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Original Research Article 
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A B S T R A C T   

Background: Emerging data suggest that dose-sparing several key cardiac regions is prognostically beneficial in 
lung cancer radiotherapy. The cardiac substructures are challenging to contour due to their complex geometry, 
poor soft tissue definition on computed tomography (CT) and cardiorespiratory motion artefact. A neural 
network was previously trained to generate the cardiac substructures using three-dimensional radiotherapy 
planning CT scans (3D-CT). In this study, the performance of that tool on the average intensity projection from 
four-dimensional (4D) CT scans (4D-AVE), now commonly used in lung radiotherapy, was evaluated. 
Materials and Methods: The 4D-AVE of n=20 patients completing radiotherapy for lung cancer 2015–2020 un-
derwent manual and automated cardiac substructure segmentation. Manual and automated substructures were 
compared geometrically and dosimetrically. Two senior clinicians also qualitatively assessed the auto- 
segmentation tool’s output. 
Results: Geometric comparison of the automated and manual segmentations exhibited high levels of similarity 
across parameters, including volume difference (11.8% overall) and Dice similarity coefficient (0.85 overall), and 
were consistent with 3D-CT performance. Differences in mean (median 0.2 Gy, range − 1.6–0.3 Gy) and 
maximum (median 0.4 Gy, range − 2.2–0.9 Gy) doses to substructures were generally small. Nearly all structures 
(99.5 %) were deemed to be appropriate for clinical use without further editing. 
Conclusions: Cardiac substructure auto-segmentation using a deep learning-based tool trained on a 3D-CT dataset 
was feasible on the 4D-AVE scan, meaning this tool is suitable for use on 4D-CT radiotherapy planning scans. 
Application of this tool would increase the practicality of routine clinical cardiac substructure delineation, and 
enable further cardiac radiation effects research.   

1. Introduction 

Segmentation of tumors and organs-at-risk (OARs) is a pivotal step in 
contemporary, inverse-planned radiotherapy (RT). Prospectively 
defining clinical dose goals for these structures, allows tumor control 
probability to be maximised while normal tissue complication proba-
bility is minimised [1,2]. The delineation of structures on planning scans 
is both time-consuming [3] and prone to inter-operator variability [4], 
with the latter resulting in negative clinical impact [5]. Overcoming 
these drawbacks, automated segmentation has been an interdisciplinary 

research focus, with tools now available for several primary tumors [6] 
and associated regional OARs [7,8]. 

Incidental cardiac radiation dose correlates negatively with survival 
in lung cancer [9–12] and particular regions, such as the heart base 
[12–14], may mediate this effect. Moreover, dose-volume characteris-
tics for several of the specific cardiac substructures are important for 
predicting toxicity after conventional fractionation lung cancer RT 
[15–20]. The cardiac substructures are challenging to contour on RT 
planning computed tomography (CT), due to geometry complexity, 
limited intracardiac soft tissue definition and cardiorespiratory motion 
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artefact [21]. The imminent requirement to incorporate substructures in 
treatment planning is an opportunity to embed a cardiac segmentation 
tool into RT workflows. 

To this end, in previous studies, a neural network was trained from 
240 lung cancer treatment plans [22] to generate a whole heart and 
pericardium structure, and 10 cardiac substructures, based on the most 
established cardiac atlas [23]. This tool delineates the structures on 
standard free-breathing three-dimensional planning CT scans (3D-CT) 
with a high performance in 10 s, regardless of whether there is contrast 
enhancement [22]. The substructures delineated include the four car-
diac chambers and four great vessels. When applied to the RTOG-0617 
cohort, the whole heart algorithm from this tool was shown to repre-
sent the cardiac dosimetry more accurately than the original manual 
contours used in the trial [24]. 

For improved motion management, the use of four-dimensional (4D) 
planning scans (4D-CT) has largely replaced 3D-CT planning in 
contemporary lung cancer RT [25]. Validation of the deep learning auto- 
segmentation tool in the 4D setting is therefore required for its clinical 
implementation. In this study, we hypothesised that the performance of 
the tool in the average intensity projection of 4D-CT scans (4D-AVE) 
would be comparable to 3D-CT using geometry, volume, dosimetry and 
clinical acceptability metrics. 

2. Materials & methods 

2.1. Study design 

The 4D-AVE dataset for 20 patients that completed radical RT for 
lung cancer between 2015 and 2020 at a single centre were selected 
based on a random number generator for this retrospective study. RT 
treatment plans underwent manual and automated cardiac segmenta-
tion for comparison of the deep learning-based tool’s performance. This 
modest sample size was prospectively chosen given the resemblance of 
the research to a feasibility study, and due to the labour-intense nature 
of cardiac contouring. There was no stratification by presence/absence 
of contrast as the algorithm was initially trained using both scenarios 
(46 % contrast; 54 % non-contrast). Governance was granted and ethical 
approval was waived by the Belfast Health & Social Care Trust (IRAS ID 
293181) and the study was sponsored by Queen’s University Belfast. 

2.2. Radiotherapy treatment plans 

Scans of 20 patients who underwent 4D-CT planning were included. 
Patients were scanned in the supine position, immobilised using a knee 
rest and thorax board, with arms holding a T-bar above their head. Scans 
were performed during quiet respiratory motion using the Varian RPM 
system (Varian Medical Systems, Palo Alto, CA, USA) with the GE 
Advantage Sim 4D application (GE Medical Systems, Milwaukee, WI, 
USA). Ten phase bins were created to generate the 4D-AVE used for this 
study. CT images at 2.5 mm slice width were acquired from the cricoid to 
the second lumbar vertebra with intravenous contrast when clinically 
appropriate. Volumetric modulated arc therapy (VMAT) treatment plans 
were calculated for all patients based on the phase-binned 4D-CT using 
the Varian AAA 13.6.23 algorithm on the Varian Eclipse treatment 
planning system. 

2.3. Manual segmentation 

Eight cardiac substructures were manually delineated as the gold 
standard for comparison, using the 4D-AVE for all patients using stan-
dard mediastinal window-level settings, or alternatives when necessary. 
The right atrium (RA), left atrium (LA), right ventricle (RV), left 
ventricle (LV), aorta (AO), pulmonary artery (PA), superior vena cava 
(SVC) and inferior vena cava (IVC) were contoured on Eclipse. A whole 
heart (WH) structure was also segmented, with the superior border 
defined as the most inferior CT slice showing the pulmonary trunk 

bifurcating into the left and right pulmonary arteries. A ‘pericardium’ 
(PC) structure was generated by duplicating the WH structure and 
extending this to the superior extent of the aortic arch. Composite 
bilateral atria and ventricle structures were generated using the union 
function. All manual delineations were completed by the same clinical 
oncologist (GW) using the Feng atlas [23] and were then verified, and 
modified if required, by a senior thoracic radiation oncologist (GH) and 
a senior cardiologist (CMC) simultaneously. 

2.4. Auto-Segmentation 

The 4D-AVE scans were imported to MATLAB version 2020b (The 
Mathworks, Inc., Massacusetts, USA), where the validated deep learning 
segmentation tool [22] was applied. The deep neural network archi-
tecture was previously trained for label prediction of all pixels on indi-
vidual CT slices as either within one of the cardiac structures, or the 
background image. Initially the anonymised CT data and structure 
(lungs only) files were uploaded within the Computational Environment 
for Radiotherapy Research (CERR) platform [26]. The CT image is 
cropped by the algorithm, using the medial walls and craniocaudal 
extent of the lung structures as limits on the region from which to begin 
generating structures. As part of the algorithm’s label prediction pro-
cess, the input data undergoes random cropping, horizontal and vertical 
flipping, and rotation by 10◦, as the segmentations are created. Once 
complete, the finalised individual slices are then stacked back together 
to generate a 3D segmentation. The time taken for the algorithm to 
complete is dependent on the computing hardware available, ranging 
from seconds only [22] to approximately 10 minutes in our study. 

Automated structures were then imported back into Eclipse. Post- 
processing steps were applied to all structures, limited to removing 
structures < 0.5 cc (great vessels) or < 1.0 cc (all others) and the filling 
of cavities < 2 cc. Manual contours of the descending AO and IVC were 
cropped to the most inferior slice of the corresponding auto-contour, in 
order to pragmatically guarantee robust comparison of these structures, 
given that there are no published atlases for these substructures at the 
time of writing. Prior to geometric and dosimetric analysis, structures 
were amended on slices where a boundary was deemed to be subopti-
mal, as per section 2.6, with original versions retained for assessment of 
the impact of any changes. 

2.5. Quantitative evaluation 

Manual and automated structures were geometrically compared by 
percentage volume difference (VD), centroid shift (CS), Dice similarity 
coefficient (DSC), and 95 % Percentile Hausdorff distance (HD95) using 
Slicer-RT (PerkLab, Ontario, Canada) [27]. To evaluate dosimetric 
impact, the mean dose and maximum dose to 0.5 cc (Dmax) of the 
automated structures as calculated in Eclipse were compared against the 
manual contours. 

2.6. Qualitative evaluation 

A senior cardiologist (CMC) and senior thoracic radiation oncologist 
(GH) assessed the output of the auto-segmentation tool output structures 
following post-processing, prior to minor amendments, according to the 
scale used in the deep learning tool’s original publication [22]. Based on 
their theoretical suitability for treatment planning including substruc-
ture dose constraints, individual structures were rated as ‘good’, 
‘acceptable’, ‘in need of amendment’ (NOA) or ‘poor’, according to the 
number of slices requiring amendment (see Supplementary Table 1). 
Both ‘good’ and ‘acceptable’ ratings equate to a whole structure being of 
sufficient quality without further modification. The maximum number 
of slices that required modification to achieve a perfect delineation was 
also recorded. 
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2.7. Statistical analysis 

Following data collection, statistics were calculated using Prism 
v8.3.0 (GraphPad Software, San Diego, California, USA). Median, 
maximum and minimum values are displayed and were used for sig-
nificance testing as the vast majority of data were not normally 
distributed according to the Shapiro-Wilk test. The significance of dif-
ferences between parameters in manual and automated contours were 
tested using the Mann-Whitney U test, used for comparing non- 
parametric, unpaired data. Bland-Altman analyses were undertaken to 
assess bias, and Spearman’s r values were calculated to assess correla-
tion. For DSC and HD95 data, comparison was made with summary 
statistics from the original publication [22] using Mann-Whitney tests, 
to allow benchmarking of the presented work. 

3. Results 

3.1. Patients 

The median age of the cohort was 70.5 years, 7 of whom were fe-
male. Additional patient characteristics are summarised in Supplemen-
tary Table 2. Intravenous contrast was administered for 70 %, and all 
patients exhibited calcification which was mild, moderate or severe in 
25 %, 45 % and 30 % respectively. A 3D reconstruction of the automated 
and manual contours for a representative patient are included in Fig. 1. 

3.2. Comparison of geometry 

Automated volumes were smaller than manual for the chambers, 
except LV, and larger for the great vessels, except AO, as shown in 
Fig. 2A and Supplementary Table 3. The median VD for the WH was 1.3 
% and the highest and lowest magnitude median VDs amongst the car-
diac substructures were for the LV (6.1 %) and IVC (41.5 %) respec-
tively. Statistically significant median VDs were found for RA, LA, RV 
and IVC. The overall median absolute VD across all substructures was 
11.8 % (range 6.5–41.5). Comparing the volumes, there were low levels 
of bias as shown by good spread in the points, and few points out-with 
the limits of agreement for the majority of structures in Bland-Altman 
plots (see Supplementary Fig. 1). Values were also strongly correlated, 

with a mean Spearman’s r value of 0.90 across all cardiac structures (see 
Supplementary Table 4). 

As shown in Fig. 2B and Supplementary Table 5, DSC values ranged 
0.76–0.94 across the structures, with the worst performance on average 
for IVC at 0.76, and the best for PC at 0.94. The median DSC across all 
structures was 0.85 and the median DSC across patients was 0.82, 0.92 
and 0.86 for minimum, maximum and median of respectively. In addi-
tion, there was good similarity in the DSCs with the original published 
cohort (p = 0.27). 

Generally CS was approximately 3–4 mm for each structure, though 
was slightly better for AO at 1.7 mm and slightly worse for PA at 5.7 mm, 
as shown in Supplementary Table 6. Regarding the directionality of the 
X, Y and Z components of these shifts, there was a suggestion of a sys-
tematic effect in the X and Z axes, with negative values found for me-
dians in 8/10 (ie right shifts) and 3/10 (ie inferior shifts) structures 
respectively. This was not observed in the Y axis (5/10 negative values) 
and moreover, as shown in Supplementary Table 7, the magnitude of the 
median shifts per structure were typically < 2 mm across substructures 
in all directions. 

The HD95 values for the automated structures on 4D-AVE were 
generally small, with a median of 7.1 mm, and the substructures with the 
lowest and highest HD95s being the AO (2.4 mm) and the RV (8.9 mm). 
These data were clinically comparable to the published 3D-CT data, 
which had a median and range of 5.9 mm and 3.1–7.3 mm. Further 
details on the HD95 values are available in Supplementary Table 8. 

3.3. Comparison of dose characteristics 

Mean and maximum doses to structures were not significantly 
different between the automated and manual segmentations on 4D-AVE 
scans, with a median absolute difference of 0.2 Gy (range 0–1.7 Gy) and 
0.4 Gy (range 0.1–2.2 Gy) for mean dose and Dmax respectively. Dif-
ferences were generally small for all cardiac structures, especially for 
mean dose, as shown in Supplementary Tables 9 and 10. Levels of cor-
relation were high for both mean dose and Dmax, with median values of 
0.99 and 0.96 respectively, as shown in Fig. 3. There were also low levels 
of bias, given the spread in the points in the Bland-Altman plots and low 
number of outlying points (see Supplementary Figs. 2–3). The perfor-
mance of the tool in each structure varied by parameter, but there was a 

Fig. 1. Three-dimensional reconstruction of cardiac substructures from a representative patient from the anterior (A, B), posterior (C, D), left (E, F) and right (G, H) 
perspectives, based on manual (top) and automated delineations (bottom) (right atrium = cyan; left atrium = orange; right ventricle = blue; left ventricle = red; 
pulmonary artery = green; aorta = magenta; superior vena cava = yellow; inferior vena cava = brown) 
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pattern of lower dose differences for the RV and LV. Per patient across all 
structures, differences in mean dose were generally ± 2 Gy. Similarly for 
Dmax, differences were generally between − 7 Gy and + 4 Gy across all 
structures per patient. 

3.4. Qualitative comparison 

Virtually all structures (99.5 %) and all patients (19 of 20) were 
deemed to be appropriate for clinical use without further editing by two 
senior clinicians (CMC, GH) according to criteria used by Haq et al, as 
shown in Fig. 4. Minor modifications of the automated contours (median 
of 2 slices for 18 % structures) led to insignificant changes in geometry 
only (see Supplementary Data File). Automated and manual delineations 
on the 4D-AVE scan are shown in Fig. 5. 

4. Discussion 

Cardiac substructure auto-segmentation has come to the fore in 
recent years owing to an increased interest in radiation effects on the 
heart [28,29]. Recent studies have elicited dose–response relationships 
for several component structures [15–20] and trials are underway to test 
the effect of sparing these regions [30]. As the application of artificial 
intelligence is explored in RT, volume delineation serves as a logical 
starting point [31–33]. By accurately performing complex and time- 
consuming delineation tasks, clinician availability for alternate activ-
ities could be increased and treatment planning delays reduced [34]. 

In this study, a deep learning-based cardiac substructure auto- 
segmentation tool developed for use in 3D-CT scans was retrospec-
tively evaluated in 20 patients that underwent 4D-CT planning. This 
particular tool was selected from the literature [35–46] due to its 

Fig. 2. A) Box plot of percentage volume difference between the automated and manual delineations, relative to the manual contour. B) Box plot of DSCs for each 
substructure, comparing data from this manuscript with the original publication. (WH = whole heart; PC = pericardium; RA = right atrium; LA = left atrium; RV =
right ventricle; LV = left ventricle; AO = aorta; PA = pulmonary artery; SVC = superior vena cava; IVC = inferior vena cava). 
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Fig. 3. Scatter plots of mean (A) and maximum (B) doses (Gy) to automated and manual delineations, with Spearman correlation values displayed. (WH = whole 
heart; PC = pericardium; RA = right atrium; LA = left atrium; RV = right ventricle; LV = left ventricle; AO = aorta; PA = pulmonary artery; SVC = superior vena 
cava; IVC = inferior vena cava). 
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superiority in terms of structures included, performance metrics, 
applicability to lung cancer and availability. The cardiac substructure 
auto-segmentation available tools at the time of writing are compared in 
Supplementary Table 11. The median DSC across all substructures for 
the presented tool evaluated on 4D-CT scans compares well with other 
approaches, as shown in the heatmap below (Fig. 6). Of note, some 
papers from Supplementary Table 11 are not represented as none of the 
presented tool’s substructures were included, or because DSC were not 
reported. Furthermore, the selected articles were heterogenous in their 
calculation of summary statistics from individual cases, with some using 
mean and others using median. 

In evaluating the geometric, dosimetric and clinical acceptability 
metrics of the deep learning tool on the 4D-AVE scans, the automated 
contours were found to be comparable with manual contours, with 
median DSC, centroid shift and mean dose difference of 0.85, 3.6 mm 
and 0.2 Gy. The overall performance of the tool per substructure varied 
according to parameter observed, for example there was a trend for 
lower performance on the RV (low DSC, high VD, high HD95) and higher 
performance on the PA (high DSC, small VD, low HD95). 

Several of the structures with lower similarity between manual and 
auto-segmentation are challenging to delineate reproducibly as there is 
no atlas (e.g. for PA) or have an uncertain anatomical boundary on CT 
(e.g. for RA and LA), explaining the lower performance. The narrow 

inter-patient range in all of the parameter’s averages considering all 
substructures suggests that patients are contoured with similar degrees 
of ‘ease’ or ‘difficulty’. However, some structures had consistent dif-
ferences in volume or dose across most patients (e.g. the RA had higher 
volumes and the SVC had lower mean doses). Interestingly, those 
structures with larger VDs did not appear to have larger dose differences. 

Reassuringly overall, differences in the summary statistics between 
our 4D-CT data and the original 3D-CT publication were clinically 
insignificant, despite manual segmentations being completed by 
different operators [22]. Of note, the automated contours were found to 
be clinically acceptable overall, including those structures with larger 
VDs. Furthermore, clinician adjustment appeared to be unwarranted as 
geometric impact of resulting adjustments were shown to be negligible 
(see Supplementary Data File). The only anomaly with any frequency for 
the neural network was delineating the inferior WH and PC slices, where 
there is poor soft tissue contrast and considerable motion artefact at the 
interface with the diaphragm. 

It is noteworthy that the presented auto-segmentation tool overcame 
the challenges of cardiac substructure delineation to produce contours 
equivalent to manual contours. The impediments include complex 
anatomy, frequent absence of contrast enhancement, poor soft tissue 
definition eg between the myocardium and pericardial fat, and biolog-
ical variability eg vascular calcification or aneurysm. In addition, by 
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Fig. 4. Qualitative evaluation of automated segmentation of 4D-CT RT planning scans for the whole heart and individual cardiac substructures for 20 patients with 
lung cancer. 

Fig. 5. Representative cross-sectional images of the manual (purple) and automated (cyan) segmentations of the substructures on the average intensity projection 
scan, in the transverse (A–B), sagittal (C) and coronal (D) planes. (WH = whole heart; PC = pericardium; RA = right atrium; LA = left atrium; RV = right ventricle; 
LV = left ventricle; AO = aorta; PA = pulmonary artery; SVC = superior vena cava; IVC = inferior vena cava; NOA = in need of amendment). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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using the 4D-AVE scan, motion artefacts caused by substructure defor-
mation secondary to lung movement and heart contractions are present 
as aforementioned. 

Although modern RT planning accounts for lung cancer movement 
associated with breathing, cardiac motion is not routinely accounted for 
during these processes. In a study using the maximum intensity pro-
jection (MIP) from 4D-CT, planning risk volume (PRV) margins of 5.8 
mm and 4.8 mm were recommended for compensation of whole heart 
motion in the lateral and cranio-caudal axes [47]. However, indepen-
dent displacement of the individual cardiac substructures is likely to be 
under-estimated by whole heart margins. Virtually any plane through 
the heart contains several substructures exhibiting non-synchronised 
and non-isotropic deformation patterns. Due to reciprocal compensa-
tion of motion, and buffering of exterior displacement by the sur-
rounding pericardial lining, total displacement of substructures is 
therefore likely to be larger than the total heart margin. Furthermore, 
substructure motion will not necessarily be oscillatory after interactions 
from concurrent respiratory motion are considered. With gold standard 
cardiac-gated CT in breath-hold, where lung motion was obviated, 
centroid shifts for select substructures were limited to 0.5–1.6 mm [48]. 

Beyond cardiac motion, other unresolved issues in cardiac sub-
structure segmentation include the lack of standardised great vessel 
definitions, as these are not defined in the published cardiac atlases 
[23,42,49–51]. Current atlases also do not recommend subtraction of 
the cardiac chamber blood pool, which is likely to be confounding how 

the dose metrics of the cardiac chamber muscles are interpreted [37,46]. 
It will be crucial to have readily reproducible substructure definitions, 
given the pervasively difficult but clinically crucial task of reducing 
interobserver variation [52]. Similarly, there is a lack of guidance on 
how substructure studies should handle collinearity in the analysis of 
dose-volume statistics of intersecting structures such as the conduction 
system and atria, or the distal coronary arteries and myocardium. 

Two alternate auto-segmentation algorithms that use a neural 
network architecture have been published, subsequent to the develop-
ment of the tool presented, trained using 3D-CT planning cases. The 
model published by Garrett Fernandes et al had DSC of 0.74–0.95 across 
the same set of substructures and the largest median absolute difference 
in mean doses in the range 0.1 Gy–1.0 Gy [35]. The model published by 
Van Velzen et al had a DSC of 0.76–0.88 and R2 values for dosimetric 
parameters were 0.77–1.00 [53]. These values mirror those in the 
original description of the presented tool and in this updated 4D-CT test 
cohort, with an overall DSC of 0.76–0.93 and mean dose differences and 
R2 values of − 1.6–0.3 Gy and 0.96–1.00. Taken together, the deep 
learning-based tool utilised in this study is suitable for use in 4D-CT RT 
planning scans, even though it was trained on a 3D-CT dataset. 

The main strength of this study is that it is the first to apply what is 
the most widely applied substructure tool at the time of writing, a tool 
which is based on the most established cardiac atlas, and is widely 
applicable owing to its ‘open source’ availability, to 4D-CT. We are the 
second group to demonstrate the feasibility of cardiac substructure auto- 

WH RA LA RV LV AO PA SVC IVC
Overall 
Median

DSC

Garrett Fernandes 2021 0.95 0.88 0.87 0.88 0.92 0.94 0.91 0.86 0.74 0.88

Haq 2020 0.95 0.87 0.86 0.86 0.92 0.93 0.88 0.84 0.81 0.88

Luo 2019 0.95 0.86 0.89 0.87 0.91 0.92 0.86 0.84 0.78 0.88

Spoor 2021 0.92 0.83 0.83 0.83 0.88 0.86

van Velzen 2021 0.83 0.84 0.85 0.88 0.86 0.85

Current Study 0.93 0.81 0.85 0.82 0.90 0.93 0.86 0.79 0.76 0.85

Morris 2020 0.95 0.87 0.86 0.83 0.91 0.84 0.84 0.80 0.70 0.84

Loap 2020 0.95 0.78 0.79 0.76 0.87 0.83

Kaderka 2019 0.93 0.76 0.76 0.79 0.85 0.82

Zhou 2017 0.93 0.76 0.84 0.81 0.88 0.78 0.82 0.66 0.64 0.79

Finnegan 2019 0.94 0.82 0.85 0.80 0.85 0.79 0.66 0.55 0.78

Jung 2019 0.97 0.65 0.67 0.69 0.80 0.76

Maffei 2020 0.92 0.83 0.75 0.72 0.84 0.71 0.70 0.63 0.67 0.75

Fig. 6. A heat map of DSCs among studies evaluating novel auto-segmentation tools for the cardiac substructures. (WH = whole heart; RA = right atrium; LA = left 
atrium; RV = right ventricle; LV = left ventricle; AO = aorta; PA = pulmonary artery; SVC = superior vena cava; IVC = inferior vena cava). 
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segmentation on 4D-CT scans, and our results corroborate the findings of 
those investigators in that 4D-CT is a suitable planning scan modality for 
cardiac substructure auto-contouring [44,54]. In those studies the mean 
DSC for the same structures was 0.88 [44] and 0.79 [54] across sub-
structures, compared with our 0.85. Furthermore, this 4D-CT cohort 
included a blend of contrast-enhanced and non-contrast scans of patients 
with varying degrees of cardiac calcification. 

The main limitations of this study are the cohort size and restriction 
to lung cancer cases. The 4D-AVE was used rather than the MIP despite 
prior work demonstrating the whole heart on 4D-AVE requires larger 
PRV margins than on MIP [47]. However, 4D-AVE was chosen for its 
superior soft tissue definition suited to delineating the complex geom-
etries of the cardiac substructures, and for its similarity to the 3D-CT 
scan, on which our deep learning tool was based. DSC values for IVC 
and PA were relatively low compared to the other cardiac structures, but 
the dosimetric impact of this was low in this study, as has been found 
previously [55]. Although PRV margins have been proposed for the 
coronary arteries [56], none have been published for the cardiac sub-
structures examined in this study and so these were not added. Finally, 
the auto-contouring tool has several minor weaknesses, largely related 
to ambiguity in the atlas on which the tool is based, as listed in Sup-
plementary Table 10. 

The development of auto-contouring tools for the cardiac sub-
structures is warranted, because although atlases can reduce inter- 
observer variability (with or without contrast equally), the time 
required is significant. Moreover, rapid deep learning analysis made 
possible by robust tools such as the one presented could accelerate ‘big 
data’ analyses [36] such as interrogation of real-world data in sub-
structure dose constraint investigations. Refinement of the historical 
clinical radiation response of the heart is required since the Gagliardi 
model involved limited endpoints and did not include patients with lung 
cancer [57]. These efforts should be multidisciplinary, spanning all 
thoracic tumor types, with aligned clinical endpoints and adjustment for 
relevant comorbidities. 
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