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Abstract—Dengue Fever (DF) is an emerging mosquito-borne
infectious disease that affect hundred millions of people each
year with considerable morbidity and mortality rates, especial on
children. Together with global climate changes, it is continuously
increasing in terms of number of cases and new locations. Thus,
having effective early warning systems become an urgent need
to improve disease controls and prevention. In this paper, we
introduce a novel framework, called Proximity Time Ensemble, to
predict DF outbreaks for multiple areas (provinces) and multiple
time step ahead, and to study the effects of climate data on DF
outbreaks. PT-Ensem consists of 6 key components: (1) an event-
to-event probabilistic framework to study links among extreme
climate events and DF outbreaks; (2) a proximity graph that
connects similar provinces; (3) an ensemble prediction technique
that combines many different advanced machine learning (ML)
methods to predict outbreaks within t time steps in the future
using extreme climate events as model inputs; (4) a data aggregate
scheme to enrich training data for each provinces via its neighbors
in the proximity graph; (5) a proximity propagation step that
propagates predicted results among similar provinces via the
proximity graph until maximal agreements are reached among
provinces; and (6) a time propagation step to propagate results
via different predicted time steps in each province. We use PT-
Ensem to predict DF outbreaks for all provinces in Vietnam
using data collected from 1997-2016. Experiments show that
PT-Ensem acquires significant performance boost compared to
many highly-rated ML models like XGBoost, LightGBM and
Catboost in the outbreak prediction task. Compared to most
recent deep learning approaches like LSTM-ATT, LSTM, CNN
and Transformer for predicting DF incidence, PT-Ensem also
dominates in both prediction accuracy and computation times.

Keywords—Dengue Fever prediction, Epidemic forecast, Out-
break prediction, Ensemble learning

I. INTRODUCTION

Dengue Fever (DF) is the most prevalent of arboviral and
climate sensitive diseases transmitted by Aedes mosquitoes
[1]. Patients with DF typically suffer from a wide range
of symptoms, e.g., headache, vomiting, nausea, skin rash,
and muscle and joint pain [2]. Severe DF can lead to more
life-threatening problems, e.g., internal bleeding, respiratory
distress, or organ failure [2]. Currently, there are no specific ef-
fective drugs for treating DF and no licensed vaccine available
for it [1], [2]. Vector controls, which aim at using chemical,
biological and environmental methods to target mosquitoes and
their breeding sites, remain the primary means to prevent DF
infections. Nevertheless, DF is continuously increasing rapidly
compared to other communicable diseases. According to the
World Health Organization (WHO), the number of reported DF

infection cases has increased approximately 10 times during
the last two decades (from 0.5 million in 2000 to 5.2 million
reported cases in 2019). However, the number of real DF cases
is actually much higher. E.g., Bhatt et al. [1] estimate around
390 million cases a year worldwide. The number of countries
that have experienced DF epidemics has also increased from
8 in 1970 to more than 120 in 2020. Recent global climate
changes have led to warmer and rainier weather conditions
which support better the growth of mosquitoes and thus worsen
future situations [3], [4]. Therefore, building early warning
systems for DF has become an emerging need for more
effective disease prevention and control and is continuously
attracting many research efforts, e.g., [2], [5]–[15].

Identifying potential factors that affect DF incidence in
specific areas is the foremost step towards effective early
warning systems. Hence, previous research has extensively
studied relationships between DF incidence and diverse ranges
of potential factors e.g., human behaviors [16], [17], geo-
graphic information [18]–[20], socio-economic factors such as
income [18], and especially meteorological factors [3], [21],
[22]. Reported results can be local-specific. E.g., [23] found a
positive correlation between rainfall and DF incidence with a
lag time from 0-3 months in Hanoi, Vietnam, while [3] found
no significant correlation. Based on these factors, a wide range
of Machine Learning (ML) models have been employed to
predict DF incidence rates/cases or outbreaks for many dif-
ferent areas e.g., Queensland in Australia [11], Guangzhou in
China [8], Singapore [6], Honduras [6], Brazil [24], Bangkok
in Thailand [18], Selangor in Malaysia [25], and Vietnam [13].
These models range from traditional to recent deep learning
methods, e.g., Seasonal Autoregressive Integrated Moving
Averaged (SARIMA) [11], Poisson regression [26], Support
Vector Regression (SVR) [8], Gradient Boosting Machine
(GBM) [7], [8], Generalized Additive Models (GAMs) [8],
Generalized Linear Mixed Models (GLMMs) [13], Artificial
Neural Networks (ANNs) [9], Back-propagation neural net-
work (BPNNs) [7], Long-short term memory (LSTM) [7],
Convolution Neural Networks (CNNs) [10], and Transfomer
[10]. Inputs for these models also vary but climate data (e.g.,
rainfall and temperature) are frequently studied subjects [2].

Despite many research efforts, some problems remain.
Most of the above mentioned studies focus on predicting DF
incidence rates/cases weekly or monthly [7], [10]. Fewer works
aim at DF outbreak prediction [10], [13], [24], [25]. Moreover,
many of them actually do not predict outbreaks but infer
them from forecast DF incidence [10], [13]. Most of these



techniques are heavily tailored to specific data (which are not
publicly available) and specific areas e.g., [13], [18], which
thus limits their applicability in wider contexts. Most tech-
niques only predict DF for a single area (city or province) [6],
[18]. Others study multiple areas, e.g., [7], [10], [13]. However,
each area is typically treated independently. Their relationships
are not properly exploited to improve performance.

Our contributions. In this paper, we propose a novel generic
framework called Proximity Time Ensemble (PT-Ensem) for
predicting DF outbreaks based on climate data for multiple
areas that aims to address all the above problems. PT-Ensem
fundamentally differs from all previous research as follows:

First, all existing works aim at predicting if an outbreak
will occur at the time t exactly (month or week) in the future
[10], [13], [24], [25]. However, we target a slightly different
problem: predicting if an outbreak will happen within time
t in the future. In this way, the predicted results at different
time points can be used to independently verify each other
due to their cumulative links, thus helping healthcare experts
to make better decisions. It worth noting that our algorithm
can be straightforwardly adapted to predict the outbreak at the
exact time t while still retaining all of its other advantages.

Second, we propose a probabilistic model, called event-to-
event relationships, to capture the links between DF outbreaks
and extreme climate events for multiple areas. This model
is used to study the relationship between different climate
factors and DF incidence (c.f. Sections II and IV). Compared
to traditional correlation analysis in previous works [3], [23],
[27], it focuses only on major data points and thus is more
robust to noise and small changes in the data. It is also used to
model the similarity among different areas w.r.t. climate factors
or DF incidence. The results are then exploited to adjust the
prediction outcomes among all areas in a special scheme called
the proximity propagation (c.f. Section III Phase D).

Third, while all existing works use raw climate data as
inputs for their prediction models [8]–[11], [13], we propose
to encode input data into sets of extreme events before feeding
them to prediction models. By this way, years of climate data
is compressed into a single point. Hence, the overall input
size is reduced while retaining rich information. This helps to
reduce model overfitting, thus enhancing both the accuracy and
computation time. The range value differences of climate data
in different areas are also flattened, thus creating an unified
view for all areas based on extreme events. We then can
aggregate data of similar provinces to train prediction models
via a special constructed province proximity graph (c.f. Section
III Phases B and C). It helps to increase the size and diversity
of training data, thus reducing both over- and -underfitting
problems and improving the final accuracy.

Fourth, we extensively study 20 different prediction models
from traditional ones like Random Forest [28] and Extra Tree
[29] to the most recent techniques like LightGBM [30] and
Catboost [31] on our DF outbreak prediction problem. We
choose the top 8 methods to combine them in an ensemble
framework to enhance the performance. However, unlike all
existing ensemble approaches [13], [24], [32], we aggregate
outputs of all models into a probability of outbreak for each
province, and feed all of them to a post-processing step,
called the proximity propagation, to adjust the prediction result

among provinces as described below.

Fifth, we propose two unique post-processing schema
called proximity and time propagation (c.f. Section III Phases
D and E) where prediction results are propagated among
similar provinces (directed by a proximity graph) and across
different prediction time periods to maximize prediction agree-
ments among all studied areas. The intuition behind these
two schemata is based on the well-known space and time
transmission nature of DF which is also exploited by other
research works [5], [9], [33], [34]. E.g., [9] incorporates
human movement patterns into the input of prediction models
to reflect the DF transmission. All of these works differ
fundamentally to our approaches which are post-processing
steps based on outputs of prediction models. We demonstrate in
Section IV how they dramatically boost the prediction accuracy
of PT-Ensem for all studied areas.

To the best of our knowledge, there is no existing work
that has all of the above mentioned features.

A case study in Vietnam. We employ our algorithm PT-Ensem
for predicting outbreaks for all provinces in Vietnam using a
wide range of climate data collected for 20 years from 1997
to 2016. Extensive results are shown in Section IV. PT-Ensem
dramatically improves the prediction accuracy compared to
other ML models like Random Forest [28], Extra Tree [29],
LightGBM [30], and Catboost [31]. Compared to adapted
recent deep learning approaches for DF incidence prediction
in Vietnam like LSTM-ATT, CNN, and Transfomer [10], PT-
Ensem clearly dominates them with 6.17 to 9.72 percentage
points (per 100) improvement in the prediction accuracy and
24x runtime speed up. We additionally demonstrate how our
event-to-event probabilistic framework can be used to study re-
lationships between extreme climate events and DF outbreaks.

II. BACKGROUND AND PROBLEM FORMULATION

Study area. Vietnam is a tropical country in Southeast Asia
and has 3 main regions: Northern, Central, and Southern. Each
region is further separated into subregions with different cul-
tures, geography, and climate. The Northern provinces have the
full 4 seasons with a humid tropical climate. Central provinces
are hot and dry during summer but cool and rainy in winter.
Southern provinces have constant warm temperatures and have
only 2 main seasons: dry and rainy. According to The Global
Climate Risk Index 2020, Vietnam is among the top countries
that are vulnerable to climate change. The country has been
suffering from increasing temperatures as well as frequent
extreme weather events such as storms, droughts, or floods. By
the end of this century, temperatures are predicted to rise by
1.8°C-2.5°C and rainfall to increase by 5-15mm per year [3].
These conditions are more suited for the virus transmission and
thus will significantly worsen the DF incidence in the whole
country [3], [23], [27]. Hence, effective early-warning systems
for DF outbreaks in the whole country are urgently needed.

Data. Monthly DF incidence rates per 100,000 population for
all provinces from 1997-2016 were provided by the National
Institute of Hygiene and Epidemiology (NIHE), Vietnam. Fig-
ure 1 (top) shows the yearly incidence rates for all provinces.
Central and Southern provinces, where the weather is warmer,
rainier, and more humid, have higher incidence rates than
Northern ones. Monthly climate data for each province from
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Fig. 1. (Top) Yearly incident rates per 100,000 population (in log scale)
for all provinces from 1997 to 2016 using Whisker plots (green dots indicate
mean values). Subregions: (A) Northeast, (B) Northwest, (C) Red River Delta,
(D) North Central Coast, (E) South Central Coast, (F) Central Highlands, (G)
Southeast, and (H) Mekong River Delta; (Bottom) The yearly averages of DF
incidence rates and some climate factors from Jan to Dec for all subregions

1997-2016 are obtained from the Vietnam Institute of Meteo-
rology, Hydrology and Environment (IMHEN) including: rain-
falls (total rainfall (TRain) and highest rainfall (MaxDRain) in
mm), number of rainy days (nRainDays) (days), temperatures
(average temperature (AvgTemp), maximum average tempera-
ture (MaxAvgT), minimum average temperature (MinAvgT),
absolute maximum temperature (MaxAbsT), and absolute
minimum temperature (MinAbsT) in °C), humidity (average
relative humidity (AvgHum) and minimum relative humidity
(MinHum) in percentage), evaporation (TEva) (mm), and total
sunshine hours (nSunHours) (hours). Figure 1 (bottom) shows
the average values from Jan to Dec of DF incidence rates
and several climate factors for all subregions compared to the
whole country. The results show significant variations of peak
times and value ranges for different subregions (and even their
provinces). E.g., rainfalls in the north central coast provinces
reach the peak in around Oct-Nov and range from 33.8 to
491.7 mm per year, while rainfall in the southeast provinces
has peaks during June-Oct and ranges from 8.2 to 317.0 mm
per year. These make it difficult to provide a unified model for
effectively predicting DF for all provinces at once.

Problem formulation. Given a set of n province P =
{(Pi, C1

i , · · · , Cci , Di)} where Pi is province i, Cji =
(cji1, · · · , c

j
im) (1 ≤ j ≤ c) are longitudinal climate factors

of m months, and Di = (di1, · · · , dim) is a longitudinal DF
incidence rate of m months for province Pi, our target is to
build an effective model to predict if DF outbreaks happen
within a time frame of t months for all provinces, i.e., is there
a DF outbreak within the next t months for each province Pi.

Dengue fever outbreak events. In public health, the notion of
DF outbreak varies across different regions and countries [35].
While our method can be used with any of these notions, we

employ the most common method of using mean and standard
deviation of w recent years in this paper [13], [35]. If a DF rate
exceeds kd standard deviations from the mean value (default
kd = 1), we have an outbreak.

Definition 1 (DF outbreak event): For a province Pi with
Di = (di1, · · · , dim), a DF outbreak happens at time j if
dij ≥ µij + kdσij , where µij =

∑t=j
t=j−12w dit/12w and

σ =
√∑t=j

t=j−12w(dit − µit)2/(12w − 1) are the mean and
standard deviation of w recent year data of Di.

Extreme weather events. In this paper, we approach the
prediction task from a different viewpoint: extreme (unusual)
climate events. The general idea is that a DF outbreak in a
province has a link to significant climate change events in that
province rather than small climate perturbations. Thus, instead
of directly feeding raw climate data into prediction models like
all existing works [6], [8], [11], [22], we discretize climate
data into events of extreme (abnormal) weather conditions
and use them as inputs for our prediction model. In this
way, we also flatten the differences in climate value ranges
of different provinces and thus create a unified view for all
provinces based on climate events. This scheme allows us
uniquely to aggregate data from different provinces to improve
model training (c.f. Section III). Similar to DF outbreaks, we
use mean and standard deviation of w recent years to identify
extreme climate events. If a climate value is larger or smaller
than kc standard deviations from the mean value, it indicates
an extreme climate event at that time.

Definition 2 (Extreme climate events): For a province Pi
and a climate Ci = (ci1, · · · , cim), an extreme climate
event happens at time j if cij ≥ µij + kcσij or cij ≥
µij − kcσij , where µij =

∑t=j
t=j−12w cit/12w and σ =√∑t=j

t=j−12w(cit − µit)2/(12w − 1) are the mean and stan-
dard deviation of w recent years data of Ci.

For both Definitions 1 and 2, we use the default window
w = 5 to avoid too long history effect like [13], [35].

Event-to-event relationships. W.l.o.g., let Xi and Yj be cli-
mate factors (or DF incidences) of provinces Pi and Pj , respec-
tively. Let E(Xi) = {x1, · · · , xa} and E(Yj) = {y1, · · · , yb}
be the set of extreme climate events (or DF outbreak events)
that occur at time xu (1 ≤ u ≤ a) of Xi and yv (1 ≤ v ≤ b)
of Yi, respectively.

Definition 3 (Forward/backward relationship): Given an
event xu ∈ E(Xi), let

−→
d (xu, Yj) be the distance between

xu and its closest follow up events yv ∈ E(Yj) (∞ if there
is no follow up event), i.e.,

−→
d (xu, Yj) = yv − xu,

where v = argminz(yz − xu) s.t. yz ≥ xu. Let−→
pdf (Xi,Yj)(t) be the probability that an event in E(Xi)
has a follow up event in E(Yj) after exactly t months,
i.e.,

−→
pdf (Xi,Yj)(t) = 1

a

∑a
u=1

{
1 if

−→
d (xu, Yj) = t

0 otherwise . Let
−→
cdf (Xi,Yj)(t) be the cumulative probability that an event in
E(Xi) has a follow up events in E(Yj) within t months,
i.e.,
−→
cdf (Xi,Yj)(t) =

∑t
z=0

−→
pdf (Xi,Yj)(z). The two functions

−→
pdf (Xi,Yj)(t) and

−→
cdf (Xi,Yj)(t) represent the forward

relationships between Xi and Yj , respectively, i.e., the
probability of an event in E(Yj) occurs after an event in



E(Xi) w.r.t. the time period t. Similarly, we use
←−
pdf (Xi,Yj)(t)

and
←−
cdf (Xi,Yj)(t) to represent the backward relationship

between Xi and Yj , i.e., the probability that an event in
E(Yj) occurs before an event in E(Xi) w.r.t. the time
period t. These functions can be straightforwardly defined
following the forward cases by using the distance function←−
d (xu, Yj) = xu − yv where yv is the closet event in E(Yj)
that occurs before xu ∈ E(Xi).

Assume that E(Xi) = {2, 5, 7, 9, 15} and E(Yj) =

{1, 3, 7, 8, 10}. We have
−→
d (5, Yj) = 7− 5 = 2,

−→
d (15, Yj) =

∞,
−→
pdf (Xi,Yj)(0) = 1/5 = 0.2,

−→
pdf (Xi,Yj)(1) = 2/5 = 0.4,

and
−→
cdf (Xi,Yj)(3) = 0.2 + 0.4 + 0.2 + 0 = 0.8. Similarly,

we have
←−
d (9, Yj) = 9 − 8 = 1,

←−
d (15, Yj) = 15 − 10 =

5,
←−
pdf (Xi,Yj)(3) = 0,

←−
pdf (Xi,Yj)(5) = 1/5 = 0.2, and

←−
cdf (Xi,Yj)(1) = 0.2 + 0.4 = 0.6.

The forward/backward probability functions provide a new
unique view on the relationships among climate factors and DF
incidences that capture large climate value changes, which is
more robust to small data perturbations than traditional corre-
lation analysis approaches like [3]. In Section IV, we demon-
strate the uses of these functions to explicitly study/explain the
impacts of different climate factors on DF outbreaks. These
functions will also be used to capture the DF outbreak co-
occurrence probability among provinces during the prediction
propagation step in Section III Phase D.

III. THE PROXIMITY TIME ENSEMBLE PREDICTION

Our DF outbreak prediction model is built upon several
key ideas: (i) converting raw climate data into events to have
unified views; (ii) training prediction models using aggregated
data from different provinces to avoid over- and underfitting
problems; (iii) using many different prediction methods and
aggregating their results; (iv) improving prediction results of
a province by exploiting results of other provinces; and (v)
propagating outcomes over time periods. Figure 2 illustrates
our approach with 6 different main phases as follows.

Phase A: Data transformation. For each province Pi and a
climate factor Ci = (ci1, · · · , cim), we transform each continu-
ous value cij into an event code evn(cij) representing its range
w.r.t. extreme climate event thresholds kc in Definition 2. By
using different values of kc, we can have finer transformations
of cij by smaller ranges. In our experiments, we use two
statistical common values kc = 1 and kc = 2 (representing
1 and 2 deviations from the mean value, respectively).

Definition 4 (Event transformation): Let evn(cij) be the
event code value of cij wrt. mean µij and standard deviation
σij at time j within w recent year. We have:

evn(cij) =


2 if cij ≥ µij + 2σij

1 if µij + 2σij > cij ≥ µij + σij

0 if µij + σij > cij ≥ µij − σij

−1 if µij − σij > cij ≥ µij − 2σij

−2 otherwise

Figure 2 (A) illustrate the case of a single kc threshold
where we have 3 different ranges (and 3 code values): extreme
(abnormal) low (-1), normal (0), and abnormal high (1).
Besides providing a unified event view for different climate

factors in different provinces as discussed in Section II, another
major benefit of this data transformation is that each trans-
formed data point consists of aggregate climate information
from the past w years. Thus, this allows creation of effective
prediction models without having to incorporate long tails of
past data into their input (w year data to a single coded point).
This helps to reduce model overfitting and computation time,
thus improving overall performances as shown in Section IV.

Phase B: Province proximity graph construction. Let G =
(V,E) be the graph, where V = {P1, · · · , Pn} be the set of
all n provinces, and E = {(Pi, Pj)} be the set of edges that
connect two provinces Pi and Pj if their similarity function
sim(Pi, Pj) exceeds a predefined threshold ε.

Definition 5 (Geographic province similarity): Given two
provinces Pi and Pj , we have:

sim(Pi, Pj) =

{
1 if Pi and Pj share a border
0 otherwise

In this paper, we use the geography similarity function
described in Definition 5 with the threshold ε = 0, i.e.,
the graph G connects two provinces Pi and Pj if they are
neighbors. The intuition behind it is that if two provinces are
close, they are more likely to share similar climate patterns
and DF incidences. Moreover, if a DF outbreak happens in
Pi, it is more likely that it will affect other nearby provinces
due to the transmission nature of DF as studied in [18], [20].
The proximity graph G is the backbone of our prediction
method for controlling the learning process by aggregating
training data and propagating prediction results among similar
provinces in Phases C and D below, respectively.

Though Dengue Fever is climate sensitive, there are many
other non-climate factors that can significantly affect it, e.g.,
human behaviors [17], education [36], environment [18], ur-
banization [1], and income [18]. This information can be
incorporated into the similarity function besides the geography
to better present the similarities among provinces and thus to
better control the learning process. This approach is simpler
than incorporating these factors directly into the regression
models like existing techniques [5], [18]. But it is more flexible
since these external factors can be explicitly controlled and
different types of data, e.g., textual or non-longitudinal data
can be easily incorporated via extended similarity functions.
Due to the data types available in this study, we demonstrate
our algorithm using only the geographic proximity graph.

Phase C: Dengue Fever outbreak prediction. Let τ be the
longest time we want to predict into the future. For each
province Pi and for each 1 ≤ t ≤ τ , we aim at predicting
a binary output where 1 means that there will be an outbreak
within the next t months for Pi and 0 otherwise.

C1: Create training data. For each province Pi, month j
and time t, the prediction output outijt =

{
1 if

−→
d (j,Di) ≤ t

0 otherwise ,

i.e., where
−→
d (j,Di) is the time distance from j to the closest

strictly follow up DF outbreaks (c.f. Definition 3 but with yz >
xu, i.e., distance must be at least 1 month since we already
use current DF outbreak/none-outbreak in the training data).
The input data inij = (evn(c1ij), · · · , evn(ccij), evn(dij))) is
a vector of encoded climate events and DF events. Besides
the climate events, DF events are used as a disease historical
factor to improve the prediction accuracy.
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Fig. 2. The Proximity Time Ensemble (PT-E) approach for Dengue Fever outbreak prediction. The algorithm consists of 6 main phases: (A) climate and dengue
fever data transformation for each province, (B) province proximity graph construction, (C) ensemble DF outbreak prediction, (D) proximity-based prediction
adjustment, (E) time-based prediction propagation, and (F) final decisions

C2: Data aggregation. Input data for all provinces are rep-
resented in a unified view of events, thus flattening the differ-
ences in data value ranges. Hence, we propose to enrich train-
ing data for each province by additionally including data from
other similar provinces. This helps to increase the size and
diversity of training data, thus reducing both over- and under-
fitting problems to significantly improve the performance as we
will demonstrate in Section IV. Data aggregation is a key point
of our algorithm and it is conducted via the proximity graph
G created in Phase B. For each province Pi, let κ-hub(Pi)
be the set of provinces that are up to k edges away from Pi
in the graph G, i.e., provinces that are similar but not too
far away from Pi. E.g., 2-hub(P1) = {P1, P2, P3, P4, P5, P6}
in Figure 2. Let train(Pit) be the training data of Pi for t-
months ahead prediction. The κ-hub extended training data
κ-train(Pit) = ∪Pj∈κ-hub(Pi)train(Pjt) is a union set of
training data of all provinces Pj that are κ edges away from
Pi (default κ = 2) on the graph G.

C3: Ensemble prediction. Ensemble is a common method
to improve learning performance and has been widely ap-
plied in DF prediction, e.g., [32]. In this paper, we use
M different prediction models PM1 to PMM to predict
the outbreak for each province Pi at each time period t
separately as shown in Figure 2 using the training data κ-
train(Pi) described above. However, instead of returning the
final binary prediction outcomes, e.g. via majority votes, we
return eit = 1

M

∑M
j=1 out(PMj , t), where out(PMj) is the

prediction output of the model PMj at time t, i.e., eit is the
probability of DF outbreaks during the next t months. The
final results are only being decided after the proximity and
time adjustment processes in Phase D and E below.

Phase D: Proximity-based prediction propagation. Since DF

is a transmissible disease, an outbreak in a province may affect
or be affected by other provinces, e.g., via human mobility
[34] or extreme climate events across nearby provinces [21].
Hence, in this phase, we propagate the prediction results
among provinces via the proximity graph G to improve the
overall prediction accuracy. The intuition is simple, e.g., if a
nearby province Pj of Pi is predicted to have outbreaks, it is
more likely that Pi will also have an outbreak.

Let p(Di) = |E(Di)|/m be the probability of an DF
outbreak in province Pi. Let p(Dj |Di) be the probability
that we have an outbreak in Pj given an outbreak in Pi,
i.e., p(Dj |Di) =

−→
pdf (Di,Dj)(0) (note p(Di|Di) = 1). If an

outbreak will happen in Pj , the probability it will happen in
Pi, denoted as wij , can be calculated via Bayes’s theorem

as wij =
−→
pdf(Di,Dj)

(0)·|E(Di)|
|E(Dj)| α, where α ∈ [0, 1] (default

α = 0.1) is a predefined propagation constant to control the
influence intensity among different provinces (note wii = 1),
i.e., to limit the effects of wrong DF outbreak prediction in
one province on others. For each province Pi, we use wij
as a weight to propagate prediction results from its proximity
similar province Pj ∈ λ-hub(Pi) (default λ = 2) to Pi.

For each province Pi and prediction time t, let err(Pi) =∑
Pj∈λ-hub(Pi) wij(eit − ejt)

2 be a weighted sum of square
prediction disagreements between Pi and its λ-hub neighbors
Pj . Our target is to update eit to minimize err(Pi). Taking
the derivative of err(Pi) wrt. eit, we can update eit as

êit =

∑
Pj∈λ-hub(Pi)

ejtwij∑
Pj∈λ-hub(Pi)

wij
. The updating process is iteratively

performed for all provinces in each round until the average
of changes for all provinces diff(P) = 1

n

∑n
i=1 |eit − êit|

converges, i.e, diff(P) is smaller than a predefined threshold



θ (default θ = 0.001) or the number of iterations reaches a
predefined threshold φ (default φ = 1000).

Phase E: Time-based prediction propagation. Due to the
time spanning nature of the DF disease, i.e., if an outbreak
occurs in a month, there is high chance that the next month
will also have an outbreak. Also, we predict outbreaks happen
within a time frame of t months which cover t − 1 periods.
These cumulative relationships can be exploited to improve
the prediction accuracy. Therefore, for each province Pi and
prediction time t, we propose to propagate the results from
t − 1 to t as follows: eit = eit + βeit−1, where β ∈ [0, 1]
(default β = 0.3) is a predefined propagation constant to
control the influence between two consecutive prediction time
points, i.e., to limit the effect of wrong outbreak predictions
being propagated into the future.

Phase F: Final decision. Since the outcome eit of Pi at
time t is a continuous value, we need to find a cut-off
threshold γit to determine an outbreak (i.e., eit ≥ γit). Here
we exploit the training data to automatically find an optimal
cut-off threshold γit for Pi. First, for each time t, we get
the ensemble results for the training set train(Pit). Second,
we repeat the proximity-based and time-based propagation in
Phases D and E on the training outcomes. Lastly, we use a
grid-search with a step of 0.01 from 0 to 1 to find γit that
maximizes a predefined classification scoring function, e.g.,
accuracy, balanced accuracy or F1-score. In this work, we
employ the balanced accuracy to balance both the outbreak
and non-outbreak prediction. This fits well with our problem
where the non-outbreak events dominate the outbreak ones,
leading to data imbalance. The identified value γit will be
used as a cut-off threshold to detect DF outbreaks.

IV. EXPERIMENTS

Experiments are conducted on a workstation with 4.0Ghz
CPU and 32GB RAM using Python 3. All codes and data will
be publicly available upon request.

Parameters. Unless otherwise stated, we use the default
parameters (c.f. Section III) for PT-Ensem. For other prediction
models, we use grid-searches to find suitable parameters for
them to ensure fair comparisons.

Prediction evaluations. We split the data into a training set
from 1997-2013 and a test set from 2014-2016. To evaluate
the performance of the binary outbreak prediction, we use 3
common measures: balanced accuracy, specificity and sensi-
tivity. Specificity is the ratio of number of correct predicted
normal months and total number of normal months. Sensitivity
is the ratio of number of correct predicted outbreak months and
total number of outbreak months. Balanced accuracy, which
is the average of specificity and sensitivity, is used as the
main evaluator due to its effectiveness on binary classification
problem, especially when the label is imbalanced [37].

Performance of different methods. Figure 3 shows the per-
formance of 19 different prediction models (including recent
highly-rated models e.g., CatBoost [31] or LightGBM [30]) on
all provinces using their own training data. Due to the class
imbalance between outbreak (1) and none-outbreak (0), we use
class weights as ratios between outbreaks and non-outbreaks
to improve the performance. In terms of overall performance
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Fig. 3. Performance of 19 different prediction models without data aggrega-
tion: (top) performance metrics for all provinces at 1-month ahead prediction
(Whisker boxplots with green dots being mean values); and (bottom) perfor-
mance metrics for 1-6 months ahead prediction of some models
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Fig. 4. Performance (balanced accuracy) of different models w.r.t. different
values of κ in our data aggregation scheme (κ = 0 and κ =∞ mean we do
not use data aggregations and aggregate all provinces together, respectively)

(balanced accuracy), SVM with Radial Basis functions (SVM
(RBF)), XGBoost and Catboost are among those with fre-
quent top results, while KNN, SVM with polynomial function
(SVM(PolyF)) and Gaussian Naive Bayes (Gaussian NB)
constantly have worst outcomes. Most methods show very high
specificity and very low sensitivity, meaning that they fail to
predict most outbreaks and tend to put everything as normal.
Moreover, the longer we predict into the future, the worse the
overall performance obviously due to larger uncertainty.

Effect of training data aggregations. Figure 4 presents the
performance of different top models (the rest is omitted for
clarity) using the data aggregation approach described in Phase
C (c.f. Section III). When data of neighbor provinces are
started to be aggregated to train prediction models (κ = 1),
the prediction accuracy increases significantly in all cases as
expected (richer and more diverse data help to reduce both
over- and under-fitting problems). In major cases, when κ is
large enough, the performance starts to decrease since data
from too differing provinces may be mixed, thus decreasing the
training data quality. However, the overall performance very
rarely drops below the non-aggregation ones (κ = 0). Peak
results are typically acquired with κ from 1 to 5.

Performance of our PT-Ensem approach. Based on the



Fig. 5. Performance of PT-Ensem compared to the best 8 prediction models
and the traditional ensemble method (majority votes) for all provinces. (Top)
Performance metrics for 1-month prediction of all provinces in Whisker box-
plot with green dots as mean values. (Bottom) Averaged balanced accuracies
for 1-6 month prediction on all provinces. The Min and Max lines represent the
highest and lowest balanced accuracy of all 8 selected models with different
data aggregation values (κ = (1 − 6,∞)). We only use default parameters
for Ensemble and PT-Ensem
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Fig. 6. Averaged balanced accuracies of PT-Ensem with/without proximity
and time propagations for all provinces with different parameters κ = 1-5
and λ = 1-2. A point below the crossline means using proximity and time
propagations are better than not using them

above studies, we choose the 8 best prediction models to use
with PT-Ensem (c.f. Figure 5). For 1-month ahead prediction
(Figure 5 (top)), PT-Ensem significantly outperforms all other
methods with the averaged balanced accuracy of 0.856 over all
provinces compared to the best result of 0.809 of SVM (RBF).
It also outperforms state-of-the-art majority vote ensemble
approach with a score of 0.803. While its averaged specificity
is slightly lower than others (0.849), the averaged sensitivity
is significantly different to the second best models (0.845
vs. 0.537, respectively), indicating a dramatic improvement in
DF outbreak prediction capability without raising many false
alarms. Figure 5 (bottom) further compares PT-Ensem with
the best possible results of all its member models for 1 to
6 months prediction. While the traditional Ensemble approach
helps to increase the performance in most cases, it is still lying
below the max line. However, PT-Ensem significantly boosts
the overall performance over the limitations of its components
in both long and short-term predictions. These performance
improvements come from the proximity and time propagation
in Phases D and E (c.f. Section III) as analyzed below.

Effects of the proximity and time propagation. Figure 6
compares the averaged balanced accuracy for all provinces
with and without the proximity and time propagation. Over 60
studied cases, using proximity helps to improve the prediction
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different parameters
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Fig. 8. Performance of PT-Ensem compared to LSTM-ATT (the most recent
DF incidence rate/case prediction method for Vietnam) using Whisker boxplots

accuracy in 52 cases (86.6%). While using time-propagation
helps to improve the results in 41 cases (68.3%). The proximity
propagation has stronger effects than time-propagation (points
move further down from the crossline). The further the predic-
tion, the weaker the propagation effect (more points above the
crossline). This is quite obvious since more wrong results will
be propagated among provinces and across prediction periods.

Parameter analysis. The effects of parameters κ, λ, α and
β on the averaged balanced accuracy of PT-Ensem for all
provinces are shown in Figure 7. When the influence areas
are expanded (i.e., κ and λ are increased), the prediction
accuracy increases and reaches peak performance at κ = 1-
2 and λ = 1-2 before dropping (especially for λ). The main
reason is that the more provinces involved in the propagation,
the more chance wrong prediction results are propagated to
others, leading to performance degradation. We suggest to keep
κ = 1-4 and λ = 1-2. The two parameters α and β are used to
control the influences among provinces and time periods, i.e.,
propagating good predictions and restricting bad predictions
towards others. Overall, when α 6= 0 and β 6= 0 (i.e., use
propagation), the performance increases compared to not using
them (the same results can be seen in Figure 6). The peak result
is around α = 0.1 while varying significantly from 0.2 to 1.0
for β. So, we suggest to keep α ∈ [0.1, 0.2] and β ∈ [0.2, 1].

Comparisons with deep learning approaches. In [10],
various deep learning methods (LSTM, CNN, Transformer,
and LSTM-ATT) and most common traditional methods
(SARIMA, Poisson Regression, XGBoost, and SVR with
Radial Basis and Linear kernels) are employed to predict
DF incidence rates using climate data for 20 provinces of
Vietnam. Thus, we adapt these methods to our problem by
using predicted incidence rates from 1 to 6 months to calculate
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Fig. 9. Links between climate factors and DF in Ha Noi (capital of Vietnam).
(A) Monthly rainfalls and DF incidence rates from 1997-2016 (yellow and
purple circles indicate extreme rain events and DF outbreaks, respectively).
(B) The backward probability that a DF outbreak has a previous rainfall event
at a specific time (DF from TRain) and the forward probability that a rainfall
event has a follow up DF outbreak at a specific time (TRain to DF). (C)
Similar to (B) but with cumulative probabilities. (D) The backward cumulative
probability between DF and all climate factors. (E) The forward cumulative
probability between DF and all climate factors

the outbreaks as described in Section II. Note that this is
also the most common way to predict DF outbreaks in the
literature (i.e., not predict outbreak explicitly but via the
incidence rates/cases, e.g., [8], [10]). Similar to [10], we use
grid-searches to find the best parameters for these methods to
ensuring fair comparison with our method.

Figure 8 shows the averaged balanced accuracy, specificity
and sensitivity of LSTM-ATT, the best method reported in [10],
and PT-Ensem over all provinces. PT-Ensem completely dom-
inate LSTM-ATT in all prediction periods. E.g., the LSTM-
ATT/PT-Ensem balanced accuracy results for 1 to 6 month
ahead predictions are 0.765/0.856, 0.722/0.784, 0.704/0.773,
0.693/0.775, 0.674/0.751, 0.645/0.743, respectively. Overall,
the performance differences are from 6.17 to 9.72 percentage
points over 100, a significant improvement. The Whisker
boxplots also show that PT-Ensem provides stable (compact)
high quality results for all provinces, while the results of
LSTM-ATT vary significantly on different provinces.

Runtime comparisons. Another notable advantage of PT-
Ensem, compared to LSTM-ATT, is its much lighter compu-
tational cost. While it takes PT-Ensem less than 30 minutes to
predict all provinces (default parameters), LSTM-ATT needs
more than 12 hours to complete (with optimal found parame-
ters) (i.e., around 24x slower than PT-Ensem).

Exploring Extreme climate and DF outbreaks. In this part,
we illustrate how to explore the links between climate and
DF using the forward/backward relationship functions (c.f.
Definition 3). Due to space constraints, we present only some
findings here, leaving the rest for a longer version of this paper.

Figure 9 illustrates the relationships between climate fac-
tors and DF outbreaks for Ha Noi. There are 31 (12.9%)
DF outbreaks and 62 (25.8%) extreme rainfall events dur-
ing 20 years. The backward functions

←−
pdf (DF,TRain)(t) and

←−
cdf (DF,TRain)(t) in (B and C) shows the probability that a DF
outbreak has an extreme rainfall occurrence exactly t month
or within t months before it (t = 0 means co-occurrence).
E.g., there is a 19.3% chance that a DF outbreak has a
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Fig. 10. Forward/backward relationships between climate and DF for some
subprovinces

previous rainfall event at exactly 3 month. Within 4 months,
the cumulative chance is 100%, i.e., whenever we have a DF
outbreak, we know that extreme rainfall events occur within 4
months before. These match well with reported lag times of
around 3 months between a peak rainfall and a peak in DF
incidence for Hanoi [3], [23]. However, while peak analysis
can miss important unusual outbreaks due to its averaged
scheme, this backward function shows a more detailed story.
On the other hand, the forward functions

−→
pdf (TRain,DF )(t)

and
−→
cdf (TRain,DF )(t) in (B and C) tell us the probability of

a DF outbreak after an extreme rainfall event, e.g., 3.5% after
exact 3rd month and 33.9% after 3 months. These indicate that
extreme rainfall events are not a sole cause of DF outbreaks.
This is not a surprise since there are many other known factors
that can affect DF incidence, e.g., geography, urban/rural areas
or socio-ecology factors [5], [14], [34]. (D) and (E) compare
all our 12 climate factors on DF outbreaks (the higher the
values, the stronger the relationships). DF outbreaks are more
likely to be associated to temperature and rainfall events than
evaporation and humidity events (D). And, rainfall events are
more likely to lead to DF outbreaks than all other factors (E).
These match with previous analyses for Hanoi [23] (and other
areas, e.g., Mexico [12]) but contradict [3], where evaporation
and humidity are found to be correlated to DF incidence but not
rainfall and temperature in Hanoi from 2008-2015. One reason
for the disagreement is that they use much less data than us
(8 vs 20 years). Moreover, correlation measurements (on raw
DF incidence data) are very sensitive to small fluctuations in
data, (possibly) leading to missing relationships. In contrast,
our approach focuses on big changes (major points) and thus
is less sensitive to these small fluctuations.

Different provinces show (significant) different relationship
patterns between DF and climate. However, neighbor provinces
are more likely to have more similar patterns. E.g., Ha Noi
and its neighbor provinces Hai Phong, Nam Dinh, Thai Binh,
Ninh Binh, Vinh Phuc, and Hung Yen have rainfall as the most
influential forward factor, except Hai Duong, where it is hard
to distinguish effects of different climate factors. This again
confirms the intuition behind our data aggregation scheme as
shown above. In Figure 10, we show the mean forward and
backward relationships of all provinces in some subregions to
have a bigger view from region perspectives. In Red River
Delta, DF and climate have stronger links than all other areas
(indicated by higher forward/backward values). Rainfall is the



strongest forward factor and temperature is the strongest back-
ward one. Most of its provinces show similar behavior. Many
provinces in Mekong River Delta tend to behave differently.
E.g., AvgHum is the least important factor for Dong Thap and
TEval is the strongest factor, while MinAbsT is the weakest
and nRainDays is the strongest factor for Ca Mau and Bac
Lieu. nRainDays and MinAbsT are the strongest and weakest
ones overall but their differences to others are not very clear.
Northern and Southern central coastal regions seem to have
very similar behavior. Rainfall is the weakest backward factor
but is among the strongest forward factors. nRainDays is the
weakest forward but among average backward factors. Similar
to Mekong River Delta, the relationships between climate and
DF are quite diverse. For Southeast subregions MinAbsT is
the weakest factor and TEval is the strongest one. For other
subregions, no clear dominant climate factors are found.

V. RELATED WORKS AND DISCUSSION

Dengue fever and climate. Climate factors are known to have
direct impacts on mosquito development and behaviors [4],
[15], [17], [38], thus affecting DF incidence. E.g., the develop-
ment rates of Ae.aeypti mosquito increases when temperature is
from 12°C to 30°C but drops quickly after 40°C [4]. Mosquito
bite rate increases with temperature in Thailand [38]. Barrera
et al. [17] report that high rainfall increases mosquito density
in Puerto Rico. However, too high rainfall can flush out their
breeding sites, thus reducing their numbers [15].

Other researches attempt to directly elucidate the lag cor-
relations between different climate factors and DF incidence
rates/cases [3], [21], [22]. These can be used to design effective
warning systems by choosing highly correlated factors as pre-
dictors or designing look-back parameters in regression models
[11], [21]. However, the results vary considerably depending
on studied areas and time periods. E.g., Do et al. [23] report
positive correlations between rainfall and temperature and DF
incidence for Ha Noi, Vietnam with lag times 0-3 months and
0-2.5 months between peaks of rainfall, temperature, and DF,
respectively. However, Tran et al. [3] report no correlation
between rainfall and temperature on DF incidence for the
same city but with different wards and time periods. Minimum
temperature is reported to be correlated with DF incidence
with 1-2 months lag for Mexico [12] and Guangzhou, China
[15]. Many other papers report positive/negative correlations
between DF incidence and other climate factors such as
sunshine hours [3], [39], wind speed [15], humidity [3], [15],
[39], evaporation [3], and El Niño [12]. Though the finding
relationships can be location-specific, the frequent reported
correlations make climate the most widely used predictor for
building early warning systems for DF [2]. However, these also
make building a general prediction model that can work well
for different areas a challenging task. PT-Ensem does not rely
on any specific lag regression models like [12], [13], thus it can
be used with other climate data in other areas straightforwardly
without any expert knowledge.

Our forward/backward relationship functions provide a
different view based on significant data points on the links
between climate and DF. Compared to traditional correlation
analysis, it is less sensitive to small or noisy data values, thus
can reflect better the relationship between them. Our study also

shows varying relationships between climate and DF across
different provinces and regions.

Dengue fever and other factors. Despite being a climate
sensitive disease, many other non-climate factors can affect
the DF incidence. E.g., Stoddard et al. [16] report that local
human movement can lead to the spread of dengue virus.
Barrera et al. [17] point out significant correlations between
human behaviors such as water storage or garbage collection
to DF incidence in Puerto Rico. Many other factors have been
reported including (but not limited to): education [36], degree
of urbanization [1], and socio-economic covariates [18]. These
factors have been used as predictors for many proposed models
[5], [9], [27]. E.g., Liu et al. [9] use spatial interactions of
human movements among regions as input features to predict
DF incidence in Guangzhou, China. The neighborhood graph
of PT-Ensem also implicitly captures the movement of people
across nearby provinces. Compared to climate data, many of
these non-climate data are very hard to collect and historical
data may not be fully available to put into prediction models,
thus limiting their usability. In this work, we only have climate
data to study but exploring the performance of PT-Ensem with
non-climate data is an interesting task in the future.

Dengue fever predictions. Most of existing works for DF
incidence/outbreak prediction are built upon linear regression
models, e.g., SARIMA [11], Poisson regression [12], [26],
GAMs [7], [8], and GLMMs [12]. These models heavily rely
on expert knowledge to analyse the lag relationships between
input data and DF incidence to choose suitable regression
windows as well as to design different model components.
Thus, they lack flexibility and can hardly be used with other
data and other areas without enormous redesign efforts, a
non-trivial task. Hence, we hardly see comparisons among
these models in the literature. Among these models, spatial-
temporal Bayes approaches like [12], [13] are also based on
the same idea of linking nearby provinces together to capture
the spatial aspects of DF transmissions [16] like PT-Ensem.
They all combine features from other provinces as additional
components in their prediction models. This is fundamentally
different to the data aggregation scheme via a proximity graph
of PT-Ensem (Phase D) where we do not extend the prediction
models with additional features but only combine data from
other provinces to extend training sets. Moreover, PT-Ensem
has two other unique extra schemata where the predicted
results are propagated among provinces guided by a proximity
graph and among different predicted time periods. To the best
of our knowledge, none of the works has these propagation
features. In [7], transfer learning is combined with LSTM
for DF incidence prediction. The model is first trained on
Guangzhou data. The pretrained model is then used as a
starting point to train other cities. This approach somehow
resembles the aggregation scheme of PT-Ensem. However,
when facing provinces with very different climate patterns
and value ranges like Vietnam (c.f. Figure 1), it can bring
up negative effects as seen in Figure 4, especially when raw
data is used. PT-Ensem has an underlying proximity graph to
prevent excessively different data being used in the prediction
models and an event encoding scheme to flatten the differences
in value ranges. In [5], [34], [40], graphs that represent human
movements are also constructed and are used as input features
for prediction models. In contrast, PT-Ensem only uses its
proximity graph to guide the aggregation and propagation



phases. In [10], various deep learning methods (LSTM-ATT,
LSTM, CNN, and Transformer) are employed to predict DF
incidence for 20 provinces in Vietnam using only climate data.
Comparison among PT-Ensem and these methods are studied
in Section IV where PT-Ensem significantly outperforms them
in terms of prediction accuracy and runtimes. Superensem [13],
a GLMM model, also predicts outbreaks for all provinces in
Vietnam like PT-Ensem. Comparison between them is thus
interesting. However, Superensem is heavily tailored using
many specific data which is unfortunately out of our reach
while adapting it to work with our data is a non-trivial task as
mentioned above. Superensem and others [8], [24] also employ
ensemble techniques like Phase C of PT-Ensem. However,
there are only a few prediction models involved (only one
in [12], [24] but with different parameters). They also limit to
the use of majority voting scheme in most cases.

VI. CONCLUSION

In this paper, we introduce for the first time a novel
method, called PT-Ensem, for predicting DF outbreaks for
multiple areas at the same time. Compared to all existing
works, PT-Ensem is unique in the way it compresses input
data into sets of extreme climate events before using them to
predict DF outbreaks and aggregate training data and propagate
predicted results among similar provinces with guidance from
a proximity graph. We employ PT-Ensem to predict the DF
outbreaks from 1 to 6 month ahead for all provinces in Vietnam
as a case study. Extensive experiments have been conducted
using PT-Ensem and a wide range of 24 different competitors
from traditional methods like Random Forest, Extra Tree to
recent approaches like LightGMB, Catboost and deep learning
techniques like LSTM-ATT, LSTM, CNN and Transformer.
PT-Ensem significantly outperforms others in terms of both
long-and short-term prediction accuracy. Detailed analysis
shows that the performance improvement of PT-Ensem comes
from all three major parts: aggregation, proximity propagation,
and time propagation. In terms of runtime, PT-Ensem is orders
of magnitude faster than deep learning approaches. Moreover,
PT-Ensem is not overly reliant on expert knowledge. Thus, it
can be easily applied to other areas and climate data. We also
demonstrate how the forward/backward probabilistic functions
of PT-Ensem can be used to study the effects of different
climate factors on DF incidence in Vietnam and provide a
different view to common correlation analysis approaches used
in other works. Our future works aim at exploring other non-
climate factors into PT-Ensem to improve the performance,
using PT-Ensem to study DF outbreaks in other areas, and
studying other transmissible diseases like flu or diarrhea.
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