
Prediction Models for Multi-dimensional Power-Performance
Optimization on Many Cores

Curtis-Maury, M., Shah, A., Blagojevic, F., Nikolopoulos, D., Supinski, B. R. D., & Schulz, M. (2008). Prediction
Models for Multi-dimensional Power-Performance Optimization on Many Cores. In Proceedings of the 17th
International Conference on Parallel Architectures and Compilation Techniques (PACT) (pp. 250-259).
Association for Computing Machinery. https://doi.org/10.1145/1454115.1454151

Published in:
Proceedings of the 17th International Conference on Parallel Architectures and Compilation Techniques (PACT)

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:25. Apr. 2024

https://doi.org/10.1145/1454115.1454151
https://pure.qub.ac.uk/en/publications/65c95c1b-7e0a-4e79-81da-6d67c99b9781

Prediction Models for Multi-dimensional
Power-Performance Optimization on Many Cores

Matthew Curtis-Maury, Ankur Shah,
Filip Blagojevic, Dimitrios S. Nikolopoulos

Dept. of Computer Science, Virginia Tech
Blacksburg, VA, USA

mfcurt@cs.vt.edu, ankur77@cs.vt.edu,
filip@cs.vt.edu, dsn@cs.vt.edu

Bronis R. de Supinski, Martin Schulz
Lawrence Livermore National Laboratory

Livermore, CA, USA
bronis@llnl.gov, schulzm@llnl.gov

ABSTRACT
Power has become a primary concern for HPC systems. Dynamic
voltage and frequency scaling (DVFS) and dynamic concurrency
throttling (DCT) are two software tools (or knobs) for reducing
the dynamic power consumption of HPC systems. To date, few
works have considered the synergistic integration of DVFS and
DCT in performance-constrained systems, and, to the best of our
knowledge, no prior research has developed application-aware si-
multaneous DVFS and DCT controllers in real systems and parallel
programming frameworks. We present a multi-dimensional, on-
line performance predictor, which we deploy to address the prob-
lem of simultaneous runtime optimization of DVFS and DCT on
multi-core systems. We present results from an implementation
of the predictor in a runtime library linked to the Intel OpenMP
environment and running on an actual dual-processor quad-core
system. We show that our predictor derives near-optimal settings
of the power-aware program adaptation knobs that we consider.
Our overall framework achieves significant reductions in energy
(19% mean) and ED2 (40% mean), through simultaneous power
savings (6% mean) and performance improvements (14% mean).
We also find that our framework outperforms earlier solutions that
adapt only DVFS or DCT, as well as one that sequentially applies
DCT then DVFS. Further, our results indicate that prediction-based
schemes for runtime adaptation compare favorably and typically
improve upon heuristic search-based approaches in both perfor-
mance and energy savings.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: [Parallel Architectures]; D.4.1
[Operating Systems]: Process Management—Concurrency; D.4.8
[Operating Systems]: Performance—Modeling and prediction

General Terms
Management, Measurement, Performance

Copyright 2008 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
PACT’08, October 25–29, 2008, Toronto, Ontario, Canada.
Copyright 2008 ACM 978-1-60558-282-5/08/10 ...$5.00.

1. INTRODUCTION
Multi-core processors can trade parallelism and performance for

reduced power consumption through software control of the num-
ber of active cores and power-aware workload distribution between
cores [18]. In workload execution phases with limited scalability,
controlling concurrency and workload distribution produces sub-
stantial energy savings with no performance penalty. Occasionally,
throttling concurrency provides a performance gain by reducing
contention between threads for shared resources such as memory
bandwidth. Conserving cores at runtime can be a valuable opti-
mization for emerging processors with hundreds of cores [1]. Re-
cent studies indicate that less than half of industrial-strength paral-
lel codes scale to hundreds of conventional single-core processors
and only a handful scale to thousands of processors [13]. Thus,
conserving cores, either for power saving purposes, or for other
purposes, such as consolidation or fault tolerance [15], are viable
alternatives to unconstrained parallelization.

Dynamic concurrency throttling (DCT), which adapts the level
of concurrency at runtime based on execution properties, is
a software-controlled mechanism, or knob, for runtime power-
performance adaptation on systems with multi-core processors.
Dynamic voltage and frequency scaling (DVFS) provides a second
knob. While earlier research has significantly advanced the under-
standing of performance and power implications of DVFS [11, 19]
and DCT [4], less emphasis has been placed on integrating DVFS
and DCT in a unified power-performance adaptation framework. In
particular, these techniques have not yet been applied in synergy to
real HPC systems and applications, neither have they been consid-
ered in the context of parallel programming models and runtime
environments.

Combined approaches for simultaneous DVFS and DCT in par-
allel applications have been explored recently via hardware simu-
lation, using empirical search algorithms [18]. This study clearly
demonstrated that runtime adaptation of concurrency and volt-
age/frequency in iterative parallel applications can achieve high-
performance, power-efficient execution. Unfortunately, even with
only two power-performance adaptation knobs available in soft-
ware, the search space for adaptation can grow to unmanageable
proportions. An M -core processor with L voltage/frequency lev-
els presents a power-performance adaptation search space of size
O(L ·M). If we assume that for a given degree of concurrency,
performance is sensitive to the placement of threads on cores, for
example due to asymmetry in the core architecture or asymmetry
in resource sharing between groups of cores, the space grows to
O(L · 2M). We cannot reasonably search this space, even with a
modest number of cores and power states, particularly at runtime.

250

This paper presents a framework for multi-dimensional, online,
software-controlled, and HPC-constrained power-performance
adaptation on systems based on multi-core processors. The frame-
work provides transparent runtime adaptation of HPC codes and re-
quires only a trivial code instrumentation step. Its key component,
a dynamic multi-dimensional performance predictor, statistically
analyzes samples of hardware event rates collected from perfor-
mance monitors and predicts the performance impact of any thread
mapping and any DCT and DVFS levels available on the system
(either combined or in isolation). We base the statistical analy-
sis on a rigorous regression model that is trained from samples
of the power-performance adaptation search space collected from
real workloads. We derive a phase-aware performance prediction
model with low runtime overhead, which dynamically adjusts DCT,
DVFS, and thread placement at the granularity of program phases,
regardless of input. The model usually predicts the optimal system
configuration to execute each phase—occasional small errors lead
it to choose a near optimal configuration instead—thereby achiev-
ing performance gains and energy savings.

We present a functioning software prototype of our framework
linked with the Intel OpenMP runtime environment and evaluate it
through physical experimentation on a system with two quad-core
Intel Xeon processors. The model derivation and training are auto-
mated and portable across multi-core processors. Further, the asso-
ciated software prototype is based on portable components, specif-
ically PAPI and OpenMP.

Through derivation and evaluation of our prototype, this paper
contributes answers to several important questions:
• Can statistical performance models based on hardware

event counters accurately predict performance with multi-
dimensional input parameters—more specifically, the num-
ber of cores, mapping of threads to cores, and processor
voltage/frequency—across a large space of untested system
configurations?
• Can prediction-based models achieve as good or better re-

sults than heuristic search methods that time the phases of
the program on sample configurations for multi-dimensional
power-performance adaptation?
• Do prediction-based model costs prevent their use for online

power-performance adaptation, given multiple knobs?
• Can we prune the optimization space for prediction-based

power-performance adaptation during model training and
during model actuation to derive effective adaptation frame-
works without prohibitive development and training costs?
• Which power-performance adaptation knob—DCT or

DVFS—is more critical with respect to power-efficiency,
assuming no tolerance for performance loss in an HPC
environment?
• What are the synergistic effects of applying these knobs si-

multaneously, if any?
Our experimental results demonstrate that simultaneous phase-

aware prediction of the performance impact of DVFS and DCT
can achieve significant energy and energy-delay2 (ED2) savings
(19% mean and 40% mean respectively for the NAS benchmarks).
In nearly all applications we tested, the energy gains come with
simultaneous power savings (6% mean) and performance improve-
ment (14% mean). Since our prediction schemes converge rapidly
to optimal or near-optimal system configurations for parallel ex-
ecution phases, they typically outperform exhaustive or heuristic
search strategies and scale better than search strategies to many
cores. We further show experimentally that a unified 2-dimensional
DVFS-DCT predictor achieves both higher energy savings and per-
formance gain, compared to a predictor that first predicts DCT and
then DVFS, or either in isolation. We also show that our framework

achieves substantial performance and energy gains over a transpar-
ent, OS-level DVFS tool based on ACPI. We conclude that users
in performance-sensitive settings should apply the unified model
of DVFS and DCT to sustain high performance and to obtain near
maximum energy savings. Last, our results show that prediction-
based power-performance adaptation schemes come very close to
optimal static execution schemes, which can be derived only post-
facto, after exhaustive experimentation.

The rest of this paper is organized as follows. Section 2 presents
background and preliminary concepts. Section 3 presents our
model of multi-dimensional power-performance prediction. Sec-
tion 4 outlines the implementation of our prediction model in a real
software prototype. Section 5 presents our experimental analysis
from a system with two quad-core Intel Xeon processors. Section 6
discusses related work and Section 7 concludes the paper.

2. PRELIMINARIES
We provide the theoretical foundation for our performance pre-

dictor for systems with multiple multi-core processors. Since dif-
ferent mappings of a set of threads to cores may yield significant
performance variation, we differentiate the number and the topol-
ogy of the cores on each processor, as well as the number and topol-
ogy of the processors during performance prediction. For example,
on a system with multiple Intel Xeon quad-core processors, we dif-
ferentiate between pairs of cores that share the L2 cache on the
same processor, pairs of cores that do not share the L2 cache on the
same processor, and pairs of cores that lie on different processors.

We assume that we can set each processor of the system to exe-
cute at an independent voltage/frequency level chosen from a pre-
determined set by a privileged instruction. We assume global volt-
age and frequency scaling for each processor as a whole, as op-
posed to per core, since this technology is readily available on com-
mercially available multi-core processors. We conduct physical ex-
perimentation, using hardware timers and power meters to measure
performance and energy respectively. Our modeling methodology
does not preclude and can be generalized to local (per-core) DVFS
schemes.

We decompose parallel workloads into phases, where each phase
executes parallel computation using a potentially variable number
of threads and completes at a synchronization point, such as a bar-
rier, or a critical section. While DVFS is entirely transparent and
can be applied to any code region, we cannot apply DCT to arbi-
trary parallel code regions without violating correctness. In princi-
ple, codes written in a shared-memory model where parallel com-
putation is independent of the number of threads, are amenable
to DCT without correctness considerations. The vast majority of
OpenMP codes meet this requirement for processor-independence,
as do the workloads that we use in this paper (NAS benchmarks).
Other ongoing research efforts are addressing DCT in other pro-
gramming models, such as MPI [10].

Our contribution involves a modeling/prediction component and
a runtime actuation component. The first component predicts per-
formance for each phase of parallel code under all feasible concur-
rency configurations and global voltage/frequency settings, with in-
put from samples of hardware event counters collected at runtime.
We use it at the boundaries of execution phases as the program ex-
ecutes. The predictor correlates hardware event counter samples,
concurrency configurations (number and mapping of threads to
cores), and voltage/frequency settings with whole system instruc-
tion throughput. Without loss of generality, we derive predictions
for the fixed optimality criterion of minimizing energy without in-
creasing runtime, which best meets the requirements of HPC envi-
ronments. We use our predictions in the actuation component on

251

a per phase basis to minimize energy consumption under this rigid
performance constraint.

3. EMPIRICAL MODEL DERIVATION
We present runtime performance predictors that estimate per-

formance in response to changing the settings of two power-
performance knobs, DCT and DVFS, where we differentiate be-
tween alternative available topologies for mapping threads to cores
at any given DCT level. We refer to each combination of frequency
and concurrency configuration available on the system as a hard-
ware configuration, or more simply a configuration. The predictors
use input from execution samples collected at runtime on specific
configurations to predict the performance on other, untested con-
figurations. We estimate performance for each phase in terms of
useful instructions per second, or uIPC, which is the IPC with in-
structions used for parallelization or synchronization omitted. By
using uIPC predictions, we exploit opportunities to save power
primarily by scaling the memory-bound parts of the actual com-
putation to reduce contention and to exploit slack due to memory
or parallelization stalls. The input from the sample configurations
consists of the useful IPC (uIPCs), as well as a set of n hard-
ware event rates (e(1..n,s)) observed for the particular phase on the
sample configuration s, where each event rate e(i,s) is calculated
as the number of occurrences of event i divided by the number of
elapsed cycles during the execution of configuration s. The model
predicts uIPC on a given target configuration t, which we denote
by uIPCt.

3.1 Baseline Prediction Model
Our predictor model uses uIPCs to estimate the effect of the ob-

served event rates that produce the resulting value of uIPCt. The
event rates capture the utilization of particular hardware resources
that represent scalability bottlenecks, thereby providing insight into
the likely impact of hardware utilization and contention on scala-
bility. Although the model can include multiple sample configura-
tions, we begin by describing the simplest case of a single sample
and build up the model from there. We model uIPCt scalability
as a linear function as follows:

uIPCt = uIPCs · αt(e(1..n,s)) + εt (1)

Equation 1, reflects the dependence of the function αt and the
constant term εt on the particular target configuration. That is, we
model each target configuration t through coefficients that capture
the varying effects of hardware utilization at different degrees of
concurrency, different mappings of threads to cores, or different
voltage/frequency levels. In effect, α() scales up or down the ob-
served uIPCs on the sample configuration based on the observed
values of the event rates on the same configuration, to attain uIPCt

on any of the target configurations. The observed event rates deter-
mine how much we scale uIPCs as a linear combination of the
sample configuration event rates as depicted in Equation 2:

αt(e(1..n,s)) =

nX
i=1

(x(t,i) · e(i,s) + y(t,i)) + zt (2)

The model’s intuition is that changes in event rates indicate vary-
ing resource utilization and contention, resulting in either positive
or negative effects on uIPCs, which the model represents through
positive or negative coefficients. While the relationship between
event rates and uIPC may not be strictly linear, a linear model
can represent this relationship well [6, 14, 22]. We estimate the
specific coefficients through multivariate linear regression as dis-
cussed further in Section 3.3. By using an empirical model, we

greatly simplify the retraining process required for new architec-
tures since we automatically infer the model from a set of training
samples rather than through a detailed architectural description. We
combine Equations 1 and 2, to derive the following equation for
uIPC on a particular target configuration t using a single sample
configuration as:

uIPCt = uIPCs ·
nX

i=1

(x(i,t) · e(i,s)) + uIPCs · γt + εt (3)

Therefore, estimating the value of uIPCt is equivalent to the
proper approximation of the coefficients x(i,t), the constant term
εt, and γt. The γt variable is the sum of a collection of terms from
αt that represent a coefficient for uIPCs itself, independent of the
values of (e(1..n,s)), and defined as

Pn
i=1(y(t,i)) + zt.

3.2 Model Extensions
While the baseline prediction model can be effective for DCT [5,

6], we refine it to improve model accuracy and extend the model to
predict performance with multi-dimensional input. Our first ex-
tension models uIPCt as a linear combination of multiple sam-
ple configurations from the configuration space. In the context of
DVFS and DCT, each sample configuration uses a different num-
ber of threads bound to different execution units in the machine,
at potentially different voltage and frequency levels. Thus, each
sample configuration provides some additional insight into execu-
tion on other, untested configurations. The use of multiple samples
allows the model to "learn" more about each program phase’s ex-
ecution properties that determine performance on alternative con-
figurations. The actual selection of the samples can be statistical
(e.g., uniform), or empirical, i.e., using some architectural insight
such as the number of cores sharing an L2 cache on each socket.
Equation 4 presents the model extended to two samples, with an
additional term λ to capture interaction between samples which we
describe next.

uIPCt = uIPCs1 · α(t,s1)(e(1..n,s1)) +

uIPCs2 · α(t,s2)(e(1..n,s2)) +

λt(e(1..n,S)) + εt (4)

Using multiple samples allows us to analyze the relationship be-
tween each configuration. We include an interaction term for the
product of two events in the linear model to capture the relation-
ship statistically. For simplicity, we only consider possible inter-
actions between the same event across multiple configurations, in-
cluding the product of uIPC on each sample configuration. Thus,
our model considers the interplay between multiple configurations.
Specifically, we define the interaction term for a model using two
samples as Equation 5 shows:

λt(1..n, S) =

nX
i=1

(µ(t,i) · e(i,s1) · e(i,s2)) +

µ(t,IPC) · uIPCs1 · uIPCs2 + ιt (5)

The interaction term λt linearly combines the products of each
event across configurations, as well as that of uIPC. In Equa-
tion 5, µ is the target-configuration-specific coefficient for each
event pair and ι is the event rate independent term in the model.

On architectures with very large, complex configuration spaces,
we may need to use even more sample configurations. We can ex-
tend our model to an arbitrary collection of samples, S, of size |S|,
to support such a situation, as follows:

uIPCt =

|S|X
i=1

(uIPCi · α(t,i)(e(1..n,i))) + λt(e(1..n,S)) + εt (6)

252

While using more samples generally increases model accuracy,
it also increases sampling overhead. We address the selection of S
in terms of specific configurations as well as its size in Section 3.6.

We generalize the term λt further to account for the interaction
between events across |S| samples as follows:

λt(e(1..n,S)) =

nX
i=1

(

|S|−1X
j=1

(

|S|X
k=j+1

(µ(t,i,j,k) · e(i,j) · e(i,k)))) +

|S|−1X
j=1

(

|S|X
k=j+1

(µ(t,j,k,IPC) · uIPCj · uIPCk)) + ιt (7)

To further improve model accuracy, we apply variance stabiliza-
tion in the form of a square-root transformation to the data to re-
duce the correlation between the residuals and the fitted values, as
is done by Lee, et al. [16]. That is, we take the square-root of each
term, as well as the response variable, before applying the model.
This process results in a more accurate model by reducing model
error for the largest and smallest fitted values and by causing resid-
uals to follow a normal distribution more closely.

3.3 Offline Model Training
We use multivariate linear regression on phases from a set of

training benchmarks to approximate the coefficients in our model.
We record the uIPC and a predefined collection of event rates
while executing each training benchmark’s phases on all configu-
rations. We use multiple linear regression on these values to learn
the patterns in the effects of sample configuration event rates on the
resulting uIPC on the target configuration, with each phase’s data
serving as a training point. Specifically, the uIPC, the product of
IPC and each event rate, and the interaction terms on the sample
configurations serve as independent variables and the uIPC on
each target configuration serves as the dependent variable, in ac-
cordance with the above equations. We develop a model separately
for each target configuration, deriving sets of coefficients indepen-
dently. We select training benchmarks empirically, to include vari-
ation in properties such as scalability and memory-boundedness.

Testing all sample and target configurations offline for training
purposes may become a time consuming process on architectures
with many processing elements and/or many layers of parallelism.
To combat this, we prune the target configuration space, using in-
sight on the target system architecture. Specifically, we eliminate
symmetric cases in thread binding as well as unbalanced bindings
of threads. We also assume that the voltage/frequency of all dies
in the system is set simultaneously to the same setting, to better
support parallel codes and avoid load imbalance during parallel ex-
ecution phases. On processors that feature hundreds of cores, it
may become necessary to further reduce the search space during
model training to limit offline overhead, for example by uniform
sampling of the system configurations used for training. At current
multi-core system scales, the training process using a fully auto-
mated system for our approach takes approximately five hours and
scales up linearly with the number of possible configurations.

3.4 Event Selection Process
The model requires feedback from hardware event rates in or-

der to predict performance across configurations accurately. Thus,
we must identify particular event rates that result in high prediction
accuracy. Unfortunately, the particular events that most reflect the
performance impact of power knob settings are not always obvi-
ous. To select the events to use with our model, we use correlation
analysis to determine which event rates on the sample configuration
are most strongly correlated with the target IPCs. Then we select
the top n events from the sorted list. We determine the number of

events to use, n, based on how many event registers are available
on the target architecture. The event selection process is statistical
and automated, therefore portable across multi-core processors.

3.5 Predicting Across Multiple Dimensions
We can apply our model to predict the performance effects of

DCT and DVFS independently, or across simultaneous changes
in the settings of both power knobs. To predict for simultaneous
changes, we collect samples at points along the two-dimensional
space by varying the configuration along each prediction dimen-
sion. While we could predict along one dimension at a time by
selecting the optimal configuration in each dimension sequentially,
predicting along both dimensions simultaneously avoids blind-
spots in the predictions. The former strategy only predicts along
the second dimension at the decided optimal level of the first di-
mension, whereas the second strategy is more likely to find the
globally optimal configuration along both dimensions since it con-
siders all combinations of both dimensions. We can generalize the
model to predict performance in a configuration space of higher
dimensions, and we can prune the space through uniform or other
sampling schemes to reduce model training overhead.

3.6 Selecting Sample Configurations
Although we could randomly sample the configurations to re-

duce training and runtime search overhead, intuitively some config-
urations reveal specific architectural bottlenecks to scalability and
performance. That is, certain configurations provide further insight
into utilization of shared caches and memory bandwidth, and, thus,
are stronger predictors than others. We therefore consider archi-
tectural properties while selecting the configurations that will best
serve the prediction model.

When predicting along a single dimension (i.e., concurrency or
DVFS-level), we use a single sample configuration at the maxi-
mum concurrency and frequency available. When predicting along
two dimensions, in addition to sampling at maximum concurrency
and frequency, we draw two more samples from points where con-
currency is halved—with different mappings of the halved concur-
rency to cores—and frequency is reduced to the next lower avail-
able setting. This technique allows us to limit the number of sam-
ples, while providing input for the predictor along each dimension.

4. IMPLEMENTATION
We have implemented our multi-dimensional prediction model

within a runtime library to perform online adaptation of DVFS and
DCT. We target parallel applications from the HPC domain with an
iterative structure, such that each program phase is executed many
times. We exploit this property to collect hardware event rates dur-
ing the first few executions of each phase to serve as input for the
model. We hardcode the model itself into the runtime system by
programming the coefficients derived during the training process
for a particular model into the library. The runtime system fa-
cilitates online predictions of performance based on the collected
hardware event rates.

Our library targets power-performance adaptation of OpenMP
applications and is implemented using only portable components.
To use our library, applications are instrumented with function calls
around each adaptable phase, which are delimited as OpenMP par-
allel regions. At runtime, the library controls the execution of each
phase in terms of the number of threads, their placement on cores,
and the DVFS level selected by the predictor for global use. Dur-
ing the sampling phase, configurations are set appropriately and
event rates are collected automatically by the library. We use the
omp_set_num_threads() call to set concurrency within OpenMP

253

and thread bindings with the Linux processor affinity system call,
sched_setaffinity(). We record hardware event rates with PAPI [2].
We set DVFS levels using the cpufrequtils library, specifically us-
ing the sysfs_set_frequency() call. After making predictions, the
library uses the predicted optimal configurations for all subsequent
traversals of each phase.

Several forms of adaptation are possible through our runtime li-
brary. The simplest ones optimize either DCT or DVFS but not both
during a given run by using the corresponding model to predict the
effects of the selected power-performance knob. We consider two
mechanisms to adapt both DCT and DVFS in a single program run.
First, we apply the two individual models sequentially to adapt first
concurrency and then apply DVFS accordingly on the cores that
are kept active. We refer to this model as the sequential prediction
model. Second, we create a new model that simultaneously predicts
changes in both concurrency and frequency, which we refer to as
the unified prediction model.

When adapting DCT, the library can compare configurations
simply using the predicted uIPC. However, when considering
DVFS, including the hybrid approaches, we must be careful to en-
sure valid performance comparisons. A problem arises here be-
cause at lower frequencies each cycle lasts longer, which causes
higher IPCs to occur at lower frequencies while the program actu-
ally runs slower. For this reason, we calculate instructions per sec-
ond before making comparisons using the known frequency levels.

A program may have phases that are of too fine granularity to
benefit from adaptation using either DVFS or DCT, as the over-
head of performing adaptation can exceed its benefits. We have em-
pirically identified a threshold of one million cycles, below which
we simply use the currently active configuration when entering a
phase. In practice, most application phases are much longer than
the selected threshold; however short phases do exist and may dis-
tort performance significantly, if their locally optimal configura-
tions differ from the optimal configurations of adjacent dominant
phases.

5. EXPERIMENTAL ANALYSIS
In this section, we evaluate our multi-dimensional prediction

model. We begin with a brief description of the experimental setup.
Next, we analyze the scalability of the benchmarks on our target
machine. Then, we evaluate the model of performance prediction
used to apply DVFS and DCT. Finally, we compare the benefits
of applying DVFS and DCT independently and synergistically, in
terms of both performance and energy benefits.

5.1 Experimental Setup
Our experimental platform has two Intel Xeon E5320 quad-core

processors, for a total of eight cores. Each of two pairs of cores
within a chip shares a 4MB L2 cache, creating an asymmetry in
scheduling decisions in that two threads can be scheduled on a
single chip in two different ways, with cache sharing and without
it. Each core operates at a maximum frequency of 1.86GHz, with
the possibility of reducing to 1.60GHz. The system has a 1066
MHz FSB, contains 4GB of memory, and runs Linux kernel ver-
sion 2.6.22. In all experiments, full system energy is collected per
run using a Watts Up Pro power meter, and the average power con-
sumption is computed based on the execution time and total energy
consumption.

We experimented with benchmarks representative of parallel ap-
plications from the HPC domain. Specifically, we use seven bench-
marks from the OpenMP version of the NAS Parallel Benchmarks
suite (3.1), compiled at class size B. The benchmarks have large
variation in several interesting execution properties, including num-

ber of phases, scalability (global and per phase), compute- and
memory-boundedness of phases, number of loop iterations, and
computational intensity, thus making prediction challenging.

5.2 Application Scalability Analysis
Before evaluating DVFS- and DCT-based adaptation using per-

formance prediction, we briefly analyze the scalability of the ap-
plications on our platform. To do so, we execute each application
under all symmetric configurations on the experimental platform
and record the execution time. Figure 1 presents the scalability re-
sults on our dual-processor, quad-core Intel Xeon system. As stated
earlier, two threads on a single chip can execute with shared or pri-
vate caches on this architecture. We use the notation 2s to indicate
a shared cache and 2p to indicate private caches on our graphs. The
notation (X , Y) denotes non-adaptive execution with X proces-
sors and Y cores per processor, and later an additional term Z is
included to indicate the DVFS level used.

Figure 1 shows that, in general, applications are far from scaling
perfectly on the target platform. In particular, only one applica-
tion achieves its best performance using all 8 cores. We observe
essentially three categories of scalability in our experiments. First
are those applications that manage reasonable speedup through the
utilization of additional cores (BT, FT, and UA). Second are ap-
plications that incur a non-negligible performance loss when using
more cores (IS and MG). Third are applications that neither sub-
stantially gain or lose performance from higher concurrency (CG
and SP). Energy consumption generally increases with more cores.

The most energy-efficient configuration coincides with the most
performance-efficient configuration for 4 out of the 7 benchmarks
(BT, CG, FT, and IS). For 3 benchmarks (MG, UA, SP), the user
can use fewer than the performance-optimal number of cores, to
achieve substantial energy savings, at a marginal performance loss.
We also observe that for a given number of threads, performance
can be very sensitive to the mapping of threads to cores (e.g. BT,
FT, and SP when executed with 2 or 4 threads). Even if perfor-
mance is insensitive to the mapping of threads to cores, power can
be sensitive to the mapping of threads to cores. In MG, for exam-
ple, distributing two threads onto cores that do not share L2 cache,
but are on the same die, is imperceptibly less performance-efficient,
but significantly more energy-efficient than distributing two threads
across two processors.

We attribute the observed poor scalability of several bench-
marks to memory contention, at all levels of the memory hierar-
chy. Specifically, two cores sharing a cache rarely benefit from
data sharing, but rather suffer from destructive interference in the
form of increased conflict misses between threads. Further, addi-
tional threads produce a higher demand on main memory, produc-
ing contention at the shared front-side bus. These issues combine
to limit scalability most in applications that are memory intensive
and have primary or secondary working sets too large to fit into
on-chip cache space.

5.3 Performance Prediction Evaluation
We selected a single benchmark to train the model, trading po-

tentially higher prediction accuracy for less training time. Specifi-
cally, we used NAS-UA to perform training. UA has a large num-
ber of phases and widely varying execution characteristics on a per
phase basis, including IPC, scalability, locality, and granularity. We
have also used extended training sets with more benchmarks, but
we do not present those results, since they did not notably improve
model accuracy compared to our reduced training set. We selected
sample configurations for each model to maximize the amount of
information available to the model. For the DVFS model, we se-

254

BT

0

100

200

300

400

500

600

700

(1,1) (1,2s) (1,2p) (1,3) (1,4) (2,1) (2,2s) (2,2p) (2,3) (2,4)
Configuration

Ex
ec

. T
im

e
(s

ec
)

0

20000

40000

60000

80000

100000

120000

En
er

gy
 (J

)

Time Energy CG

0

50

100

150

200

250

(1,1) (1,2s) (1,2p) (1,3) (1,4) (2,1) (2,2s) (2,2p) (2,3) (2,4)

Configuration

Ex
ec

. T
im

e
(s

ec
)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

En
er

gy
 (J

)

Time Energy FT

0

20

40

60

80

100

120

(1,1) (1,2s) (1,2p) (1,3) (1,4) (2,1) (2,2s) (2,2p) (2,3) (2,4)

Configuration

Ex
ec

. T
im

e
(s

ec
)

0

5000

10000

15000

20000

25000

En
er

gy
 (J

)

Time Energy IS

0
2
4
6
8

10
12
14
16
18
20

(1,1) (1,2s) (1,2p) (1,3) (1,4) (2,1) (2,2s) (2,2p) (2,3) (2,4)
Configuration

Ex
ec

. T
im

e
(s

ec
)

0

500

1000

1500

2000

2500

3000

3500

4000

En
er

gy
 (J

)

Time Energy

MG

0

5

10

15

20

25

30

35

(1,1) (1,2s) (1,2p) (1,3) (1,4) (2,1) (2,2s) (2,2p) (2,3) (2,4)
Configuration

Ex
ec

. T
im

e
(s

ec
)

0

1000

2000

3000

4000

5000

6000

7000

En
er

gy
 (J

)

Time Energy SP

0

100

200

300

400

500

600

700

(1,1) (1,2s) (1,2p) (1,3) (1,4) (2,1) (2,2s) (2,2p) (2,3) (2,4)

Configuration

Ex
ec

. T
im

e
(s

ec
)

0

20000

40000

60000

80000

100000

120000

En
er

gy
 (J

)

Time Energy UA

0

100

200

300

400

500

600

700

(1,1) (1,2s) (1,2p) (1,3) (1,4) (2,1) (2,2s) (2,2p) (2,3) (2,4)

Configuration

Ex
ec

. T
im

e
(s

ec
)

0

20000

40000

60000

80000

100000

120000

En
er

gy
 (J

)

Time Energy

Figure 1: Execution time (bars) and energy consumption (lines) of the benchmarks across all configurations. The notation (X , Y)
denotes non-adaptive execution with X processors and Y cores per processor. The configurations with the best performance and
energy for each benchmark are marked with stripes and a diamond respectively.

Prediction Error for All Models

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

% Error

%
 o

f
S

a
m

p
le

s

DCT
DVFS
Unified

Figure 2: Cumulative distribution functions of prediction accu-
racy of the three prediction models.

lected a single sample at maximum frequency within each given
threading configuration. We selected two samples for DCT: (1,3)
and (2,4). Finally, for the unified DVFS-DCT model, we selected
three sample configurations: (1,2p,2), (2,2s,1), and (2,4,2), where
the third term indicates the frequency level with the lower num-
ber representing the lower frequency. These sample configurations
were selected as outlined in Section 3.6 to provide data along each
dimension of adaptation. In all cases, we made predictions for all
configurations not sampled.

Using many events can benefit the model, however current pro-
cessors severely limit the maximum number of events that we si-
multaneously record, while multiplexing many events on the avail-
able event registers has a significant overhead and limited accuracy.
Thus, we set the number of events used in our model to the number
supported in the hardware. On our experimental platform, only two
event registers are available, and one must always be used to collect
uIPC which is mandatory with our model. For all three models,
the statistically selected auxiliary event with the highest correlation
with target IPC in the training data was L1 data cache accesses.

We derived the model coefficients offline using linear regression
on samples of event rates and uIPC on each configuration from the
training benchmark. Figure 2 shows the percent of predicted sam-
ples for each model with error less than a particular threshold indi-
cated on the x-axis. The results demonstrate high accuracy of the
model in all three cases. In particular, the DVFS model yields a me-
dian error of only 3.0% (4.2% mean), the DCT model a median of
7.3% (11.2% mean), and the unified model a median of 6.1% (9.5%
mean). We note that prediction is performed with input from 1, 2,
or 3 sample configurations for the remaining of 20 possible config-

Geometric Mean

60

65

70

75

80

85

90

95

100

105

Static St Opt Exhaust Binary DVFS DCT Sequent Unified

Execution Strategy

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

50

60

70

80

90

100

110

En
er

gy
 (J

)

Time Energy

Figure 4: Geometric means of the benefits of adaptation
through various strategies. The adaptive strategies with the
best mean performance and energy are marked with stripes
and a large diamond respectively.

urations on our platform. The higher accuracy of predicting DVFS
than DCT results from a simpler set of effects in changing DVFS
levels that our model captures easily, while DCT has complicated
performance effects, due to the irregular, non-monotonic scalabil-
ity patterns of many phases. Of the 20 possible configurations, the
unified model correctly identifies the single best configuration in
35% of phases, one of the top three in 51.3% of phases, and in
only 7% of phases are any of the ten worst configurations incor-
rectly selected. The predicted optimal configuration is on average
6.1% slower than the true optimal configuration. These results in-
dicate that the model is an accurate means of attaining performance
estimates to tune power-performance parameters without requiring
potentially expensive empirical searches. The results compare fa-
vorably with similar empirical models [6, 16].

5.4 Evaluation of DCT and DVFS Adaptation
In this section, we evaluate the use of our prediction models

in conjunction with runtime adaptation on multithreaded scientific
codes. We begin by comparing the use of only DVFS or DCT.
We then analyze two schemes for adapting both DVFS and DCT,
specifically applying them sequentially or in a unified manner. Fi-
nally, we compare prediction-based adaptation against the use of
empirical search in identifying optimal configurations. Figure 3
presents the results of adaptation through the various mechanisms
for each benchmark, Figure 4 shows the geometric mean of the nor-
malized energy and execution time results, and Figure 5 gives the
geometric mean of ED2. ED2 represents the product of energy
consumption and the square of execution time, which is a common
metric for energy-efficiency in high performance computing.

255

BT

200

205

210

215

220

225

230

235

240

Static St Opt Exhaust Binary DVFS DCT Sequent Unified

Execution Strategy

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

46500

47000

47500

48000

48500

49000

49500

50000

50500

51000

En
er

gy
 (J

)

Time Energy
CG

150

160

170

180

190

200

210

Static St Opt Exhaust Binary DVFS DCT Sequent Unified

Execution Strategy

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

31000
32000
33000
34000
35000
36000
37000
38000
39000
40000
41000
42000

En
er

gy
 (J

)

Time Energy FT

60
62
64
66
68
70
72
74
76
78
80
82

Static St Opt Exhaust Binary DVFS DCT Sequent Unified
Execution Strategy

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

13500

14000

14500

15000

15500

16000

16500

En
er

gy
 (J

)

Time Energy

IS

0
2
4
6
8

10
12
14
16
18
20

Static St Opt Exhaust Binary DVFS DCT Sequent Unified
Execution Strategy

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

0

500

1000

1500

2000

2500

3000

3500

4000

En
er

gy
 (J

)

Time Energy MG

25

26

27

28

29

30

31

32

33

Static St Opt Exhaust Binary DVFS DCT Sequent Unified
Execution Strategy

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

5000

5200

5400

5600

5800

6000

6200

6400

6600

6800

En
er

gy
 (J

)

Time Energy SP

360

380

400

420

440

460

480

500

520

Static St Opt Exhaust Binary DVFS DCT Sequent Unified

Execution Strategy

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

86000

88000

90000

92000

94000

96000

98000

100000

102000

En
er

gy
 (J

)

Time Energy

Figure 3: Results of adaptation through various techniques. The group of bars left of the divider represent static configurations and
those right of the divider are the adaptive strategies. The adaptive strategies with the best mean performance and energy are marked
with stripes and a large diamond respectively.

Geometric Mean

0

20

40

60

80

100

120

Static St Opt Exhaust Binary DVFS DCT Sequent Unified

Execution Strategy

N
o

rm
a
li
ze

d
 E

D
^

2

Figure 5: Geometric means of the benefits of adaptation
through various strategies. The adaptive strategy with the best
mean ED2 is marked with stripes.

We compare the various strategies against the results of "static
executions" that use a single configuration for the entire execution.
We specifically compare to using full concurrency and frequency
(static) and to the best performing of all static executions (static
optimal). Clearly, we derive the static optimal post-facto: we could
not know it online in practice without exhaustive offline execution
of each application on all configurations, for each specific input.
We use static optimal as a potentially unrealistic, baseline of com-
parison for the other strategies. The static optimal, however, is not
necessarily the overall optimal execution point, as each phase may
have its own dynamic optimal configuration. We do not consider
this possibility as its identification requires exponential time, mak-
ing it unrealistic even for offline use.

5.4.1 Adaptation using one knob
In this analysis, we make adaptation decisions by selecting

the configuration with the highest predicted performance, because
HPC applications in general must maintain maximum performance.
The results of applying DVFS using the model support the intuition
that DVFS is generally unable to improve performance compared
to simply using all available cores at maximum frequency. The lit-
erature includes corner cases of memory-bound phases where this
assumption is violated and scaling down frequency can marginally
improve execution time [8], but these phases are rare exceptions.
Specifically, our experiments reveal no benefit in terms of perfor-
mance or energy from adapting to the DVFS level with the highest
predicted performance. Without allowing for some loss in perfor-
mance, DVFS does not generally benefit energy consumption.

On the other hand, using DCT with the prediction model pro-
vides substantial benefits in execution time (10.8% mean savings),
power consumption (2.7% mean savings), energy consumption
(13.2% mean savings), and ED2 (31.0% mean savings) compared
to the static execution with all cores active. Despite the advantages
of DCT, mispredictions for two benchmarks result in an observed
increase in execution time—BT by 1.3% and SP by 4.2%. How-
ever, both benchmarks still manage energy savings of 4.1% and
2.6%, respectively, because of the reduced power consumed by the
fewer active cores. In contrast, the largest benefit occurs with IS
which sees a 40.7% reduction in energy consumption. When com-
pared to the static optimal execution, DCT is within 8.0% mean
performance and even surpasses that performance with CG by 2.0%
due to phase-awareness. These results indicate that at least at the
scale of a few multi-core processors integrated on a single node,
DCT is the more suitable of the two power-performance knobs
for use in the HPC domain, since it can improve performance and
energy-efficiency by substantial margins simultaneously.

5.4.2 Adaptation using two knobs
We can combine the two power-performance knobs in multiple

ways. First, we consider applying them sequentially. We first apply
DCT and then DVFS on the active cores in each phase rather than
the other way around, since DCT has a clear advantage over DVFS
in reducing power while improving performance, as exhibited in
our earlier experiments. We note that this may not be necessar-
ily true in other experimental platforms that allow more fine-grain
control of voltage/frequency. Since we make decisions to maxi-
mize predicted IPC and our platform has only two DVFS levels
with a small frequency difference, DVFS adds very little benefit to
DCT alone, and no reduction in execution time compared to DCT
alone occurs. However, DVFS reduces power and energy consump-
tion by 2.7% and 2.6% respectively beyond DCT alone on average,
by identifying several isolated phases to reduce frequency without
negatively impacting performance, resulting in a cumulative mean
improvement in ED2 of 34.3% relative to using all cores.

The major advantage of the unified prediction approach is that
it eliminates blind-spots in the configuration space during the pre-
diction process. Whereas sequential application of DVFS and DCT
will only evaluate DVFS options on the decided DCT level, the uni-
fied approach considers all possible values of each parameter at a
single stage. Further, the unified scheme uses the same number of

256

execution samples as the sequential approach, however it uses all
samples for both DVFS and DCT models, instead of dividing them.

Because of its advantages over the sequential approach, the uni-
fied scheme improves performance by 2.8% and reduces energy
by 3.0% (geometric mean improvements over the sequential ap-
proach). When compared to the default execution using maximum
concurrency and frequency, the advantages of unified adaptation
become even clearer. Specifically, we see an 13.7% speedup simul-
taneous with a 5.9% reduction in power consumption, resulting in
an overall reduction in energy consumption of 18.8% and ED2 of
39.5% (geometric mean improvements over static execution on all
cores). In fact, all benchmarks experience improved performance
and reduced energy consumption, and the unified scheme achieves
the lowest execution time in three of six cases and the lowest en-
ergy consumption in four of six cases. Even when compared to
the oracle-derived executions on the static optimal configuration
for each benchmark, unified adaptation achieves energy consump-
tion within 2.4% and performance within 5.1% (geometric means),
and better performance by 2.3% in the case of BT due to identi-
fication of improved per-phase configurations. This indicates that
prediction models are both viable and effective in addressing the
multi-dimensional adaptation problem.

5.4.3 Comparison with existing DVFS approach
Ondemand is an existing tool for automatically applying DVFS

that also uses hardware performance monitors for guidance [23].
Ondemand is an in-kernel tool that works by monitoring dynamic
application CPU utilization to reduce processor frequency at times
of low load and uses the same frequtils interface as we exploit. On-
demand, and most other similar tools, uses Intel ACPI, which is
an interface to allow changes in DVFS levels and processor power
states when idle, with transition criteria determined by the adap-
tation system. We applied Ondemand in modes similar to our
DVFS adaptation only and our Sequential strategies, through which
we achieved similar results (within 1% for energy consumption
and nearly identical run time). These results demonstrate that our
DVFS scheme is competitive with state of the art DVFS tools. More
importantly, it does not alter our fundamental observation that inte-
grated DCT and DVFS adaptation provides the best overall results.

5.4.4 Prediction vs. search approaches
We have also implemented two empirical search approaches to

identify optimal DVFS and DCT configurations. The first of these
performs an exhaustive search of the configuration space before
making a decision, while measuring the execution time of phases
with each configuration. This approach does not require any offline
training, so the programmer can use it with minimal effort. How-
ever, the online overhead of testing many possible configurations
stands to reduce any potential benefit of adaptation considerably,
which is what occurs in practice. The exhaustive search method re-
duces execution time by 3.5%, power by 4.0%, energy by 7.3%,
and ED2 by 13.7%, well below the savings of our prediction-
based techniques. Exhaustive search proves superior to prediction
schemes in SP, which executes 400 workload-invariant iterations.

For comparison purposes we also consider a heuristic search ap-
proach, based on a binary search of the configuration space, sim-
ilar to the approach evaluated by Li and Martinez [18]. A fair di-
rect comparison between our prediction models and the approach
discussed previously [18] is not possible, since contrary to the
simulation-based study in previous work, our evaluation was con-
ducted on a real system with a different workload (NAS bench-
marks), and adaptation through binary search was implemented by
timing the execution time of phases during a single run instead of

over multiple runs of each benchmark. Nevertheless, we believe
that our comparison can still provide some useful insight on the ap-
propriateness of heuristic search and prediction-based approaches
to dynamic program adaptation.

Our implementation of binary search begins by executing at
full concurrency and frequency, then sequentially performs binary
searches of the concurrency and DVFS dimensions. During the
searches, if a sample is tested with worse performance than the
first sample, concurrency or DVFS is increased in the next tested
sample. This approach has considerably reduced overhead com-
pared to the exhaustive search, because many configurations need
not be tested, resulting in 7.6% better performance and 4.1% lower
energy consumption (geometric mean improvements over exhaus-
tive search). Compared to the static execution, performance is im-
proved by 11.1%, energy by 11.4%, and ED2 by 30.0%, however
power consumption is only reduced by 0.4%. This suggests that a
heuristic search can be effective in the context of adapting DCT and
DVFS at runtime. However, it still falls short of the static optimal
configuration by 7.7% for performance and 9.8% for energy.

The most interesting comparison is between the unified predic-
tion model and binary search. Binary search achieves performance
2.6% worse than the unified prediction approach while consuming
7.4% more energy and seeing a 9.6% increase in ED2 (geometric
mean differences). Binary search suffers from blind-spots that pre-
vent identification of effective configurations at low concurrency
or DVFS levels, which tend to consume less power, so the unified
prediction model can reduce power further, on average by 5.5%.
Binary search does have better performance than the unified model
in two of six cases (FT and SP), however energy consumption is
higher in all but one case (FT). In particular, the results of binary
search suffer for MG and IS because they contain too few itera-
tions to amortize the search overhead, in contrast to BT and SP,
where binary search excels since the applications execute 200 and
400 iterations respectively. As future systems continue to increase
in parallelism as well as the number of DVFS levels available, the
overhead of searching is expected to increase and the relative ben-
efit of prediction is expected to grow.

6. RELATED WORK
Research on software-controlled dynamic power management

has focused extensively on controlling voltage supply and fre-
quency in single-core processors. This research has derived an-
alytical models for DVFS [28], compiler-driven techniques [29],
and control-theoretic approaches [26]. Similar techniques have
been employed to reduce dynamic power management in system
components other than processors, such as RAM [7] and disk [3].
Researchers have recently modeled and analyzed the impact of a
single control knob, either DVFS or concurrency throttling, on dy-
namic power management on shared-memory [6, 11, 20, 24], and
on distributed-memory parallel systems [8, 9, 25].

Our work differs from earlier research on power-aware adapta-
tion using a single knob in several key aspects. First, it achieves
two-dimensional adaptation. Second, it leverages a scalable perfor-
mance prediction model, instead of direct measurements or static
analysis of idle execution intervals. Third, it analyzes the busy in-
tervals of parallel computation to exploit opportunities for power
savings and performance improvement simultaneously, as opposed
to exploiting only slack time to reduce power. Fourth, it uses
a model that is general and versatile: it can accommodate dif-
ferent optimization targets—both performance-centric and energy-
centric—with ease and it is developed with an automated and
portable methodology. In terms of actual implementation, the pro-
posed model leverages phase-aware adaptation at the granularity of

257

parallel loops, which has been explored before in compiler-based
DVFS algorithms for multiprocessors [20, 29].

Prediction models for adaptation via concurrency throttling were
introduced by Curtis-Maury, et al [5, 6]. The current work makes
several new contributions in the context of performance prediction
for power-performance adaptation. We consider prediction models
for DVFS and DCT simultaneously, effectively exploring a larger
and more challenging runtime optimization space. We draw com-
parisons between alternative power-performance adaptation meth-
ods and present effective strategies to synthesize multiple power-
performance adaptation methods in software. Furthermore, we pro-
pose methods to generalize multi-dimensional prediction models
using sampling of the target configuration space and significantly
improve prediction accuracy compared to previous work [5, 6], thus
achieving better optimization with zero tolerance for performance
loss. We improve earlier regression models for cross-configuration
prediction [5, 6] through such techniques as variance stabilization,
explicit consideration of event and configuration interactions, and
architecture-aware sampling.

Our contribution shares similar objectives with research pre-
sented by Li and Martinez [18], whose work evaluated search al-
gorithms for DVFS and DCT, so as to meet specific performance
targets under a given power budget. Our work differs in that it
uses statistical prediction models instead of direct search methods
and that it considers only power-performance adaptation schemes
that do not penalize performance, effectively targeting the more
performance-sensitive HPC environments. The use of prediction
makes our contribution an attractive alternative for runtime adapta-
tion, since the number of hardware event counter samples needed
to predict across all concurrency and voltage/frequency configura-
tions of a system can be very small (2–3) compared to the sam-
ples needed by any search strategy. Thus, the performance of
prediction-based adaptation scales more gracefully with the num-
ber of cores and voltage-frequency levels than search methods,
while being highly competitive at small system scales.

Several researchers have previously explored the use of hard-
ware event counters for characterizing performance and power
properties [12, 21, 27]. Our models differ in that they provide
cross-configuration predictions with multi-dimensional inputs, us-
ing hardware event counters. As such, they achieve accurate sta-
tistical correlation between event samples and performance, across
a potentially large and hard to search system configuration space.
In this respect, our work is more closely related to regression and
machine learning methods for performance prediction and design
space exploration on parallel architectures [16, 17]. Both our
contribution and earlier regression-based performance prediction
methods use statistical analysis of the correlation between multiple
parameters and performance. The key difference is that our frame-
work is used for online workload adaptation, rather than for off-line
exhaustive exploration. Our prediction model is simpler than mod-
els used in design space exploration, however it is fast enough to
use in runtime optimization.

7. CONCLUSIONS
The number of cores integrated in a single processor is increas-

ing at an exponential rate; however most applications, even from
the highly specialized HPC domain, can hardly exploit many cores.
We have shown that HPC applications observe performance losses
even beyond modest concurrency levels on an 8-core system. We
presented a model to predict the performance effects of applying
multiple energy saving techniques simultaneously. The model ap-
plies statistical analysis of hardware event rates to estimate how
voltage/frequency scaling and dynamic concurrency throttling in-

fluence performance in application phases and across system con-
figurations. Over a range of benchmarks, our model achieves a
median error of only 6.1% in prediction, in response to simultane-
ous tuning of DVFS and DCT. The high prediction accuracy allows
for the successful identification of efficient operating points and
phase-aware adaptation in HPC applications.

We have applied our model to adapt program execution by reg-
ulating concurrency in conjunction with thread placement, as well
as DVFS levels. Our results indicate that while DVFS on its own is
not ideal for the HPC domain where performance is critical, DCT
is an attractive solution. Further, we find that combining the two
approaches in a synergetic fashion, can simultaneously improve
performance and energy-efficiency relative to either approach in
isolation. Specifically, a unified adaptation model achieves perfor-
mance improvements of 14%, power savings of 6%, energy savings
of 19%, and a 40% reduction in ED2 compared to using all cores
at full frequency, outperforming an approach which sequentially
applies DCT and DVFS. We also compare our prediction model to
methods using exhaustive or binary search that time system config-
urations. We find that while binary search outperforms exhaustive
search, it is inferior to the prediction-based approach due to over-
head and blind-spots. As we scale to more cores and DVFS lev-
els, the overhead of search-based approaches is likely to increase,
widening the advantage of prediction. Since the performance of
prediction-based methods can effectively approximate that of an or-
acle, we conclude they are a viable alternative for future-generation
systems with many cores and fine-grain power control capabilities.

Our work is not without limitations, which we plan to address
in future research. A linear regression model achieves low over-
head for runtime adaptation, at the cost of accuracy. More elabo-
rate models, such as piecewise polynomial approximation or neural
networks, may improve prediction accuracy, at the cost of increased
runtime overhead. A detailed analysis of this trade-off is needed to
draw more accurate conclusions.

Adaptation schemes have both direct and indirect costs while
switching system configurations. Direct costs stem from the ac-
tual switching overhead, while indirect costs stem from gradual
redistribution of the working set of the application between cores
and caches. Our prediction model currently does not account ex-
plicitly for any indirect costs of adaptation. Both the selection of
samples during training/actuation and the configuration interaction
terms in the model need to be revisited to incorporate interference
due to changing configurations between adjacent phases. Prelimi-
nary investigation shows that although cross-phase interference is
not acute on small-scale multi-core systems, it is far more notice-
able on large-scale scalable systems, such as NUMA platforms.

Adaptation capabilities are not readily available in all applica-
tions, as they are often prohibited by the semantics of the program-
ming environment. For example, MPI applications are typically
much harder to implement adaptively than OpenMP applications.
Addressing this issue will require efforts to make parallel program-
ming runtime environments more amenable to dynamic concur-
rency throttling. A readily available but inefficient DCT solution
for MPI applications is the use of core overloading (i.e. mapping
more than one processes per core).

Acknowledgments
This research is supported by grants from NSF (CCR-0346867, CCF-
0715051, CNS-0521381, CNS-0720750, CNS-0720673), the U.S. Depart-
ment of Energy (DE-FG02-06ER25751, DE-FG02-05ER25689), IBM, and
Virginia Tech (VTF-874197). Partly performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344. (UCRL-CONF-400453).

258

8. REFERENCES
[1] M. Azimi, N. Cherukuri, D. Jayashima, A. Kumar, P. Kundu, S. Park,

I. Schoinas, and A. Vaidya. Integration Challenges and Tradeoffs for
Tera-scale Architectures. Intel Technology Journal, August 2007.

[2] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A
Scalable Cross-Platform Infrastructure for Application Performance
Tuning Using Hardware Counters. In Proc. of Supercomputing’2000,
November 2000.

[3] E. V. Carrera, E. Pinheiro, and R. Bianchini. Conserving Disk Energy
in Network Servers. In Proc. of the 17th International Conference on
Supercomputing, June 2003.

[4] K. Chakraborty, P. Wells, and G. Sohi. A Case for an
Over-provisioned Multicore System: Energy Efficient Processing of
Multithreaded Programs. Technical Report TR-1607, Department of
Computer Sciences, University of Wisconsin-Madison, 2007.

[5] M. Curtis-Maury, F. Blagojevic, C. D. Antonopoulos, and D. S.
Nikolopoulos. Prediction-Based Power-Performance Adaptation of
Multithreaded Scientific Codes. IEEE Transactions on Parallel and
Distributed Systems. Accepted, to appear, 2008.

[6] M. Curtis-Maury, J. Dzierwa, C. Antonopoulos, and
D. Nikolopoulos. Online Power-Performance Adaptation of
Multithreaded Programs using Hardware Event-Based Prediction. In
Proc. of the International Conference on Supercomputing, June 2006.

[7] B. Diniz, D. O. G. Neto, W. Meira Jr., and R. Bianchini. Limiting the
Power Consumption of Main Memory. In Proc. of the International
Symposium on Computer Architectures, June 2007.

[8] R. Ge, X. Feng, and K. W. Cameron. Performance constrained
Distributed DVS Scheduling for Scientific Applications on
Power-aware Clusters. In Proc. of Supercomputing, November 2005.

[9] C.-H. Hsu and W. Feng. A Power-Aware Run-Time System for
High-Performance Computing. In Proc. of Supercomputing’05,
November 2005.

[10] C. Huang, O. Lawlor, and L. Kale. Adaptive MPI. In Proc. of the
16th International Workshop on Languages and Compilers for
Parallel Computing, LNCS 2948, 2003.

[11] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi.
An Analysis of Efficient Multi-Core Global Power Management
Policies: Maximizing Performance for a Given Power Budget. In
Proc. of the International Symposium on Microarchitecture,
December 2006.

[12] C. Isci and M. Martonosi. Runtime Power Monitoring in High-End
Processors: Methodology and Empirical Data. In Proc. of the Annual
International Symposium on Microarchitecture, December 2003.

[13] E. Joseph, A. Snell, C. G. Willard, S. Tichenor, D. Shaffer, and S.
Conway. Council on Competitiveness Study of ISVs Serving the
High Performance Computing Market. July 2005.

[14] T.S. Karkhanis and J.E. Smith. A First-Order Superscalar Processor
Model. In Proc. of the 31st International Symposium on Computer
Architecture, June 2004.

[15] S. Kumar, H. Raj, K. Schwan, and I. Ganev. Re-architecting VMMs
for Multicore Systems: The Sidecore Approach. In Proc. of the 2007
Workshop on the Interaction between Operating Systems and
Computer Architecture, June 2007.

[16] B. C. Lee and D. M. Brooks. Accurate and Efficient Regression
Modeling for Microarchitectural Performance and Power Prediction.
In Proc. of the International Conference on Architectural Support for
Programming Languages and Operating Systems, October 2006.

[17] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh,
and S. A. McKee. Methods of Inference and Learning for
Performance Modeling of Parallel Applications. In Proc. of the ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, November 2007.

[18] J. Li and J. Martinez. Dynamic Power-Performance Adaptation of
Parallel Computation on Chip Multi-Processors. In Proc. of the
International Symposium on High Performance Computer
Architecture, February 2006.

[19] Y. Li and B. C. Lee and D. Brooks and Z. Hu and K. Skadron. CMP
Design Space Exploration Subject to Physical Constraints. In Proc.
of the IEEE International Symposium on High Performance
Computer Architecture, February 2006.

[20] C. Liu, A. Sivasubramaniam, M. T. Kandemir, and M. J. Irwin.
Exploiting Barriers to Optimize Power Consumption of CMPs. In
Proc. of the 19th International Parallel and Distributed Processing
Symposium, April 2005.

[21] A. Merkel and F. Bellosa. Balancing Power Consumption in
Multiprocessor Systems. In Proc. of EuroSys Conference, April 2006.

[22] T. Moseley, J. Kim, D. Connors, and D. Grunwald. Methods for
Modeling Resource Contention on Simultaneous Multithreaded
Processors. In Proc. of the 2005 International Conference on
Computer Design, October 2005.

[23] V. Pallipadi and A. Starikovskiy. The Ondemand Governor. In Proc.
of the Ottawa Linux Symposium, July 2006.

[24] S. Park, W. Jiang, Y. Zhou, and S. V. Adve. Managing
Energy-Performance Tradeoffs for Multithreaded Applications on
Multiprocessor Architectures. In Proceedings of the 2007 ACM
SIGMETRICS, June 2007.

[25] R. Springer, D. K. Lowenthal, B. Rountree, and V. W. Freeh.
Minimizing Execution Time in MPI Programs on an
Energy-Constrained, Power-Scalable Cluster. In Proc. of the
Symposium on Principles and Practice of Parallel Programming,
March 2006.

[26] A. Varma, B. Ganesh, M. Sen, S. R. Choudhury, L. Srinivasan, and
B. L. Jacob. A Control-Theoretic Approach to Dynamic Voltage
Scheduling. In Proc. of the International Conference on Compilers,
Architectures and Synthesis for Embedded Systems, October 2003.

[27] A. Weissel and F. Bellosa. Process Cruise Control: Event-Driven
Clock Scaling for Dynamic Power Management. In Proc. of the
International Conference on Compilers, Architectures and Synthesis
of Embedded Systems, October 2002.

[28] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark. Formal Online
Methods for Voltage/Frequency Control in Multiple Clock Domain
Microprocessors. In Proc. of the International Conference on
Architectural Support for Programming Languages and Operating
Systems, 2004.

[29] Q. Wu, M. Martonosi, D. Clark, V. Reddi, D. Connors, Y. Wu, J. Lee,
and D. Brooks. Dynamic Compiler-Driven Control for
Microprocessor Energy and Performance. IEEE Micro, 26(1), 2006.

259

