muntjac still remains unknown 
with the possibility of accidental escapes from captive locations or 
intentional release from members of the public (Chapman et al., 1994), 
and a better understanding of this propagule network structure could 
improve any predictive model. 

SDM has previously been implemented in deer distribution research; 
from invasive distribution modelling (Croft et al., 2019; Gormley et al., 
2011) to habitat suitability (Chapman et al., 1994) and interspecific 
interactions (Acevedo et al., 2010). Using presence/absence data, 
Chapman et al. (1994) found that muntjac, selected for arable land and 
avoided marginal upland land classes, however, they were still unable to 
determine a pattern in their dispersal. When comparing test set cAUC 
values, the targeted 95% model performed better than the 0.7 bench-
mark stated by Croft et al. (2019). No previous models have produced 
high resolution maps (<10km2 resolution) for Great Britain and Ireland. 
With relatively small home ranges, 1 km was a more biologically rele-
vant resolution with which to construct a model for muntjac, with higher 
spatial scales likely more informative. 

5. Conclusion 

We suggest that invasive Species Distribution Models (iSDMs) 
restricted to already invaded regions with some attempt to account for 
survey effort are conceptually best (likely defining habitat selectivity 
most accurately) yet in reality performed relatively poorly suggesting 
little habitat avoidance within colonised areas; the corollary of which is 
that most regions into which the model was extrapolated appear 
vulnerable to future invasion by continued range expansion. Future 
work would benefit from surveys of species presence and absence to 
define habitat selection, both within the colonised invasive range and at 
their expanding wave front. In addition, as muntjac have a notably small 
home range extent, modelling at higher spatial resolutions may further 
improve model discrimination. An understanding of species dispersal 
dynamics and population network structure may help determine range 
expansion processes more reliably. In any case, the evidence suggests 
nowhere in Great Britain and Ireland is invulnerable to future muntjac 
invasion by range expansion and thus, further negative impacts on 
native ecosystems are to be expected. 
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