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ARTICLE

Structural network alterations in focal and
generalized epilepsy assessed in a worldwide
ENIGMA study follow axes of epilepsy risk gene
expression

Epilepsy is associated with genetic risk factors and cortico-subcortical network alterations,

but associations between neurobiological mechanisms and macroscale connectomics remain

unclear. This multisite ENIGMA-Epilepsy study examined whole-brain structural covariance

networks in patients with epilepsy and related findings to postmortem epilepsy risk gene

expression patterns. Brain network analysis included 578 adults with temporal lobe epilepsy

(TLE), 288 adults with idiopathic generalized epilepsy (IGE), and 1328 healthy controls from

18 centres worldwide. Graph theoretical analysis of structural covariance networks revealed

increased clustering and path length in orbitofrontal and temporal regions in TLE, suggesting

a shift towards network regularization. Conversely, people with IGE showed decreased

clustering and path length in fronto-temporo-parietal cortices, indicating a random network

configuration. Syndrome-specific topological alterations reflected expression patterns of risk

genes for hippocampal sclerosis in TLE and for generalized epilepsy in IGE. These imaging-

transcriptomic signatures could potentially guide diagnosis or tailor therapeutic approaches

to specific epilepsy syndromes.
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Epilepsy is characterized by recurrent seizures and affects
over 50 million people worldwide1. Cumulating evidence in
epilepsy research has underscored the importance of

interconnected brain networks in understanding the causes and
consequences of the disease2,3. In the common epilepsies, parti-
cularly temporal lobe epilepsy (TLE) and idiopathic generalized
epilepsy (IGE), histopathological and neuroimaging studies have
demonstrated structural and functional compromise across
widespread brain networks3–7. Magnetic resonance imaging
(MRI) analysis of brain morphology, including cortical thickness
measurements and grey matter volumetry, provide in vivo evi-
dence of structural alterations across multiple cortical and sub-
cortical regions in both TLE8,9 and IGE10,11. Beyond small cohort
studies, robust patterns of atrophy across widespread brain net-
works were identified in the common epilepsies through the
ENIGMA-Epilepsy (Enhancing NeuroImaging Genetics through
Meta-Analysis) consortium, with data aggregated from multiple
international sites12.

Covariation of morphological MRI markers, termed “structural
covariance analysis,” can extend earlier results on regional map-
ping of healthy and disease-related structural brain organization
by identifying complex network mechanisms. Structural covar-
iance has been associated with several aspects of brain organi-
zation and development in both health and disease13. In healthy
individuals, several studies have shown moderate correspondence
with both structural and functional connectivity measures, sug-
gesting partial overlap yet also complementarity of different
network mapping techniques14–16. By comparing cross-sectional
covariance networks to longitudinal changes in neurotypical
adolescents, prior work has demonstrated a close association of
covariance with maturational networks, suggesting that these
networks may reflect coordinated trophic processes across the
brain17–19. Furthermore, several studies have pointed to a close
association between covariance network layout, heritability, and
gene expression, suggesting that genetic factors are also likely
reflected in covariance network organization20,21.

Prior work applying graph theoretical analyses to structural
covariance networks has also characterized normative network
topology22, revealing the presence of a “small world” organiza-
tion. This architecture, which incorporates high clustering within
segregated communities together with short paths between them,
may provide a balance between network specialization and
integration23. In TLE and IGE, structural covariance studies show
syndrome-specific deviations from such a topological arrange-
ment. In TLE, increased path length and clustering has been
observed using both whole-cortex analysis24,25 and in limbic/
paralimbic26 subnetworks. In contrast, diverging topological
alterations have been reported in IGE, echoing either global
increases in clustering27,28 or path length29, global decreases in
path length28, or no changes in network measures30. Analysis of
structural brain metrics using multi-site data gathered by
ENIGMA-Epilepsy provides an opportunity to consolidate net-
work alterations in the common epilepsies in a generalizable
manner.

Interactions across multiple spatial scales, ranging from genetic
factors to macroscale cortical morphology and structural net-
works, shape cortical and subcortical organization in both health
and disease31. When combined, these naturally intertwined
dimensions offer new insights into the pathophysiology of
system-level disorders such as epilepsy32. Neuroimaging studies
of large-scale networks can profit from studies on the landscape
of genetic risk factors in common epilepsies33,34. Recently, the
open release of postmortem human transcriptomics datasets,
such as the Allen Human Brain Atlas (AHBA), has offered
opportunities to explore how gene expression patterns in the
brain reflect macroscale neuroimaging findings35,36. Integrating

imaging and genetics can shed light on the micro- to macroscale
mechanisms that contribute to the pathophysiology of the com-
mon epilepsies. In parallel, this combination can also be used to
understand the ways in which genes may reflect, to some extent,
network alterations in epilepsy. How, and whether, structural
covariance network properties converge with spatial expression
patterns of risk genes for epilepsies, however, remains an unan-
swered question.

In this ENIGMA-Epilepsy study, we aimed to identify robust
structural network disruptions in individuals with TLE and IGE
relative to healthy controls, aggregating inter-regional cortical
thickness and subcortical volume correlations across 18 interna-
tional sites. Graph theoretical analysis assessed global and
regional topological disruptions in both epilepsy syndromes.
Moreover, we leveraged gene expression information from the
AHBA to relate macroscale network findings to spatial expression
patterns of genetic risk factors in these two major forms of epi-
lepsy. Spatial associations between topological changes and
disease-related gene expression maps were evaluated against
spatial permutation and “random-gene” null models37,38.
Reproducibility of our findings was also assessed across sites,
variable network construction approaches, and clinical variables
(side of seizure onset, disease duration).

Results
Data samples. We studied 866 adults with epilepsy (377 males,
mean age ± SD= 33.82 ± 9.48 years) and 1,328 healthy controls
(588 males, mean age ± SD= 30.74 ± 8.30 years) from 18 centres
in the international Epilepsy Working Group of ENIGMA39. Our
analyses focused on two patient subcohorts with site-matched
healthy controls: TLE with neuroradiological evidence of hippo-
campal sclerosis (nHC/TLE= 1083/578, 257 right-sided focus) and
IGE (nHC/IGE= 911/288). Subject inclusion criteria and case-
control subcohorts are detailed in the Materials and Methods and
Table 1. Site-specific demographic and clinical information are
provided in Supplementary Table 1. All participants were aged
between 18–50 years.

Inter-regional morphometric correlations. Cortical thickness
(measured across 68 gray matter brain regions40) and volumetric
data (measured across 12 subcortical gray matter regions and
bilateral hippocampi) were obtained from all patients and con-
trols. Cortical and subcortical data were harmonized across
scanners and sites using CovBat41, and statistically corrected for
age and sex. Group- and site-specific structural covariance net-
works were then computed from morphometric (cortical thick-
ness/subcortical volume) correlations (Fig. 1a).

Site-specific correlation matrices in TLE, IGE, and healthy
controls exhibited similar patterns, with generally strong correla-
tions between bilaterally homologous regions and strong correla-
tions between regions within the same lobe. Overall mean
strength of positive correlations across all density thresholds did
not differ between individuals with TLE and controls (all t < 1.86,
pFDR < 0.13), but was increased in individuals with IGE relative to
controls (all t < 2.41, pFDR < 0.05).

Global network characteristics. To characterize the topology of
structural covariance networks, we computed three fundamental
and widely used graph-theoretical parameters42: (i) mean clus-
tering coefficient, to quantify local network efficiency, (ii) mean
path length, to index global efficiency, and (iii) mean small-world
index, to quantify the interaction of both local and global effi-
ciency. Notably, the interplay between clustering coefficient and
path length can categorize network topology into regular or
random, and consequently assess deviations from an optimal
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small-world architecture. At either extreme, regular, or “lattice-
like,” networks have high clustering and path length, whereas
random networks have low clustering and path length. On the
other hand, small-world networks are neither completely random
nor regular, but have high clustering and low path length and, thus,
reflect a locally and globally efficient organization (Fig. 1b)43.

Comparing patients with TLE to controls, our multisite
analysis revealed modest increases in overall small-worldness
(puncorr < 0.05 at network densities (K)= 0.05–0.18; see Methods)
and clustering coefficient (puncorr < 0.05 at K= 0.08–0.11), as well
as decreases in mean path length over multiple density thresholds
(pFDR < 0.1 at K= 0.05–0.15, 17–18, 22–23, and 0.30–0.50) in
patients. In contrast, IGE patients showed, on average, similar
overall small-worldness and clustering coefficient relative to
controls, but marginal decreases in overall path length at higher
network densities (puncor < 0.05 at K= 0.31–0.50 Fig. 1c), possibly
targeting weaker interregional correlations.

Regional network characteristics. We also quantified clustering
coefficient, path length, and small-world network changes at the
nodal level. Multivariate comparisons, combining only clustering
coefficient and path length in TLE relative to controls, revealed
trends for topological alterations in bilateral parahippocampus
(left/right pFDR= 0.052/0.054), paracentral lobule (left/right
pFDR= 0.052/0.052), lateral occipital cortex (left/right pFDR=
0.052/0.052), putamen (left/right pFDR= 0.052/0.052), and cau-
date (left/right pFDR= 0.054/0.062), ipsilateral angular gyrus
(pFDR= 0.052) and orbitofrontal cortex (pFDR= 0.052), as well as
contralateral insula (pFDR= 0.052), middle (pFDR= 0.052), and
inferior temporal gyri (pFDR= 0.053). Although regional Cohen’s
d effect sizes estimated across sites revealed an overall increase in
small-worldness in TLE, particularly in default-mode regions
(Cohen’s d mean ± SD= 0.30 ± 0.14; Supplementary Fig. 1a),
there were deviations away from this configuration in different
subnetworks. Notably, paralimbic and limbic regions such as the
bilateral orbitofrontal, temporal, and angular cortices as well as
ipsilateral amygdala showed an increase in clustering coefficient
and path length (Cohen’s d mean ± SD: clustering= 0.20 ± 0.13,
path length= 0.18 ± 0.11), suggestive of a more regularized,
“lattice-like,” subnetwork arrangement (Fig. 2a).

When compared to controls, individuals with IGE showed
widespread multivariate topological alterations in left inferior
frontal gyrus pars opercularis (puncorr= 0.0038), superior temporal
sulcus (puncorr= 0.012), and nucleus accumbens (puncorr= 0.0080),
and right calcarine sulcus (puncorr= 0.0023), insula (puncorr=
0.0061), inferior temporal gyrus (puncorr= 0.010), and lateral
occipital cortex (puncorr= 0.0097), although these findings did not
survive correction for multiple comparisons. Effect sizes for each

individual metric revealed decreased clustering coefficient and path
length, with predominant changes in bilateral fronto-temporo-
parietal cortices, nucleus accumbens, and pallidum (Cohen’s d
mean ± SD: clustering= –0.15 ± 0.11, path length= –0.22 ± 0.17),
suggesting a more randomized network configuration (Fig. 2b).
Conspicuous decreases in small-worldness were also observed in
IGE, affecting predominantly fronto-parietal (bilateral paracentral
lobule, right precentral gyrus) and temporal (left middle temporal
gyrus, right inferior temporal gyrus) regions (Cohen’s d
mean ± SD= –0.27 ± 0.19; Supplementary Fig. 1b).

Transcriptomic associations. Having established multivariate
topological abnormalities in TLE and IGE, we evaluated whether
these network-level findings were associated with the spatial
expression patterns of previously established genetic risk factors.
To this end, we assessed spatial correlations between epilepsy-
related gene expression maps and multivariate topological pro-
files. Epilepsy risk genes were obtained from a recently published
genome wide association study (GWAS) on the International
League Against Epilepsy (ILAE) Consortium cohort, which
comprised 15,212 epilepsy cases stratified into six epilepsy sub-
types (Supplementary Table 2)33. Gene expression levels of these
epilepsy risk genes were then derived from the Allen Human
Brain Atlas and averaged across each epilepsy subtype35 (see
Materials and Methods). Positive correlations between brain
maps of multivariate topological findings (from Fig. 2) and epi-
lepsy gene expression levels then indicate a spatial correspon-
dence between changes in network topology and molecular
phenotype. Significance of imaging-transcriptomic correlations
was established using spin permutation tests (termed pspin)37 that
control for spatial autocorrelations from the ENIGMA Toolbox
(https://github.com/MICA-MNI/ENIGMA44;). Additional “ran-
dom-gene” permutation tests (termed prand) were performed to
(i) examine gene specificity38 and (ii) ensure that imaging-
transcriptomic associations were not driven by differences in the
number of genes in each syndrome- or disease-specific set (see
Materials and Methods and Fig. 3a). We found significant asso-
ciations between the spatial patterns of multivariate topological
alterations in TLE and epilepsy risk gene expression levels of
hippocampal sclerosis (r= 0.33, pspin= 0.0028). On the other
hand, multivariate topological changes in IGE were related to the
expression levels of generalized epilepsy (r= 0.31, pspin= 0.0032;
Fig. 3b). In both TLE and IGE, imaging-transcriptomic associa-
tions remained significant (TLE: prand= 0.0030; IGE: prand=
0.018) when compared against null distributions of effects based
on selecting randomized, and equally sized, gene sets from the
pool of all available genes from the Allen Human Brain Atlas
(n= 12,668).

Table 1 ENIGMA Epilepsy Working Group demographics.

Case-control subcohorts Age (mean ± SD) Age at onset
(mean ± SD)

Sex (male/female) Side of focus (L/R) Duration of illness
(mean ± SD)

TLE
(n= 578)

35.89 ± 9.15 15.09 ± 11.23a 267/311 321/257 21.12 ± 13.02a

HC
(n= 1,083)

31.72 ± 8.54 – 490/593 – –

IGE
(n= 288)

29.65 ± 8.75 14.73 ± 8.55a 110/178 – 14.46 ± 10.86a

HC
(n= 911)

29.95 ± 8.18 – 385/526 – –

Demographic breakdown of patient-specific subcohorts with site-matched controls, including age (in years), age at onset of epilepsy (in years), sex, side of seizure focus (TLE patients only), and mean
duration of illness (in years). Healthy controls from sites that did not have TLE (or IGE) patients were excluded from analyses comparing TLE (or IGE) to controls. aInformation available in 544/578 TLE
patients and 248/288 IGE patients.
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To further assess specificity to hippocampal sclerosis (in TLE)
and generalized epilepsy (in IGE) genes, we cross-referenced our
network findings with transcriptomic maps derived from (i) genes
associated to four additional epilepsy phenotypes, namely: all
epilepsy, focal epilepsy, juvenile myoclonic epilepsy, and child-
hood absence epilepsy33, (ii) a set of monogenic epilepsy genes
from the Epi4K Consortium45 and the GeneDX comprehensive
epilepsy panel (http://www.genedx.com), (iii) genes that are
targets of currently used anti-seizure medications46, and (iv) six

sets of genes associated with common neuropsychiatric condi-
tions and/or comorbidities of epilepsy, including: attention
deficit/hyperactivity disorder47, autism spectrum disorder48,
bipolar disorder49, major depressive disorder50, migraine51, and
schizophrenia52 (Supplementary Table 2). Network alterations in
TLE did not correlate to any other epilepsy subtype (range
r= –0.15–0.13, all pspin/rand > 0.11/0.16; Fig. 4). In contrast, IGE
showed additional significant associations with transcriptomic
maps derived from all epilepsy (r= 0.37, pspin/rand= 0.0019/

Fig. 1 Structural covariance networks in the common epilepsies. a Schematic showing the construction of group- and site-specific structural covariance
networks from morphometric correlations. b Two graph theoretical parameters characterized network topology: clustering coefficient, which measures
connection density among neighboring nodes (orange) and path length, which measures the number of shortest steps between any two given nodes
(purple). The interplay between clustering coefficient and path length can describe three distinct topological organizations: regular networks with high
clustering and path length (left), small-world networks with high clustering and low path length (middle), and random networks with low clustering and path
length (right). c Global differences in clustering coefficient (left) and path length (right) between TLE and HC (top) and between IGE and HC (bottom) are
plotted as a function of network density. Increased small-worldness (i.e., increased clustering and decreased path length) was observed in individuals with
TLE, whereas individuals with IGE showed decreases in clustering and path length, suggesting a more random configuration. Two-tailed student’s t-tests
were performed at each density value, comparing global measures in patients (TLE or IGE) to controls; bold asterisks indicate pFDR < 0.1, semi-transparent
asterisks indicate puncorr < 0.05. Thin lines represent data from individual sites. Error bars indicate standard error of the mean. HC= healthy control,
IGE= idiopathic generalized epilepsy, TLE= temporal lobe epilepsy, pFDR= p-value adjusted for false discovery rate, puncorr= uncorrected p-value.
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0.0032) and focal epilepsy (r= 0.27, pspin/rand= 0.015/0.034).
Moreover, in both TLE and IGE, network-level findings did not
correlate with any other disease-related transcriptomic maps
(range r= –0.085–0.11, all pspin/rand > 0.18/0.27; Fig. 5), with the
sole exception of IGE with major depressive disorder (r= 0.19,
pspin= 0.015; this correlation, however, did not survive compar-
ison against randomly selected genes, prand= 0.18).

To ensure that variations in the density of different cell types
did not drive transcriptional differences53, we evaluated whether
our epilepsy-specific gene sets were balanced in terms of their
cell-type specificity. We separately calculated average cell-type
specificity for 29 transcriptomically distinct cell types for
hippocampal sclerosis and generalized epilepsy, based on cell-
type specificity estimates derived from 17,093 single-nuclei RNA
sequencing (snRNA-seq) samples from the dorsolateral prefrontal
cortex of three adult human brains54,55. In both cases,
preponderance of cell types was assessed against null distributions
with identical number of genes (see Materials and Methods) and

showed no significant differences in their cell-type specificity
(hippocampal sclerosis: prand > 0.19, generalized epilepsy: prand >
0.11). Moreover, average cell-type specificity in hippocampal
sclerosis and generalized epilepsy gene sets were overall more
similar to each other than to null models (all cell-types
prand > 0.065), with the exception of Endo (prand < 0.05) and
ExN1 (prand < 0.05).

Associations with standard neuroimaging parameters and
clinical variables. Compared with univariate mapping of cortical
thickness and subcortical volume changes, structural covariance
specifically addresses inter-regional structural network organization
in TLE and IGE. To evaluate whether TLE-related alterations in
covariance patterns are explainable by regional atrophy alone56, we
first compared atrophy profiles in patients relative to controls using
surface-based linear models3. Patterns of atrophy in TLE and IGE
were then spatially compared to multivariate (combined clustering

Fig. 2 Nodal network alterations. a Graph theoretical analysis of structural covariance between individuals with TLE and controls revealed increased
clustering and path length in bilateral orbitofrontal, temporal, and angular cortices, caudate, and putamen, as well as ipsilateral amygdala, revealing a
regularized, “lattice-like,” arrangement. b In IGE, widespread multivariate topological alterations were observed in bilateral fronto-temporo-parietal cortices,
right nucleus accumbens, and left pallidum. Clustering and path length effect sizes in these regions suggest a randomized network configuration
(decreased clustering and path length). HC= healthy control, IGE= idiopathic generalized epilepsy, TLE= temporal lobe epilepsy.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31730-5 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:4320 | https://doi.org/10.1038/s41467-022-31730-5 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


and path length) covariance network changes and statistically
assessed via non-parametric spin tests37. As in previous studies3,39,
patients with TLE showed profound atrophy in bilateral superior
parietal (left/right pFDR= 2.86 × 10–29/4.50 × 10–27), precuneus
(left/right pFDR= 3.54 × 10–29/3.32 × 10–22), precentral (left/right
pFDR= 3.95 × 10–21/3.12 × 10–20), and paracentral (left/right
pFDR= 1.75 × 10–19/5.41 × 10–18) cortices, as well as ipsilateral
hippocampus (pFDR= 2.32 × 10–186) and thalamus (pFDR=
1.25 × 10–67; Supplementary Fig. 2a). In contrast, patients with IGE

showed predominant atrophy in bilateral precentral cortices (left/
right pFDR= 2.94 × 10–14/7.75 × 10–12) and thalamus (left/right
pFDR= 8.63 × 10–14/1.70 × 10–14; Supplementary Fig. 2b). The
spatial pattern of multivariate topological changes, however, did not
closely correspond to areas of atrophy in TLE (r= 0.097, pspin=
0.21) nor IGE (r= –0.058, pspin= 0.31), suggesting that covariance
changes may not be fully explainable by the spatial distributions of
cortical thickness and subcortical volume changes in the same
conditions. Moreover, imaging-transcriptomics associations were

Fig. 3 Imaging-transcriptomic associations. a Schematic of the approaches for statistical testing of imaging-transcriptomic associations. Gene expression
data for a subset of phenotype- or disease-specific genes are averaged and spatially compared to the patterns of multivariate topological changes in TLE
and IGE independently. Spatial correlations are statistically assessed using one-tailed, non-parametric tests: (i) spatial permutation models, which preserve
the spatial autocorrelation of brain maps (pspin; 10,000 permutations), and (ii) permutation models, which generate null distributions from randomised
gene expression data with identical length as the original gene set (prand; 10,000 permutations). b Gene expression levels associated with two distinct
epilepsy subtypes (focal epilepsy with hippocampal sclerosis and generalized epilepsy) were mapped to cortical and subcortical surface templates and
spatially compared to patterns of multivariate topological alterations (which combined clustering and path length; see Fig. 2) across cortical and subcortical
regions (n= 82) using one-tailed, non-parametric tests. In TLE, spatial associations between microarray data and multivariate topological changes were
strongest for expression levels of hippocampal sclerosis genes (r= 0.33, pspin= 0.0028). On the other hand, in IGE, spatial associations were strongest for
expression levels of generalized epilepsy genes (r= 0.31, pspin= 0.0032). Both TLE- and IGE-specific imaging-transcriptomic associations were robust
against null distributions of effects based on selecting random genes from the full gene set (TLE: prand= 0.0030, IGE: prand= 0.018). HC= healthy control,
IGE= idiopathic generalized epilepsy, TLE= temporal lobe epilepsy, pspin= p-value corrected against a null distribution of effects using a spatial
permutation model, prand= p-value corrected against a null distribution of effects using a “random-gene” permutation model.
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significantly weaker when derived from regional atrophy patterns
(as opposed to multivariate topological changes) in TLE (correlation
with gene expression levels of hippocampal sclerosis: r= 0.041,
pspin/rand= 0.50/0.91; Supplementary Fig. 2c) and in IGE (correla-
tion with gene expression levels of generalized epilepsy: r= –0.083,
pspin/rand= 0.25/0.83; Supplementary Fig. 2d).

As seizure focus laterality may differentially affect structural
covariance networks24, we repeated the above analyses in left and
right TLE separately, comparing patient subgroups both to
controls and to each other. Global increases in clustering and
decreases in path length were observed in both left (clustering:
pFDR < 0.05 at K= 0.05–0.26, 28–29; path length: pFDR < 0.05 at
K= 0.05, 0.07–0.22, 25–39; Supplementary Fig. 3a) and right
(clustering: pFDR < 0.05 at K= 0.05–0.25; path length: puncorr <
0.05 at K= 0.14–0.17; Supplementary Fig. 3b) TLE patients
relative to controls. Similarly, dominant patterns of multivariate
(clustering coefficient and path length) topological changes in
bilateral lateral occipital cortex (pFDR < 0.01), parahippocampus
(pFDR < 0.005), entorhinal cortex (pFDR < 0.01), and insula
(puncorr < 0.05), ipsilateral precuneus (pFDR < 0.01), anterior cin-
gulate cortex (pFDR < 0.01), and superior temporal gyrus (pFDR <
0.05), as well as contralateral middle temporal gyrus (pFDR < 0.05)
were observed when comparing left (Supplementary Fig. 3a) and

right (Supplementary Fig. 3b) TLE cohorts separately to controls.
Left TLE additionally showed alterations in bilateral paracentral
cortex (left/right pFDR= 7.00 × 10–5/0.00015), as well as precen-
tral (left/right pFDR= 0.0011/0.00041) and postcentral gyri (left/
right pFDR= 0.0015/0.0094), while right TLE additionally showed
abnormalities in bilateral hippocampi (left/right pFDR= 0.0035/
0.0024). Direct comparison of left vs. right TLE revealed no
significant global (pFDR > 0.27; Supplementary Fig. 4a) nor
regional (pFDR > 0.11; Supplementary Fig. 4b) differences between
the two subcohorts. Effect sizes for clustering and path length
indicated network regularization of the mesiotemporal and
postcentral gyrus subnetwork in left TLE, but widespread cortical
regularization in right TLE; these slight differences in regional
topological configurations were confirmed in left vs. right TLE
comparisons (Supplementary Fig. 4b). Differences in multivariate
topological changes between left and right TLE marginally
affected their associations with epilepsy- (Supplementary Fig. 5)
and disease-related (Supplementary Fig. 6) risk genes; spatial
correlation with expression levels of genes previously associated
to hippocampal sclerosis was only significant in left, but not right,
TLE. Left TLE also showed a significant association to the ‘all
epilepsy’ subtype (r= 0.25, pspin/rand= 0.022/0.032). Network
alterations in right TLE, on the other hand, correlated with

Fig. 4 Relations between epilepsy gene expression and network topology. Gene expression levels associated with (i) all other epilepsy subtypes (all
epilepsy, focal epilepsy, juvenile myoclonic epilepsy, and childhood absence epilepsy), (ii) monogenic epilepsy, and (iii) anti-epileptic drug targets were
mapped to cortical and subcortical surface templates. Spatial correlations were performed between each of these transcriptomic maps and the patterns of
multivariate topological alterations in TLE and IGE across cortical and subcortical regions (n= 82) and were statistically assessed using one-tailed, non-
parametric tests. In IGE, spatial associations between microarray data and multivariate topological changes were significant for expression levels of all
epilepsy genes (r= 0.37, pspin= 0.0019) and focal epilepsy (r= 0.27, pspin= 0.015). In TLE, network associations did not correlate with any other epilepsy-
related transcriptomic maps. HC= healthy control, IGE= idiopathic generalized epilepsy, TLE= temporal lobe epilepsy, pspin= p-value corrected against a
null distribution of effects using a spatial permutation model, prand= p-value corrected against a null distribution of effects using a “random-gene”
permutation model.
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transcriptomic maps derived from generalized epilepsy genes
(r= 0.17, pspin= 0.048) and bipolar disorder (r= 0.20, pspin=
0.018); these correlations, however, did not survive comparison
against randomly selected genes, prand > 0.14.

We repeated the structural covariance analyses in patients
grouped by duration of illness using a median split approach
(TLE= 20 years, nshort-TLE= 270, nlong-TLE= 275; IGE= 15
years, nshort-IGE= 137, nlong-IGE= 111). In TLE and IGE, both
patient subgroups (short and long duration) showed similar
patterns to the overall between-group differences when compared
to controls (TLE: Supplementary Fig. 7a; IGE: Supplementary
Fig. 8a). Nevertheless, in TLE, we observed a shift in network
regularization from fronto-central and limbic regions (shorter
duration) to fronto-temporal and limbic regions (longer duration;
Supplementary Fig. 7b). Conversely, in IGE, we observed both
network randomization (fronto-central regions) and regulariza-
tion (fronto-parietal regions) in patients with short and long
duration (Supplementary Fig. 8b). Direct comparison of patients
with short vs. long duration of TLE or IGE revealed no significant
global (TLE: pFDR > 0.5, Supplementary Fig. 9a; IGE: pFDR > 0.20,
Supplementary Fig. 9b) nor regional (TLE: pFDR > 0.072,

Supplementary Fig. 9a) differences between pairs of subcohorts,
with the exception of patients with shorter duration of IGE
showing multivariate topological changes in bilateral fronto-
limbic areas relative to those with longer duration (pFDR < 0.05,
Supplementary Fig. 9b).

Robustness of findings across different sites and analysis
thresholds. Despite some site-to-site variability, syndrome-
specific global structural covariance differences were overall
consistent across sites and similar to those obtained from the
multisite aggregation for both TLE and IGE patients (Fig. 1c). As
observed in the multisite findings, site-specific increases in clus-
tering coefficient and path length in TLE were most frequently
observed in orbitofrontal, temporal, and angular cortices as well
as amygdala (Supplementary Fig. 10a). Similarly, in agreement
with the multisite findings, site-specific decreases in clustering
and path length in IGE were most consistent in fronto-parietal
cortices and hippocampus (Supplementary Fig. 10b).

Our findings were not affected by varying the density of
structural covariance networks: Across the range of possible
thresholds, we observed high correlations among multivariate

Fig. 5 Relations between disease-related gene expression and network topology. Gene expression levels associated with six common neuropsychiatric
conditions and/or comorbidities of epilepsy (attention deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depressive
disorder, migraine, and schizophrenia) were mapped to cortical and subcortical surface templates. Spatial correlations were performed between each of
these transcriptomic maps and the patterns of multivariate topological alterations in TLE and IGE across cortical and subcortical regions (n= 82) and were
statistically assessed using one-tailed, non-parametric tests. In IGE, a spatial association between microarray data and multivariate topological changes was
significant for expression levels of major depression disorder genes (r= 0.19, pspin= 0.015). This association, however, did not survive correction against a
null distribution of effects based on selecting random genes (prand= 0.18). In TLE, network associations did not correlate with any other disease-related
transcriptomic maps. HC= healthy control, IGE= idiopathic generalized epilepsy, TLE= temporal lobe epilepsy, pspin= p-value corrected against a null
distribution of effects using a spatial permutation model, prand= p-value corrected against a null distribution of effects using a “random-gene”
permutation model.
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topological brain maps computed from thresholded structural
covariance matrices in TLE (95.35% of correlations were below
pspin < 0.1) and IGE (90.86% of correlations were below pspin < 0.1;
Supplementary Fig. 11). Moreover, we observed comparable
associations between topological abnormalities (computed across
the range of thresholds) and gene expression levels, with highest
stability (% of correlations were below pspin < 0.1) in TLE
observed for correlations of topological alterations and risk gene
expression for focal epilepsy with hippocampal sclerosis (54.00%)
and all epilepsy (34.00%). Conversely, stability in IGE was highest
for correlations with expression levels of risk genes for general-
ized epilepsy (22.00%), all epilepsy (30.00%), focal epilepsy
(28.00%), childhood absence epilepsy (40.00%), and monogenic
epilepsy (42.00%; Supplementary Fig. 12a). In both TLE and IGE,
stability of imaging-transcriptomic correlations in neuropsychia-
tric conditions were overall rather modest, except for correlations
with expression levels of risk genes for bipolar disorder in TLE
(74.00%), and major depressive disorder (46.00%) as well as
schizophrenia (38.00%) in IGE (Supplementary Fig. 12b).

Discussion
This multisite ENIGMA study is the largest investigation of
structural covariance networks in the common epilepsies and
bears robust evidence for syndrome-specific topological disrup-
tions. First, despite showing global increases in small-worldness
in TLE as compared to controls, regional alterations in orbito-
fronto-temporal regions indicated a shift towards a more reg-
ularized, “lattice-like”, subnetwork configuration. In contrast, IGE
presented with widespread decreases in clustering and path length
in fronto-temporo-parietal cortices, indicating a more random
topology. These syndrome-specific network-level findings were
spatially related to the expression pattern of genetic risk factors
associated with hippocampal sclerosis and generalized epilepsy in
recent GWAS33. Findings were highly consistent across sites and
methodologies, corroborating robustness and generalizability.
Taken together, our study identifies imaging-transcriptomic sig-
natures in the common epilepsies, which ultimately, may facilitate
early diagnosis and lead to the development of new and improved
treatment strategies.

We performed graph theoretical analysis on MRI-based cor-
tical thickness and subcortical volume correlations in adults with
TLE, adults with IGE, and healthy controls13,19. Our covariance
analysis extends prior research on atrophy mapping by tapping
into the topology of inter-regional structural brain networks and
describing the network organization underlying whole-brain
pathological interactions in the common epilepsies. Using a
multisite approach, we showed that patients with TLE preserved
an overall small-world configuration with increased clustering
and decreased path length over a wide sparsity range. Upon
examination of uni- and multivariate regional changes, however,
we found key differences between distinct brain subnetworks.
Topological alterations were most marked in a subnetwork
comprising orbitofrontal, temporal, and angular cortices, pointing
to increased local connectivity (i.e., a more regular configuration)
in TLE than in healthy controls. This bilateral topological reg-
ularization was observed in both left and right TLE patients, albeit
more constrained to fronto-temporal cortices in left TLE, a dif-
ference that may be attributable to asymmetrical structural
damage or to higher connectivity of the dominant hemisphere57.
Interestingly, although group-level alterations in the hippo-
campus were modest, with right TLE patients displaying slightly
more severe abnormalities than left TLE, intrinsic hippocampal
deafferentation may nevertheless contribute to extrahippocampal
reconfigurations, affecting neighbouring regions including orbi-
tofrontal and temporal cortices, as well as the amygdala58. Given

the high density of connections from the hippocampus to the rest
of the brain59,60, neuronal loss and deafferentation within limbic
structures may cause local excess connectivity and decreased
internetwork covariance in remote regions. Such a topological
shift may be supported by findings in animal models61 as well as
human diffusion MRI58,62,63 and functional connectivity distance
studies64, which have highlighted imbalances in short- vs. long-
range connections in epilepsy-related pathology. More regular-
ized networks are spatially compact, which may facilitate recur-
rent excitatory activity and high frequency oscillations, and may
be attributable to a loss of temporo-limbic structural
connections61,65. In prior EEG/intracranial EEG studies, network
regularization has been reported at seizure onset, a configuration
that shifts toward a globally integrated process as the seizure
spreads, eventually reaching a random configuration upon seizure
termination66. Understanding such structural reorganization
offers a comprehensive knowledge of the neural substrates and
pathophysiological mechanisms of TLE.

TLE is a complex condition that is associated with both aty-
pical early neurodevelopment as well as deviations from typical
brain aging processes. Growing evidence supports atypical brain
development as a potential etiological factor for TLE, with neu-
roimaging data revealing quantitative changes in cortical folding,
hippocampal malrotations, cortical interface blurring, and con-
nectivity alterations in temporo-limbic networks, which may
reflect consequences of malformative processes during prenatal
stages67,68. Several histological findings also point to atypical
temporo-limbic network formation and maturation63,69. Follow-
ing the lifespan, several studies have also suggested interactions
between TLE and brain aging, with cross-sectional and long-
itudinal mesiotemporal volumetry and cortical thickness analysis
showing appearance of accelerated brain aging in patients relative
to controls3,70–72. While often attributed to secondary effects of
seizures, these observations may reflect a complex combination of
seizure burden, medication load, and psychosocial challenges that
medically-intractable patients often face. Notably, when split into
short vs. long duration groups, patients with a longer disease
duration also presented with topological regularization primarily
in temporo-parietal cortices. This is in line with a previous
longitudinal structural covariance analysis in a single centre TLE
cohort, which suggests that network alterations may intensify
over time24.

In contrast with TLE, overall structural covariance network
configurations in IGE showed a tendency away from aberrant
local connectivity and towards a more random architecture. On
the whole, an increasingly random structural network organiza-
tion denotes reduced local efficiency but increased global
efficiency22,73. These global topological findings were com-
plemented by region-specific mapping of graph-theoretical
parameters, which also identified widespread regional altera-
tions in IGE patients. Although the pattern was overall mixed
across regions—a fortiori in smaller patient subgroups split
according to disease duration—showing increases and decreases
in both path length and clustering, a large subnetwork comprising
frontal, temporal and parietal cortices showed concomitant
reductions in path length as well as clustering. A decrease in
clustering implies reductions in local specialization, but a
decrease in path length (i.e., increased global network efficiency)
may indicate an imbalance in the integration and segregation of
structural covariance network organization. Such imbalance
might explain, at least in part, the ability of seizures to rapidly
spread, not just locally but in a diffuse manner within bilateral
fronto-temporo-parietal cortices in IGE patients74. In rodent
models of IGE, fronto-parietal cortices have typically shown
increased simultaneous neuronal activity during generalized
seizures75,76. Moreover, prior neuroimaging work in IGE patients
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that analyzed cortical morphology has shown widespread cortical
structural network compromise6,77, with midline frontal and
paracentral regions emerging as potential epicenters of morpho-
logical abnormalities in IGE3,78. Notably, IGE patients also pre-
sented with focal patches of network randomization, similar to
TLE patients in paralimbic subnetworks. Affected regions inclu-
ded paralimbic cortices, but coupled with subcortical structures,
notably the thalamus. Extensive evidence supports atypical
thalamo-cortical interactions as being at the core of the patho-
physiological network of IGE7,10,11,39,79, with aberrant thalamo-
cortical loops contributing to the generation of spike and slow
wave discharges80. Alterations of thalamic morphology and
metabolism, as well as of its functional and structural connectivity
with widespread cortical networks, have also been reported in a
convergent neuroimaging literature across several IGE
syndromes10,81,82. In future work, it will be of interest to explore
how consistent, or variable, these topological imbalances in tha-
lamic as well as cortical subnetworks are across different IGE
subsyndromes. It is also important to understand effects of
clinically relevant parameters, including levels of response to
antiseizure medication. In that context, we recommend further
increasing the spatial resolution, allowing for a fine-grained
assessment of both cortical network architecture and thalamic
subdivisions. This could be achieved, for example, by adopting
recent approaches that reported structural, functional, and
microcircuit anomalies in IGE compared to both TLE patients
and healthy controls6,7.

Connectome topology has been extensively studied in healthy
and diseased brains, however, research investigating associations
between macroscale findings and the genetic architecture of
epilepsy is still in infancy. A recent genome-wide mega-analysis
performed in the common epilepsies identified 21 biological
candidate genes across 16 risk loci, thus providing initial evidence
for epilepsy-associated gene expression changes33. By integrating
neuroimaging and transcriptional atlas data, here we tested the
hypothesis that transcriptomic vulnerability would covary with
structural network abnormalities in TLE and IGE. We showed
that epilepsy-related variations in brain network topology spa-
tially converged with gene expression profiles of risk genes for
each syndrome. Specificity of these associations was supported by
the fact that topological alterations did not correlate with tran-
scriptional signatures of several common psychiatric disorders. In
the long term, these imaging-transcriptomic associations may
form the foundation for translation and clinical studies aiming to
tailor therapeutic approaches to specific epilepsy syndromes.
From a clinical standpoint, these findings represent a glance of
the different pathophysiological anomalies in temporal lobe and
generalized epilepsies, and may lead to possible imaging-
transcriptomic applications for improved patient stratification.
For instance, the transcriptomics-associated network maps
identified herein may increase diagnostic sensitivity in both TLE
and IGE, while also pointing to different, syndrome-specific,
genetically-mediated etiologies. Alternatively, as these subnet-
work alterations were associated with syndrome-related risk
genes, our findings could provide a foundation for future research
aiming to explore whether targeted assessments of these subnet-
works can help to discriminate gene variant carriers vs. non-
carriers, thus potentially enhancing diagnostics and treatment
calibration.

Limitations of imaging-transcriptomic associations with
respect to (i) GWAS-identified genes, (ii) microarray vs. RNA-
Seq transcriptomic datasets, and (iii) the mapping of single
nucleotide polymorphism (SNP) genotyping on gene expression
need to be highlighted. Firstly, risk genes used in the current
study were obtained from a previously published GWAS from the
ILAE Consortium that aggregated data from SNP microarrays

from 15,212 patients with epilepsy and 29,677 controls33. The
ability of GWAS to identify relevant genes generally scales with
overall sample size, and forthcoming studies with larger samples
and broader inclusion criteria are expected to expand the cata-
logue of genes implicated in epilepsy. Rare variants (e.g., causal
variants with one rare allele), for instance, are unlikely being
tagged by current GWAS-type approaches83. Secondly, we
derived gene expression from bulk microarray data obtained from
six postmortem donor brains from the AHBA, with predominant
cortical and subcortical sampling performed in the left hemi-
sphere. By current standards, the AHBA represents a unique and
comprehensive resource to associate gene expression and neu-
roimaging data, offering excellent spatial coverage of nearly the
entire human brain and direct mapping of tissue samples to
stereotaxic space53. On the other hand, while microarray tech-
nology remains a popular and cost-effective approach for tran-
script profiling, it is limited to interrogating only those genes for
which probes are designed84. Alternative transcriptomics tech-
niques such as RNA-Seq, do not depend on a priori probe
selection, and may be more sensitive in identifying genes with low
expression and more accurate in detecting expression of common
genes84. RNA-Seq technology, however, also poses algorithmic
and logistical challenges, including the restricted number of
samples processed in a single run, elevated costs, data storage
requirements, and the absence of an analytical gold standard85.
Finally, relating GWAS findings to gene expression is a complex
process; indeed, GWAS-identified SNPs may occur in non-
protein-coding regions86, may not always affect transcription of
the closest gene, and may implicate genes that are located up to 2
Mbps away87. SNPs may also influence several steps of gene
expression, particularly messenger RNA (mRNA) splicing, sta-
bility, and translation, with their precise functional impact on
gene function not being fully understood88,89. Replication of our
findings in more comprehensive, RNA-Seq gene expression
datasets may hold significant promise for stratification and
effective treatment that can be targeted to the individual patients
based on their genetic profile. Once the barriers to widespread use
of RNA-Seq are overcome, our understanding of the genetic
architecture of the epilepsies will significantly evolve, with the
reported risk genes likely being expanded and refined as more
genomic and transcriptomic data become available. Despite cur-
rent limitations of GWAS-identified genes, microarray datasets,
SNP genotyping, and gene expression, our findings suggest that
genes previously associated with specific epilepsy syndromes were
over-represented in regions that share similar topological altera-
tions. In keeping with prior molecular studies in epilepsy90–93, we
speculate that differentially expressed epilepsy-related gene sets
may contribute to a selective vulnerability of networks for
structural reconfigurations in TLE and IGE. Notably, these dis-
tinctive imaging-transcriptomic associations were robust and
remained significant after comparison against null distributions
derived from randomly selected gene sets of equal length.
Nonetheless, differences in the number of genes in each gene lists
may have contributed to variability in gene expression profiles.
Exploiting individualized gene expression profiles in the same
cohort of patients, therefore, seems to be the logical next step to
improve imaging-transcriptomic associations and update our
understanding of causes and consequences of epilepsy.

Several sensitivity analyses suggested that our findings were not
affected by differences in scanners or sites or methodological
choices. Site and scanner effects were mitigated for the most part
using CovBat, a post-acquisition statistical batch normalization
process used to harmonize between-site and between-protocol
effects in mean, variance, and covariance, while protecting bio-
logical covariates (e.g., disease status)41. Multivariate topological
findings as well as associations between network-level findings
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and gene expression maps were consistently observed across
different matrix thresholds. Despite some site-to-site variability in
global and regional graph theoretical metrics, findings were
overall similar across independent centers and reflected those
from the multisite aggregation. As data sharing practices can at
times be challenging, in part due to privacy and regulatory pro-
tection, ENIGMA represents a practical alternative for standar-
dized data processing and anonymized derivative data12,94–98.
Notably, the Desikan-Killiany atlas is widely adopted across
ENIGMA Working Groups, thus allowing for comparison of
results across initiatives. On the other hand, this parcellation is
limited by its relatively coarse granularity (68 cortical regions)
and variable parcel sizes. In future studies, replication of our
findings with higher-resolution cortical and subcortical parcella-
tions that offer better uniformity in areal definition may help to
increase generalizability and specificity. Nevertheless, this colla-
borative effort allowed us to identify an association of brain
structural network changes with patterns of expression of genetic
risk factors in the common epilepsies, while addressing robust-
ness of effects across clinical subgroups, international sites, and
methodological variations. The imaging-transcriptomic associa-
tions identified herein could guide diagnosis of common epi-
lepsies, and ultimately, contribute to the development of tailored,
individualized, and syndrome-specific therapeutic approaches.

Methods
ENIGMA participants. Epilepsy specialists at each center diagnosed patients
according to the seizure and syndrome classifications of the ILAE99. Inclusion of
adults with TLE was based on the combination of electroclinical features and MRI
findings typically associated with underlying hippocampal sclerosis. Inclusion of
adults with IGE was based on the presence of tonic-clonic, absence, or myoclonic
seizures with generalized spike-wave discharges on EEG. We excluded participants
with a progressive or neurodegenerative disease (e.g., Rasmussen’s encephalitis,
progressive myoclonus epilepsy), malformations of cortical development, tumors,
or prior neurosurgery. Healthy controls had no history of mental disorders and
were statistically matched for age and sex to the epilepsy subgroups at each site.
Local institutional review boards and ethics committees approved each included
cohort study, and written informed consent was provided according to local
requirements (Table S3).

Cortical thickness and subcortical volume data. All participants underwent
structural T1-weighted brain MRI scans at each of the 18 participating centers,
with scanner descriptions and acquisition protocols detailed elsewhere39. Images
were independently processed by each center using the standard ENIGMA
workflow. In brief, models of cortical and subcortical surface morphology were
generated with FreeSurfer 5.3.0100. Based on the Desikan-Killiany anatomical
atlas40, cortical thickness was measured across 68 grey matter brain regions and
volumetric measures were obtained from 12 subcortical grey matter regions
(bilateral amygdala, caudate, nucleus accumbens, pallidum, putamen, thalamus) as
well as bilateral hippocampus. Missing cortical thickness and subcortical volume
data were imputed with the mean value for that given region; participants with
missing data in at least half of the cortical or subcortical brain measures were
excluded.

Data were harmonized across scanners and sites using CovBat—a batch-effect
correction tool that uses a Bayesian framework to improve the stability of the
parameter estimates41. Cortical thickness and volumetric measures were corrected
for age and sex. Residualized data were z-scored relative to site-matched pooled
controls and sorted into measures that were ipsilateral/contralateral to the focus.

Covariance networks. Covariance networks were computed from cortical thick-
ness and subcortical volume correlations. Inter-regional association matrices were
first generated for each group (TLE, HCTLE, IGE, HCIGE) and each site with at least
10 participants per diagnostic group (nTLE/HC= 14 sites, nIGE/HC= 10 sites),
resulting in a total of 48 covariance matrices (R). In each matrix R, an individual
entry Ri,j (with regions i and j) contained the pairwise linear product-moment
cross-correlation coefficient of structural morphometry across group- and site-
specific subjects.

Network thresholding. Prior to analysis, negative correlations were set to zero and
covariance network matrices were thresholded (density range of K= 0.05–0.50,
density interval of 0.01). This approach ensured that networks in all groups had an
identical number of edges101 and that group differences were not primarily driven
by low-level correlations102.

Among the network density levels of K= 0.05–0.50, the network connectedness
criterion (≥75% of nodes remain connected to other nodes within the network in at
least 90% of sites) was satisfied only in the narrower K= 0.08–0.50 range. For the
main regional topological analyses, structural networks were constructed at a
density of K= 0.08.

Strength of cortical thickness and subcortical volume correlations. We com-
pared the mean strength of positive correlations (computed from the site-specific
thresholded structural covariance networks) in patients relative to controls using
Student’s t-tests. Statistical differences were evaluated at every density within the
K= 0.08–0.50 range.

Global network properties. From the thresholded structural covariance networks,
we computed three global metrics using standard formulas42,103: (i) mean clus-
tering coefficient, which quantifies the tendency for brain regions to be locally
interconnected with neighboring regions, (ii) mean path length, which quantifies
the mean minimum number of edges (i.e., connection between two regions) that
separate any two regions in the network, and (iii) small-world index (mean clus-
tering coefficient divided by mean path length), which quantifies both local and
global properties. These two metrics, along with their combination (i.e., small-
world index), are the most widely used graph theoretical parameters to describe the
topology of complex networks. Each measure was normalized relative to corre-
sponding measures from 1000 randomly generated networks with similar degree
and weight properties, and subsequently averaged across all cortical and subcortical
regions, separately.

Regional network properties. Regional differences in topological parameters
(clustering coefficient, path length, and small-world index) were assessed using an
approach similar to the global network analysis; from the thresholded structural
covariance networks, normalized clustering coefficient, normalized path length
metrics, as well as their ratio, were computed for every cortical and subcortical
brain region. Individual nodal network parameters in patients were compared to
controls across sites via Cohen’s d effect sizes. From effect size maps, topological
profiles were generated to reflect their deviations away from a small-world orga-
nization, that is, either network regularization (areas of increased clustering coef-
ficient and path length) or randomization (areas of decreased clustering coefficient
and path length)43. To signify an overall load of anomalies, we subsequently
compared the aggregate of clustering coefficient and path length differences in
patients relative to controls using multivariate surface-based linear models. This
approach allowed topological changes to be described in a compact manner, and
consequently, enabled spatial associations with brain maps of gene expression (see
section on Transcriptomic associations). Moreover, by statistically combining
clustering coefficient and path length, we leveraged their covariance to obtain a
substantial gain in sensitivity, and thus, unveiled subthreshold network properties
not readily identified in a single graph theoretical metric.

Transcriptomic associations. The Allen Institute for Brain Science released the
AHBA—a brain-wide transcriptomic atlas based on microarray expression data
from over 20,000 genes sampled across 3702 spatially distinct tissue samples col-
lected from six neurotypical adult whole brains (three Caucasian males, two
African American males, and one Caucasian woman)35. Microarray expression
data were first generated using abagen104, a toolbox that provides reproducible
workflows for processing and preparing gene expression data according to pre-
viously established recommendations53. Preprocessing steps included intensity-
based filtering of microarray probes, selection of a representative probe for each
gene across both hemispheres, matching of microarray samples to brain parcels
from the Desikan–Killiany atlas40, within-donor normalization (using the robust
sigmoid function and rescaled to the unit interval with the Min-Max function) to
mitigate donor-specific effects, and aggregation within parcels and across donors.
To account for known differences in microarray expression between broad struc-
tural compartments (e.g., cortex vs. subcortex)105, normalization procedures were
performed separately for cortical and subcortical structures53. Genes whose simi-
larity across donors fell below a threshold (r < 0.2) were removed, leaving a total of
12,668 genes for analysis. All gene sets were mapped to cortical and subcortical
regions using the Allen Human Brain Atlas35 and projected to surface templates.

Leveraging a recently published GWAS from the International League Against
Epilepsy Consortium on Complex Epilepsies33, we extracted the most likely genes
associated with significant genome-wide loci in the common epilepsies. Briefly,
samples from the ILAE Consortium cohort and population-based datasets were
genotyped on SNP arrays and quality-controlled106,107. Functional mapping and
annotation (FUMA) of GWAS108 was used to map genome-wide significant loci of
all epilepsy phenotypes to genes in and around these loci, resulting in a total of 146
mapped genes, with some genes being associated with multiple phenotypes. Our
main analysis examined associations between MRI-derived network topological
changes in TLE and IGE to gene expression levels of focal epilepsy with
hippocampal sclerosis (ngenes= 5) and generalized epilepsy (ngenes= 43). To assess
specificity of our imaging-transcriptomic associations with focal epilepsy with
hippocampal sclerosis and generalized epilepsy phenotypes, we also performed
spatial correlations with every other epilepsy phenotype (all epilepsy: ngenes= 16,
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focal epilepsy: ngenes= 9, juvenile myoclonic epilepsy: ngenes= 13, childhood
absence epilepsy: ngenes= 4). Due to the low number of genes in some epilepsy
phenotypes, our gene lists included all genes mapped in and around significant
genome-wide loci (i.e., regions encompassing all SNPs with p < 5×10−4 that were in
linkage disequilibrium= R2 > 0.2), that is, no biological prioritization or pre-
selection of genes was performed.

Using a similar approach, we also examined associations with transcriptomic
maps derived from monogenic epilepsy genes (ngenes= 69)45 and genes that are
targets of currently used anti-epileptic drugs (ngenes= 44)46. To interrogate disease
specificity, we also queried additional lists of disease-related genes (obtained from
other recently published GWAS), including gene sets for attention deficit/
hyperactivity disorder (ngenes= 15)47, autism spectrum disorder (ngenes= 19)48,
bipolar disorder (ngenes= 25)49, major depressive disorder (ngenes= 152)50,
migraine (ngenes= 22)51, and schizophrenia (ngenes= 110)52.

To evaluate whether interregional differences in postmortem gene expression
were driven by varying densities of different cell types, we obtained previously
published cell type gene expression results sampled in the adult human dorsolateral
prefrontal cortex54. Adopting this approach, specificity was assessed in 29 single-
nucleus subtypes: Astro1, Astro2, Astro3, Astro4, Endo, ExN1, ExN2a, ExN2b,
ExN3e, ExN4, ExN5b, ExN6a, ExN6b, ExN8, InN1a, InN1b, InN1c, InN3, InN4a,
InN4b, InN6a, InN6b, InN7, InN8, Microglia, Oligo, OPC1, OPC2, and VSMC.
For each TLE- and IGE-related gene set (i.e., hippocampal sclerosis and generalized
epilepsy risk genes), we calculated the averaged specificity for each of the 29 cell
types. To statistically assess whether different cell types were overexpressed in each
epilepsy gene list, we compared their average specificity to null distributions. For
each cell type, a null distribution was generated by randomly selecting genes
(10,000 iterations) and averaging cell type specificity scores. For consistency, the
number of random genes selected was identical to the number of genes in the
epilepsy-specific gene set. The empirical (i.e., original) specificity score was
compared against the null distribution determined by the ensemble of randomly
calculated specificity scores. Using this approach, we also directly compared
expression of cell types in hippocampal sclerosis and generalized epilepsy gene sets
by comparing the difference in their average specificities (i.e., hippocampal
sclerosis—generalized epilepsy) to null distributions [composed of (i) hippocampal
sclerosis—randomly selected genes and (ii) generalized epilepsy—randomly
selected genes]. Empirical and randomly generated gene lists whose averaged scores
equaled zero were discarded from the analysis.

Non-parametric tests
Spatial permutation models. The intrinsic smoothness in two given brain maps may
inflate the significance of their spatial correlation, if the spatial dependencies in the
data are not taken into account37. Statistical significance of spatial correlations (e.g.,
between multivariate topological patterns and transcriptomic maps) was assessed
using spin permutation tests44. Here we used a previously published framework for
parcellated data109 and adapted it to include subcortical structures. Briefly, we
generated a surface model of all 14 subcortical structures and merged it with the
initial reconstructed FreeSurfer cortical surface model. The resulting surface mesh
thus comprised adequately placed cortical and subcortical vertices, with original
volumetric distances being preserved. We inflated this new combined cortical/
subcortical surface model and mapped its vertices to a sphere. In doing so, we
obtained the spherical coordinates of each of our 68 cortical regions and 14 sub-
cortical structures110. We then applied randomly sampled rotations (10,000 repe-
titions unless specified otherwise) about three axes (x: left-right, y: rostral-caudal, z:
dorsal-ventral) at three randomly generated angles, θx, θy, and θz ∈ [0,2π]109.
Following sphere rotation, coordinates of the rotated regions were matched to
coordinates of the original regions using Euclidean distance. This matching yielded
a mapping from the set of regions to itself, thus allowing the assignment of original
values to rotated regions. The empirical correlation coefficients are then compared
against the null distribution determined by the ensemble of spatially permuted
correlation coefficients. Given that spin permutation models have been pre-
dominantly constrained to cortical brain maps, we cross-validated our combined
cortical/subcortical spin permutation model to a previously published variogram-
matching model111,112. This method generates surrogate brain maps with matched
spatial autocorrelation to that of a target brain, and has been applied to subcortical
structures. As recommended111, surrogate maps were generated using surface-
based geodesic distance between cortical regions and three-dimensional Euclidean
distance between subcortical and cortical/subcortical regions. Variogram-matching
null distributions were then generated from randomly shuffling surrogate maps
while preserving the distance-dependent correlation between elements of the brain
map. As illustrated in Supplementary Fig. 13, null distributions generated from the
spin method were in close agreement with the variogram-matching model and
provided nearly identical p-values for spatial correlations, thus supporting the
validity of our combined cortical/subcortical spin permutation method.

Random-gene permutation models. Due to differences in the length of the various
gene sets (range ngenes= 5–152), we also assessed our imaging-transcriptomic
associations against “random-gene” null distributions38. Null distributions were
generated by correlating multivariate topological alterations in patients to tran-
scriptomic maps derived from randomly selecting gene sets of equal length from
the pool of all n= 12,668 genes (10,000 iterations). This approach thus allowed us

to examine whether our empirical correlation coefficients are significantly larger
than those derived from null distributions of identically sized, and randomized,
gene sets.

Associations with clinical variables. As seizure focus lateralization may differ-
entially impact topological organization of structural covariance networks25, we
repeated the graph theoretical and transcriptomics analyses by comparing (i) left
(nLTLE= 321) and right (nRTLE= 257) TLE independently to controls and (ii)
directly comparing left vs. right TLE. Imaging-transcriptomic correlations assessing
the spatial overlap between network alterations and epilepsy- and disease-related
gene expression levels were assessed in left and right TLE independently.

To study the effects of duration of illness on structural covariance networks, we
repeated the graph theoretical analyses by comparing (i) patients with short
duration of TLE or IGE (TLE duration <20 years, nshort-TLE= 270; IGE duration
<15 years, nshort-IGE= 137) and patients with long duration of TLE or IGE (TLE
duration ≥20 years, nlong-TLE= 275; IGE duration ≥15 years, nlong-IGE= 111)
independently to controls, (ii) directly comparing short vs. long TLE, and (iii)
directly comparing short vs. long IGE. Median splits were used to group short vs.
long duration patients.

Reproducibility and sensitivity analyses
Reproducibility across sites. To address reproducibility of our findings across dif-
ferent sites, we repeated our multivariate topological analysis independently in each
site (nTLE/HC= 14 sites, nIGE/HC= 10 sites).

Stability across matrix thresholds. To verify that results were not biased by choosing
a particular threshold, we repeated the network analyses and associations with
disease-related gene expression levels across the range of matrix thresholds
(K= 0.05–0.50 with increments of 0.01). Specifically, Hotelling’s T2 multivariate
(clustering coefficient and path length) topological changes comparing patients to
controls were computed from structural covariance networks thresholded at every
density and pairwise spatial correlations between all pairs of multivariate brain
maps were performed. Spatial correlations between density-specific multivariate
topological alterations and all epilepsy- and disease-related transcriptomic maps
were also assessed. Significance testing of these correlations was assessed via spin
permutation tests with 1,000 repetitions.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Neuroimaging (ENIGMA-Epilepsy meta-analysis of summary statistics39) and
transcriptomic data35 related to this paper are freely available for download (https://
github.com/MICA-MNI/ENIGMA). Requests for subject-level neuroimaging data can be
proposed to the ENIGMA-Epilepsy Working Group (http://enigma.ini.usc.edu/).

Code availability
All codes needed to analyze the data is openly available in the ENIGMA Toolbox (https://
github.com/MICA-MNI/ENIGMA)110 and is complemented with an expandable online
documentation (https://enigma-toolbox.readthedocs.io/).
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