Mutation analysis in irish families with glomuvenous malformations


Published in:
British Journal of Dermatology

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person’s rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:08. Nov. 2020
Mutation analysis in Irish families with glomuvenous malformations

A.H. O’Hagan, F. Maloney,* C. Buckley,* E.A. Bingham,† M.Y. Walsh,‡ K.E. McKenna,§ D. McGibbon*, and A.E. Hughes*

Department of Dermatology, Craigavon Area Hospital Group Trust, Portadown BT63 5QQ, U.K.
*Department of Dermatology, Waterford Regional Hospital, Waterford, Ireland
Departments of †Dermatology and ‡Pathology, Royal Victoria Hospital Trust, Belfast, U.K.
§Department of Dermatology, Belfast City Hospital, Belfast, U.K.
• Department of Medical Genetics, Queen’s University Belfast, U.K.

Correspondence
A.H. O’Hagan.
E-mail: artohagan@hotmail.com

Accepted for publication
5 November 2004

Key words
glomulin gene, glomuvenous malformations

Conflicts of interest
None declared.

Summary

Background Glomuvenous malformations (GVMs) are rare bluish lesions that can affect the skin and mucosal surfaces. They represent defects in vasculogenesis. Lesions can occur sporadically or in an autosomal dominant mode of inheritance. Recent studies have shown that mutations in the glomulin gene (GLMN) on chromosome 1p21-22 are responsible for familial GVMs.

Objectives To search for mutations in GLMN in Irish families with GVMs.

Methods We identified four Irish families with GVMs and confirmed linkage to chromosome 1p21-22 in these cases. We sequenced the glomulin gene in all affected and unaffected members of the families.

Results Linkage analysis showed that affected individuals from the families shared a common haplotype. Mutation analysis revealed a delAAGAA mutation in exon 3 of the glomulin gene in all four families with GVMs.

Conclusions We confirm that mutations in the glomulin gene are responsible for GVMs and suggest a founder Irish mutation in the glomulin gene in four Irish families.

Glomuvenous malformations (GVMs) (OMIM #138000) are also known as ‘glomerangioma’ or ‘venous malformations with glomus cells’. Typically they are blue or violaceous lesions, which can occur at any site on the skin or rarely on the mucosa. Clinically the lesions may be macular, nodular or thickened plaque-like lesions. They may be firmer than purely venous malformations and are sometimes painful to palpation. They vary from single banal lesions to extensive large disfiguring lesions.1 Most cases are sporadic but familial cases are autosomal dominant.2 It has been estimated that penetrance rises from 70% at age 5 years to 100% by age 30 years.3 Isolated GVMs may have a later onset.

Histologically, GVMs are distinguished by the presence of basophilic rounded cells (glomus cells) around loose distended vein-like channels. Glomus cells probably represent incomplete or defective smooth muscle cells.

In 2000 Brouillard et al. identified the FAP48 gene within a narrowed region of 1p21-p22 which linked to familial GVMs.4 In 2002, upon finding that 14 different disease-causing mutations in this gene caused GVM, they renamed the gene ‘glomulin’. In addition to germline mutations they found a somatic ‘second hit’ mutation in affected tissue of a patient with an inherited genomic deletion.5 The glomulin gene (GLMN) is composed of 19 exons extending over 55 kb (GenBank AJ302727–AJ302730). We searched for mutations in GLMN in Irish families with GVMs.

Patients and methods

Case series

We identified four Irish families with GVMs. Three of the families were from Northern Ireland and one from south-east Ireland. All pedigrees showed that the disease followed an autosomal dominant mode of inheritance (Fig. 1). Lesions in the affected individuals varied from small solitary lesions (Fig. 2) to more substantial, cosmetically noticeable lesions (Fig. 3). Within families there was different disease expression and lesions varied from solitary lesions to more extensive cosmetically obvious areas of involvement (Fig. 1). All lesions were confined to the skin with no mucosal involvement and in most cases were clinically asymptomatic except where the affected sites were at trauma-prone areas. Skin biopsies from the probands in each family showed a similar histological
appearance (Fig. 4): basophilic glomus cells around loose channels lined with endothelial cells.

Methods

DNA extraction and polymerase chain reaction (PCR) amplification were carried out using standard techniques. DNA samples from the families underwent PCR with the fluorescently labelled microsatellite marker D1S2868 (Applied Biosystems PRISM linkage mapping set version 2) and two fluorescently labelled oligonucleotide primers (designed in-house, and synthesized by Invitrogen™ Life Technologies; available on request) from the region of chromosome 1p21-22. This allowed haplotyping of individuals from the families.

© 2005 British Association of Dermatologists • British Journal of Dermatology 2006 154, pp450–452

Fig 1. Pedigrees of four Irish families (a–d) with glomuvenous malformations demonstrating autosomal dominant mode of inheritance, clinical features and common haplotype of affected individuals. All affected individuals share the 210, 260 and 341 alleles. Δ, solitary lesion; O, three or fewer lesions; H, four or more lesions; ‡, extensive cosmetically obvious lesions.

Fig 2. Small nodular glomuvenous malformations on abdomen.

Fig 3. Cosmetically noticeable glomuvenous malformations on forearm.

Fig 4. Histological appearance of a glomuvenous malformation: loose venous channels surrounded by basophilic glomus cells (haematoxylin and eosin; original magnification × 500).
Mutation analysis of the glomulin gene was performed using primers designed by Brouillard et al. Primers used for exon 3 were redesigned after poor amplification and were: forward primer 5'-AAT GTT TGA TGG ATA AAT GAC TGG-3'; reverse primer 5'-TAG GGT AAT CCT AAT TTT GAT ACG-3'. The sequence around the mutation on exon 3 was cloned using the Original TA Cloning Kit (InvitrogenTM Life Technologies).

Results

All affected individuals from the families shared the same haplotype with three primers from the region (Fig. 1). Cloning of the exon 3 sequence showed a nucleotide deletion 157delAAGAA in all affected individuals in all four of the families (Fig. 5). No unaffected members of the families had the same haplotype or mutation, suggesting full penetrance in our families. This deletion is responsible for a frameshift resulting in a premature stop codon.

Discussion

We have presented four Irish families with GVMs and demonstrated an identical 157delAAGAA mutation in all affected individuals in each family, suggesting a founder mutation. Brouillard et al. demonstrated 14 different germline mutations in unrelated families from Europe. Ten of these mutations are deletions or insertions, of which the 157delAAGAA appears to be the most common, accounting for seven of 14 germline mutations. Brouillard et al. also demonstrated that a 'second hit' is needed, i.e. a mutation in the second allele of glomulin in the cutaneous lesions, suggesting that GVMs are caused by loss of function of glomulin.

The clinical variability of the lesions in the families with the same mutation is quite marked, but penetrance of the condition appears to be full. In these families the lesions were all confined to the skin and no associated comorbidities were found. Mutation analysis in these affected families has allowed clinical distinction of this condition from blue rubber bleb naevus syndrome or bean syndrome (MIM *11220) and venous malformations with cutaneous and mucosal involvement (VMCM; OMIM #600195). Bean syndrome occurs in a mostly sporadic pattern and affected individuals have a variety of haemangiomatous lesions found particularly on the trunk and upper arms. Bleeding haemangiomas of the gastrointestinal tract are an important cause of morbidity and mortality in this condition. VMCM is a rare disorder that was described by Boon et al. in 1994. They described a family with oral and cutaneous 'slow-flow' venous malformations. Lesions were located on the arms and legs, face, oral mucosa, or genitalia. A few lesions were present at birth but most lesions appeared by puberty. VMCM was not associated with gastrointestinal bleeding. VMCM is caused by an activating mutation in the receptor tyrosine kinase TIE2 (TEK; OMIM *600221).

Surgical treatment for isolated lesions or subungual lesions is straightforward. Laser treatment using vascular lasers and carbon dioxide lasers has also been useful in small, superficial lesions. Sclerotherapy, using sodium tetradecyl sulphate, has recently been reported as a further option in the treatment of GVMs. However, management of large disfiguring lesions remains very difficult.

In conclusion, mutation analysis has been useful in these families to establish the diagnosis firmly and to allow counselling of the genetic risks of passing on the condition. It has also allowed the clinician to tailor investigations in these families. The 157delAAGAA mutation may be a founder mutation in the Irish population and this raises the possibility of a straightforward molecular test to confirm the clinical diagnosis in patients with cutaneous GVMs.

References


© 2005 British Association of Dermatologists • British Journal of Dermatology 2006 154, pp450–452