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Abstract: Pseudomonas aeruginosa is an important opportunistic human pathogen. Using its arsenal
of virulence factors and its intrinsic ability to adapt to new environments, P. aeruginosa causes a
range of complicated acute and chronic infections in immunocompromised individuals. Of particular
importance are burn wound infections, ventilator-associated pneumonia, and chronic infections in
people with cystic fibrosis. Antibiotic resistance has rendered many of these infections challenging to
treat and novel therapeutic strategies are limited. Multiple clinical studies using well-characterised
virulence factors as vaccine antigens over the last 50 years have fallen short, resulting in no effective
vaccination being available for clinical use. Nonetheless, progress has been made in preclinical
research, namely, in the realms of antigen discovery, adjuvant use, and novel delivery systems.
Herein, we briefly review the scope of P. aeruginosa clinical infections and its major important
virulence factors.

Keywords: Pseudomonas aeruginosa; vaccines; cystic fibrosis; antibiotic resistance; mucosal immunity

1. An Introduction to Pseudomonas aeruginosa

The World Health Organisation (WHO) has prioritised Pseudomonas aeruginosa as
one of the top three critical pathogens requiring urgent research into new treatments [1].
Alongside Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter bau-
mannii, and Enterobacter spp., P. aeruginosa is one of the multidrug resistant (MDR) ESKAPE
pathogens [2]. These pathogens contribute to significant morbidity, mortality, and cost
for healthcare infrastructures across the globe [3]. A recent systematic review and meta-
analysis by Lansbury et al. [4] identified P. aeruginosa as the second most common bacterial
co-infection isolated from patients with COVID-19. This causes notable exacerbations of
disease and an increase in the complexity of clinical management.

P. aeruginosa is a virulent bacterium, with its cell surface structures, secreted com-
pounds and biofilm formation being the major contributors to this bacteria’s pathogenicity.
The combination of virulence and antibiotic resistance allows P. aeruginosa to optimally
cause complex infections in vulnerable immunocompromised patients, which are challeng-
ing to treat. With the increasingly frequent acquisition of MDR strains, we are approaching
a time where there are no remaining therapies to treat left P. aeruginosa infection. As such,
novel preventative and therapeutic strategies are warranted. Vaccines are a promising
alternative to antibiotics to help prevent P. aeruginosa infections in susceptible individuals.
Unfortunately, despite extensive research efforts, there are currently no licensed vaccines
available. In this review, we provide an account of vaccine clinical trials against P. aeruginosa
and discuss recent advances and developments in pre-clinical research which aim to de-
velop an efficacious vaccine. To provide insights into the complex nature of this pathogen,
and thereby the challenges surrounding development of an efficacious vaccine, we begin
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by providing an overview of the key virulence factors important in the pathogenesis of
P. aeruginosa infections and subsequent infections caused by this pathogen.

2. Virulence Factors

The pathogenic profile of P. aeruginosa stems from a variable arsenal of virulence
factors which together cause infection throughout the body at a range of sites. While many
such factors are highly immunogenic, they facilitate the bacteria’s ability to evade and
counteract the host immune response. A comprehensive overview of such factors is beyond
the scope of this review, and therefore we refer the reader to recently published reviews for
more in-depth information on this area [5,6]. Herein, we provide an overview of the main
virulence factors of pivotal importance to the pathogenesis of P. aeruginosa, as shown in
Figure 1.
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Figure 1. Key virulence factors important in the pathogenesis of P. aeruginosa infections.

2.1. Biofilm Formation

Biofilms are a hugely complex architecture of cells and a matrix of extracellular se-
creted compounds. Cells within biofilms adhere to a surface via flagella and type IV pili
and multiply to form microcolonies [7]. Further division and matrix production provide
structural stability and allow the biofilm to grow and expand [8]. The matrix consists
of three exopolysaccharides (Psl, Pel and alginate) [9], which stabilise the overall struc-
ture while additionally functioning to impair bacterial clearance and a variety of host
immune responses [10]. Extracellular DNA is released via cell lysis and the formation
of neutrophil extracellular traps (NETs), which provide a range of functions [9]. The re-
sulting biofilm is extremely resistant to immune clearance, environmental changes, and,
importantly, antibiotics.

2.2. Antimicrobial Resistance

Antimicrobial resistance (AMR) in P. aeruginosa not only stems from the formation
of biofilms, there are a variety of other important factors. These can be categorised into
intrinsic, acquired, and adaptive mechanisms, as outlined in Table 1.
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Table 1. Mechanisms of antimicrobial resistance in P. aeruginosa.

Intrinsic Acquired Adaptive

Restricted outer membrane permeability Mutational changes Biofilm formation
Antibiotic-inactivating enzymes Over-expression of resistance genes Persister cells

Efflux pumps Horizontal transfer of resistance genes

LPS reduces the outer membrane’s permeability to antibiotics [11]. Additionally, more
than 95% of outer-membrane proteins (OMPs) are in a closed confirmation [12]. Efflux
pumps and antibiotic-inactivating enzymes together inactivate/pump out many major
families of antimicrobials effective against P. aeruginosa, such as aminoglycosides, β-lactams,
and quinolones [12]. Gene mutations can significantly increase expression of these intrinsic
mechanisms in response to environmental stressors [13], which are often numerous during
the host immune response. Horizontal transfer of acquired resistance genes can drastically
amplify resistance across many P. aeruginosa strains [14]. P. aeruginosa has the potential to
form polymicrobial biofilms and infections, which are facilitated through horizontal gene
transfer [15]. These mechanisms of antibiotic resistance unfortunately contribute to a huge
burden of MDR infections, which are difficult to eradicate [16].

3. P. aeruginosa Infections

P. aeruginosa is associated with a diverse spectrum of clinical disease of varying dura-
tion and severity. P. aeruginosa can infect and colonise almost all body systems in humans, as
shown in Figure 2. Diseases range from mild local infections to life-threatening burn wound
infections, bacteraemia, and pneumonia, among others. As an opportunistic pathogen, it
can cause disease in vulnerable immunocompromised patients, and is a particular burden
in intensive care units (ICUs) [16]. The potential target population which would benefit
from an available vaccine is wide-reaching and diverse, encompassing a vast range of
distinct groups.
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Figure 2. The many sites of P. aeruginosa infection throughout the body. Labels in bold and starred
(*) are those infections associated with healthcare or healthcare devices.

The skin plays a vital role in the innate immune system as an anatomical barrier [17].
Moderate and severe burns predispose the affected individual to severe P. aeruginosa in-
fection, which often requires specialist management [18]. Burn patients are at risk of
developing profound systemic bacteraemia and sepsis, with an estimated mortality of
37.5% [19]. A recent study concluded that isolation of P. aeruginosa from any previous cul-
ture from any location increases the risk of developing bacteraemia with this pathogen [19].
In the UK, between 2009 and 2018, the prevalence of P. aeruginosa-associated bacteraemia
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rose by 10.7% to 7.8 per 100,000 population [20]. In military personnel, P. aeruginosa is the
second most common bacteria isolated from combat-associated wounds [21].

P. aeruginosa is a notorious pathogen in nosocomial infections, particularly ventilator-
associated pneumonia [22], central line-associated bacteraemia [23], and complicated
catheter-associated urinary tract infections [24]. Administration of antibiotics and/or
prior hospital/ICU stay increases the risk of acquiring MDR P. aeruginosa [16]. This prior
colonisation increases the risk of developing ventilator-associated pneumonia by up to
eight times [22], and is associated with substantial morbidity and mortality [25]. Mucoid
biofilm formation permits P. aeruginosa to colonise medical equipment, including venti-
lators, catheters, and bronchoscopes [26,27]. Interestingly, a recent review outlined the
burden of highly adapted biofilms within healthcare-associated plumbing devices [28].
These may act as a reservoir for infection and is an excellent demonstration of the bacteria’s
ability to survive and adapt. P. aeruginosa is not only a significant issue in hospitals, it
is a common causative organism in community-acquired pneumonia [29], which confers
additional healthcare spending and is often an adverse prognostic indicator [30,31].

Cystic fibrosis (CF) is a complex systemic disease arising from autosomal recessive
inheritance of dysregulation of the CF transmembrane conductance regulator (CFTR) mem-
brane protein [32]. P. aeruginosa is the most common cause of chronic infection in people
with CF, with up to 80% of individuals infected by adulthood [33]. The tremendous adap-
tive ability of P. aeruginosa is demonstrated in the intricate host–pathogen interactions
which occur in acute and chronic pulmonary CF infections [34]. During acute infection, an
array of virulence factors and antibiotic resistance mechanisms facilitate initial survival.
An abnormally thick mucus layer and variable oxygen and nutrient availability in the CF
lung [32], alongside the presence of high concentrations of antibiotics and a strong and per-
sistent immune response, provides selective pressures and induces genetic diversification
over time [35]. Further adaptation and a switch to more persistent sessile phenotypes of
P. aeruginosa creates immotile, slow-growing colonies with a propensity to form mucoid
biofilms which lead to immune evasion, colonisation, and chronic infection [36]. Therefore,
despite the hostile lung environment in CF, P. aeruginosa can thrive to cause acute and
chronic infections [6], giving rise to significant morbidity and increasing the complexity
of clinical management [37]. A review by Rossi et al. further details the evolution of
P. aeruginosa in the CF lung [34]. Additionally, innate and adaptive immune responses
are greatly impacted in those with CF, allowing the bacteria to more easily cause infec-
tion while providing greater challenge for the development of novel vaccinations [38,39].
P. aeruginosa is a burden in other chronic respiratory conditions as well, such as severe
chronic obstructive pulmonary disease and non-CF bronchiectasis and is associated with
poor local immune responses and clinical outcomes [40,41].

4. A History of Clinical Vaccine Development against P. aeruginosa

Many factors have greatly hindered the development of a successful vaccine against
P. aeruginosa. Its wealth of virulence factors, a large genome facilitating adaptation to
new environments, changing phenotypes between acute and chronic infection, and the
intricacies of the host immune response, among others, make this pathogen an especially
challenging candidate for vaccine development. These obstacles have not dissuaded
research into a vaccine; however, despite over 50 years of research, clinical vaccine develop-
ment for P. aeruginosa has been largely unsuccessful. Along this journey, a small number of
candidate vaccines using well known virulence factors as vaccine antigens have progressed
to clinical trials, although none have been licensed for commercial use. Currently, there
are no ongoing clinical trials investigating vaccines against P. aeruginosa. Table 2 outlines
those studies which have progressed into phase I, II, and III trials, which will be further
discussed below.
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Table 2. A summary of all clinical vaccine trials in P. aeruginosa.

Antigen Formulation Phase Dosage, Administration, Adjuvant Population Outcomes Study and Reference

Lipopolysaccharide

LPS extracts from 7 PA
serotypes (Pseudogen®)

II NS 72 burns Prevented development of sepsis and
subsequent death Alexander and Fisher (1970) [42]

II NS, IM, 5 doses, none 361 cancer
Reduced mortality, slight reduction in
fatal PA infection but associated with

adverse events
Young et al. (1973) [43]

II 6–12 µg/kg, IM, 6 doses, none 12 CF, 22 acute
leukaemia

No clinical benefit, CF patients
showed antibody response adverse
events in 95% leukaemia patients

Pennington et al. (1975) [44,45]

LPS extracts from 16 PA
serotypes (PEV-01)

I 0.5 mL, SC, 3 doses, none 15 healthy Variable antibody response, no toxic
adverse events Jones et al. (1976) [46]

II 0.5 mL, SC, 3 doses, none 746 burns

Reduced mortality in adults and
children, variable antibody response,

overall increase in bactericidal
capacity of blood

Roe and Jones (1983) [47]

II 0.25, 0.5 mL, SC, 3 doses, none 34 CF
No reduction in colonization,

vaccinated and colonized individuals
suffered most rapid deterioration

Langford and Hiller (1984) [48]

LPS extracts from 8 PA
serotypes conjugated to
Exotoxin A (Aerugen®)

I 0.5 mL, SC, 2 doses, none 20 healthy Safe, anti-exotoxin and anti-LPS IgG
produced, boosted at 15 months Cryz et al. (1987, 1988) [49,50]

II 6–12 µg/kg, IM, 3 doses, none 30 CF,
non-colonised

High affinity IgG response to exotoxin
and LPS, no change in clinical status Schaad et al. (1991) [51]

III NS 476 CF No clinical difference between groups
at interim analysis—study stopped Döring (2010) [52]

Flagellum

Monovalent
I 40 µg, IM, NS, Al(OH)3 220 healthy High serum and respiratory mucosal

anti-flagella antibody titres
Crowe et al. (1991) [53]

II 40 µg, IM, NS, none 10 healthy Döring et al. (1995) [54]

Bivalent III 40 µg, IM, 4 doses, Al(OH)3 and
thiomersal 483 CF

Long-lasting serum anti-flagella
serotype-specific antibodies, 34%

protected against acute infection, 51%
protected against chronic infection

Döring et al. (2007) [55]

Alginate 2 preparations of MEP
extracts from mucoid PA I 10, 50, 100, 150 µg, IM, 2 doses, none 28 healthy

Poorly functioning opsonizing
antibodies, not augmented by

booster dose
Pier et al. (1994) [56]
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Table 2. Cont.

Antigen Formulation Phase Dosage, Administration, Adjuvant Population Outcomes Study and Reference

Whole-cell killed Pseudostat® I NS, PO, NS, NS 9 bronchiectasis
Induction of specific lymphocyte

response, decrease in bacterial
sputum counts

Cripps et al. (1997) [57]

I 150 mg, PO, 2 doses, none 30 healthy IgG and IgA opsonizing antibodies,
20 adverse events Cripps et al. (2006) [58]

Outer Membrane Proteins

OprF-OprI systemic
formulation (IC43)

I 20, 50, 100, 500 µg, IM, 4 doses,
Al(OH)3

32 healthy
Complement binding and opsonizing
antibodies present at 6-months post

3rd vaccine
McGhee et al. (1999) [59]

I 100 µg, IM, 3 doses, Al(OH)3 8 burns Well-tolerated, seroconversion in
7 subjects Mansouri et al. (2003) [60]

I 50, 100, 200 µg, IM, 2 doses, Al(OH)3 163 healthy
Safe and well-tolerated, induced
specific IgG response vs placebo,

higher doses were not more effective
Westritschnig et al. (2014) [61]

II 100, 200 µg, IM, 2 doses, Al(OH)3
401 mechanically

ventilated ICU

Increased IgG persisting until day 70
post-vaccination, not powered to
assess infection rates/mortality

Rello et al. (2017) [62]

II/III 100 µg, IM, 2 doses, none 799 mechanically
ventilated ICU

Well-tolerated and immunogenic, no
difference in survival or mortality

vs. placebo
Adlbrecht et al. (2020) [63]

OprF-OprI mucosal
formulation (IC43) I 500 µg, IN, 3 doses 8 healthy Safe and well-tolerated, 6 subjects

showed increased serum IgG and IgA Larbig et al. (2001) [64]

OprF-OprI systemic and
mucosal formulations
(Comparative study)

I/II
Mucosal 1 mg, IN, 2 doses

(+1 booster), noneSystemic 100 µg, IM,
(1 booster), Al(OH)3

12 healthy
(6 mucosal only,
6 mucosal with

systemic booster)

Safe and well-tolerated, immunogenic
in all, serum IgG higher with

systemic booster

Göcke et al. (2003) [65]
Baumann et al. (2007) [66]
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4.1. Lipopolysaccharide (LPS)

Alexander and Fisher published the first paper investigating P. aeruginosa vaccinations
in a clinical setting in 1970 [42] using a heptavalent formulation of LPS extracts from
seven separate serotypes of P. aeruginosa (Pseudogen®) to immunise burns patients. It
was well tolerated, prevented the development of sepsis, and reduced mortality, and
therefore underwent further evaluation in individuals with CF and acute leukaemia [43–45].
While showing promising immunogenicity, no clinical benefit was observed alongside high
levels of toxicity, particularly in those with acute leukaemia. The PEV-01 vaccine used a
formulation of LPS extracts from sixteen P. aeruginosa serotypes [46]. Studies in healthy
volunteers and a large population of burn patients (n = 746) demonstrated that the vaccine
was safe and well-tolerated and reduced mortality in both adult and paediatric burns
patients [46,47]. Unfortunately, a phase II study in individuals with CF over three years
did not show any reduction in colonisation [48], and individuals who were both colonised
and vaccinated suffered significant and rapid clinical deterioration.

The most successful LPS-based vaccine was a conjugate vaccine consisting of a com-
ponent of LPS, the O-polysaccharide from eight P. aeruginosa serotypes and exotoxin A
named Aerugen®. A phase I study in healthy volunteers demonstrated safety, while the
vaccine induced production of anti-LPS and anti-exotoxin IgG antibodies which functioned
to both opsonize and neutralise P. aeruginosa and was boosted at 15 months [49,50]. A
phase II study was carried out in CF patients not colonised with P. aeruginosa and initially
showed the production of high-affinity anti-LPS and anti-exotoxin IgG, but had no impact
on clinical outcome [51]. Twenty-six of the initial thirty patients were followed-up over
ten years while receiving yearly booster immunisations [67]. This study showed very
encouraging results, indicating a longer time to infection in those vaccinated, and overall
32% of vaccinated individuals suffered from chronic infection compared with 72% in the
matched placebo control group. Vaccination was associated with better preservation of
lung function and an increase in body weight [67], possibly indicating an improvement
in overall health status. Previous studies using this vaccine focussed on investigating the
humoral immune response. A small study in fifteen healthy volunteers found vaccination
induced high levels of IFN-γ and TNF-α production from antigen-stimulated lymphocytes,
indicating a more Th1-biased response [68].A large-scale randomised placebo-controlled
phase III trial in CF patients was commenced; however, the study was stopped before it
reached its endpoints as interim analysis revealed no significant difference between placebo
and control groups [52].

4.2. Alginate

Individuals with CF who are not colonised with mucoid P. aeruginosa appear to
produce opsonising and phagocytic antibodies against alginate (mucoid exopolysaccharide,
MEP) [69,70]. While beneficial, these antibodies are often insufficient to eliminate the
bacteria upon exposure, and prevent the establishment of future chronic infection [69].
Therefore, an enhancement of the immune response against alginate makes it an attractive
candidate for therapeutic and prophylactic vaccination. In a phase I study assessing a range
of MEP extracts from a mucoid strain of P. aeruginosa, extracts of larger molecular weight
induced opsonising antibodies for up to two years post-vaccination; however, the overall
immunogenicity across the study was poor [56].

4.3. Flagellar Antigens

Phase I and II studies using flagellar components demonstrated a significant, long-
lasting increase in IgA and IgG anti-flagella antibodies in both the serum and respiratory
mucosa, with a good safety profile [53,54]. A phase III double-blinded randomised placebo-
controlled trial was subsequently carried out in 483 CF patients in 2007 [55] using a bivalent
flagella vaccine formulation. Thirty-four percent of participants were protected against
acute infection and 51% were protected against chronic infection, which unfortunately
did not achieve the primary outcome of 66%. While protecting against strains with flagel-
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lar subtypes included within the vaccine formulation, this immunisation did not protect
against P. aeruginosa serotypes with different flagellar subtypes, with 24% of the total
non-vaccine flagellar subtypes identified being isolated from subjects in the intervention
group [55]. Therefore, this vaccination has not undergone further development [52]. Het-
erogeneity in flagellar subtypes and lack of conservation across P. aeruginosa strains is a
tremendous challenge that must be overcome to facilitate the use of flagellar antigens as
vaccine candidates.

4.4. Whole-Cell Killed

Whole-cell killed P. aeruginosa vaccines have not been extensively investigated in
clinical studies. An orally administered formaldehyde-inactivated strain of P. aeruginosa
named Pseudostat® is currently the only formulation which has reached clinical trials. A
phase I trial in nine bronchiectasis patients demonstrated a protective immune response
within the lung with the stimulation of specific lymphocytes [57]. A further phase I study in
thirty healthy volunteers induced specific IgA and a sustained rise in IgG antibodies against
LPS, which functioned to opsonise P. aeruginosa and promote phagocytosis in a human
macrophage cell line [58]. Twenty subjects unfortunately experienced a range of adverse
events, including upper respiratory tract infections, gastrointestinal, neurological and
musculoskeletal disorders; however, they were not considered to be clinically significant or
attributable to the study vaccine.

4.5. Outer Membrane Proteins

Outer membrane proteins F (OprF) and I (OprI) are highly immunogenic and highly
conserved across all P. aeruginosa strains [71]. IC43 is a recombinant vaccine compris-
ing histidine-tagged fusion proteins of conserved epitopes of OprF and OprI: Met-Ala-
(His)6OprF190–342-OprI21–83 [61]. Preclinical investigation of IC43 in mice demonstrated
a strong safety profile and was highly protective, inducing antibodies which promoted
the complement-dependent opsonisation of P. aeruginosa [72,73]. A small phase I study in
32 healthy volunteers assessed a range of dosages from 20–500 µg adsorbed onto Al(OH)3
showed that the higher doses of 100 and 500 µg induced increases in vaccine-specific
complement-binding and opsonophagocytic antibodies which were still present at six
months post-vaccination [59]. These findings were reinforced in a small phase I study of
eight burn patients which confirmed the potential of IC43 to be used in the management of
burn wounds; none of the eight patients exhibited P. aeruginosa infection before, during, or
after vaccination [60].

Further to this, a phase II trial of 401 mechanically ventilated ICU patients revealed
that IC43 was most safe and tolerable at 100 µg without Al (OH)3 adjuvant, administered
intramuscularly twice in a seven-day period [62]. This dose and formulation of IC43
resulted in the highest levels of specific vaccine-induced anti-OprF/I IgG antibodies, which
remained detectable at 90 days [62]. The results of this study led to further evaluation
of this vaccine formulation in a large-scale multicentre randomised placebo-controlled
phase III trial in 799 medically ill mechanically ventilated ICU patients [63]. This trial
assessed the safety, immunogenicity, and overall effect on invasive P. aeruginosa infections
and mortality. Survival, all-cause mortality, and the rates of invasive or respiratory tract
P. aeruginosa infections did not differ between the IC43 and placebo group. While achieving
good immunogenicity and safety, it unfortunately showed that the efficacy of IC43 as a
vaccine candidate is not evident in a large-scale study despite promising results in earlier
phase trials. P. aeruginosa airway colonisation or infection often occurs early during an
ICU stay [74], and while demonstrating high immunogenicity, IC43 only induced an IgG
response following this initial colonisation. This may open a door to evaluating the role of
prophylactic administration of IC43 in a high-risk population who may require frequent
ICU care or admission following elective surgery, which has not yet been investigated.

A mucosal formulation of IC43 has been developed [65,66], and a phase I/II com-
parative study between systemic and mucosal vaccines was carried out [66]. A total of
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twelve healthy participants received two doses of an intranasal vaccination followed by a
subsequent booster of either an intranasal or intramuscular dose. All subjects demonstrated
an IgG and IgA-mediated immune response both in the serum and lower airways and the
mucosal immune response was significantly higher in the intranasal booster group [66].
Similar results were obtained when a further trial was conducted in twelve individuals
with chronic lung diseases [75]. Assessment of different vaccination protocols or even fur-
ther assessment of the mucosal IC43 formulation has yet to be investigated in any studies
outside this small phase I/II study.

5. New Developments in P. aeruginosa Vaccinology
5.1. Immune Response against P. aeruginosa and Its Importance in Vaccine Design

All branches of the immune system have been implicated to work in concert to protect
the host against P. aeruginosa [76], including innate, adaptive, and mucosal responses, as
shown on Figure 3. Systemic antibody and CD4+ T cell responses alongside local mucosal
responses have all been demonstrated to play key roles in complete protection against
infection [10,77–79].
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Figure 3. A summary of the key aspects of the host immune response against P. aeruginosa infection.

The immune system recognises specific P. aeruginosa pathogen-associated molecular
patterns (PAMPs) via Toll-like receptors (TLRs), which stimulate a strong initial inflam-
matory immune response. Lipopeptides, LPS, flagellin, and non-methylated bacterial
CpG DNA are recognised by TLR2, 4, 5, and 9, respectively [80]. The initial inflammatory
response recruits neutrophils and macrophages to the site of infection. The delicate bal-
ance between cellular infiltration and inflammation during the innate immune response is
vital [81]. Overactive responses cause excessive host tissue damage while an underactive
response results in insufficient clearance and an increased likelihood of the establishment
of chronic infection [81]. The complement system plays a role in the innate response to
P. aeruginosa as well, most notably in biofilm infections [82].

Important T cell responses have been well characterised, mainly Th1, Th2, and Th17,
however these are largely underutilised in vaccine design, especially in clinical studies. B
cells and their role in protection against P. aeruginosa are incompletely understood. In fact,
high anti-pseudomonas antibody titres in patients with CF correlate with poorer clinical
outcomes, and are often an adverse prognostic indicator [83].

In the field of bacterial vaccine development, in particular with P. aeruginosa vaccines,
it remains unclear what constitutes a protective immune response. The immune response
against P. aeruginosa is significantly complex in the CF lung. In CF patients with chronic
infection, a vaccine-induced immune response has the potential to allow the clearance
of persistent and recalcitrant P. aeruginosa infection. However, vaccination may elicit an
inappropriate and undesired side effect of increased pulmonary inflammation which serves
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to further enhance tissue damage beyond that already observed in the CF lung [84]. This
important fact is currently an issue in P. aeruginosa vaccine development, and must be
addressed in order to ensure safety in this key patient population.

Advantages of Mucosal Immunity

Mucosal surfaces are the first portal of entry to the body which P. aeruginosa exploits
to cause infection and establish colonization. Administration of a vaccine at the mucosa to
promote an increased mucosal immune response to prevent or treat infection would be su-
perior to other methods of immunisation. Furthermore, mucosal vaccines offer a multitude
of advantages over traditional systemic vaccination [85]. Major advantages include:

1. Sites of mucosal administration are typically easily accessible and highly vascularised,
allowing for rapid antigen uptake;

2. Stimulation of all arms of the immune system—antigen-specific IgA at the mucosa,
systemic IgG, and cell-mediated responses;

3. Existence of the “common mucosal immune system” confers an immune response at
mucosal sites distant from the site of vaccine delivery;

4. No requirement for needles during administration, thus potentially increasing uptake
and eliminating the risk of transmitting blood-borne diseases such as hepatitis B
or HIV.

While obviously advantageous, thus far only a small number of preclinical studies
have investigated vaccine-induced mucosal immunity against P. aeruginosa, and only a
single mucosal formulation has ever been trialled in humans [66,75].

5.2. Lessons from the Past: Enhancing and Optimising Unsuccessful Clinical Vaccines

In the field of P. aeruginosa clinical vaccine development there appears to be a lack of
translation of encouraging early phase trial results into meaningful significant results in
large cohorts of real-world patients. Therefore, alternative approaches to optimize these
unsuccessful vaccine antigens should be explored.

Whole-cell killed vaccines have been further investigated in preclinical P. aeruginosa
vaccine development. They are attractive candidate formulations, as pathogen-associated
molecular patterns (PAMPs) act as adjuvants and the cell corpuscles function as delivery
systems for a range of protective antigens [86]. Hydrogen peroxide bacterial inactivation
is associated with reduced toxicity, overall increased immunogenicity, and more diverse
immune response when compared with formaldehyde inactivation [87]. Novel X-ray inac-
tivated whole-cell P. aeruginosa vaccine greatly boosted cell-mediated immune responses,
Th1 and Th2 cytokine profiles, and protected against multiple strains of P. aeruginosa [88].
Live attenuated vaccines function similarly to whole-cell killed formulations; however, the
risk of reversion to virulence often limits their use in humans. A killed but metabolically
active attenuation method has a greater safety profile [89], and was associated with a broad
humoral response alongside stimulation of Th1, Th2, and Th17 cell activation.

The IC43 vaccine demonstrated high immunogenicity in clinical studies; however, it
was not associated with an improvement in clinical outcomes [63]. An approach by Jing et al.
showed that oligomerisation of IC43 into a heptamer led to an improved efficacy in vivo [90].
Immunisation with the resulting heptamer reduced bacterial burden and inflammation
in the lungs while inducing a strong Th2 response. The potential to improve previously
trialed antigens by altering their structure, conjugating to other antigens/adjuvants, or
using in other delivery systems is another avenue of research. A small study in 2010 [91]
showed that administration of a further IC43 vaccine dose to patients included in the 1999
clinical trial [59] elicited high OprF/I-specific antibody levels. Furthermore, vaccinated
sera inhibited IFN-γ binding to P. aeruginosa, which provides extra information regarding
the protective response induced by IC43.

Use of single antigens has not provided an adequate immune response when used
in isolation. Monomeric recombinant subunit vaccines confer protection in vivo; however,
this often does not translate into humans, where multimeric vaccines perform better.
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Multivalent vaccines which present combinations of numerous antigens may induce a
more clinically significant response. Additionally, clinical studies into alternative routes of
vaccine administration in P. aeruginosa have not been thoroughly investigated.

5.3. Novel Vaccine Formulations

There are three main constituents of vaccine formulations: an antigen, to stimulate
an immune response; an adjuvant, to enhance or direct a specific immune response; and
a delivery system, to ensure appropriate delivery of both the antigen and adjuvant to
the correct location at the correct time [92]. Herein, we highlight recent progressions
in the realm of vaccine formulations, with emphasis on those which elicit a mucosal
immune response.

5.3.1. Antigen Discovery

All the clinical vaccines mentioned above and in Table 2 have used well-known
virulence factors as antigens in subunit vaccines. In general, subunit vaccines are safer
and have a lower side effect profile compared to other vaccine types [93]. Discovery of
novel conserved bacterial antigens is vital to continue investigating new immunisation
approaches against P. aeruginosa. By using various bioinformatics screens alongside whole-
genome sequencing data, researchers can use reverse vaccinology to identify desirable
antigens for use in vaccines. Typically, those antigens which are abundantly expressed,
highly conserved and immunogenic epitopes, and surface-exposed are most useful as
vaccine candidates [94].

A small number of studies have used reverse vaccinology to identify unique antigens
in P. aeruginosa. Rashid et al. first uncovered nine novel candidates, including three un-
characterized hypothetical proteins which may provide the basis of a subunit vaccine [95].
The presence of other components of known virulence factors, including surface compo-
nents of antibiotic efflux pumps, T3SS and proteins on the bacterial cell wall, validates
their approach. Using reverse vaccinology and additional bioinformatic tools, Bianconi
and colleagues identified 52 total potential candidates which were conserved in P. aerug-
inosa strains of varying origin and in clinical isolates from CF patients [96]. The top ten
antigens were used in vivo in a murine model of acute pneumonia in 22 separate combi-
nations. The study concluded that combinations of candidate antigens provided the best
protection. This strategy of using multiple antigens has been used in previous clinical
vaccines [50,63], but should undergo further investigation. Additional reverse vaccinology
approaches have identified numerous candidate antigens which are yet to undergo in vivo
assessment [97,98].

A Th17-based reverse vaccinology study using a select library of outer membrane and
secreted proteins identified PopB, a highly conserved component of the T3SS [99]. PopB
elicited Th17 responses and IL-17 production and increased bacterial clearance in lethal
P. aeruginosa murine pneumonia in an antibody-independent manner.

To further enhance antigen discovery, methods to identify novel antigens stimulating
mechanisms of cellular immunity ought to be tried. Furthermore, it must be noted that
subunit vaccines in general appear to have an overall lower immunogenicity [86] and
are overall more susceptible to enzymatic degradation and mucociliary clearance at the
mucosal surfaces [100]. Therefore, additional measures, such as the selection of appropriate
adjuvants or the use of specific delivery systems, must be considered.

5.3.2. Adjuvant Selection

Adjuvants shape and enhance an antigen-specific response and are a key component
of many modern vaccines. Currently, knowledge surrounding adjuvants in P. aeruginosa
vaccines is limited due to their lack of use or complete omission in clinical studies. The
most widely used adjuvant in preclinical and clinical studies is aluminium hydroxide,
Al(OH)3, (known as alum). Phase I and II studies into IC43 concluded that seroconversion
and immunogenicity was in fact highest in those patients receiving the vaccine without
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alum [61,62]. Subsequently, the vaccine was administered without an adjuvant in the
following phase II/III trial.

Isolated use of systemic adjuvants such as alum may not be beneficial in enhancing
the immune response to P. aeruginosa. In general, systemic adjuvants often function poorly
to enhance the mucosal immune response [92]. Adjuvants such as the Th17-stimulating
curdlan [99] dmLT, which potentiates antigen-specific Th1 and Th17 responses [101], or
combinations of adjuvants alongside alum have provided promising preclinical results.
They have not been used in clinical P. aeruginosa vaccine development, although many are
licensed for other use in humans, as outlined by Sainz-Mejías et al. [76]. Self-adjuvanting
formulations, wherein antigens are bound to an adjuvant compound, may elicit a stronger
immune response. A novel formulation using dmLT [102] elicited a strong IgG and IgA
response along with stimulating IL-17 production.

5.3.3. Vaccine Delivery Systems

Liposomal delivery systems have been used to administer anti-pseudomonal antibi-
otics in CF patients [103,104]. Their use as a vaccine delivery system demonstrated that
intranasal administration increased production of pulmonary IgA in mice [105]. Liposomes
have additionally been used as bacteria-free expression systems to easily and efficiently
produce OprF for vaccine purposes [106], however, these liposomes are yet to be used
in vivo.

Outer membrane vesicles (OMVs) are secreted by all Gram-negative bacteria, including
P. aeruginosa. They consist of a portion of the outer membrane and other protein components
which elicit a strong inflammatory response in host tissues [107]. Delivery of vaccine
antigens via OMVs has been shown to stimulate potent humoral and Th1/Th17 responses
in vivo [108,109], more so than isolated administration of vaccine antigens. The licensed
Bexsero Meningococcal Group B vaccine uses OMV technology [110]; however, it has yet to
be tested as a platform for P. aeruginosa antigen delivery.

Attenuated strains of Salmonella species have been used in a small number of studies as
a delivery system for P. aeruginosa vaccine antigens. One clinical study in healthy volunteers
found oral or intranasal administration of live attenuated Salmonella expressing OprF-
OprI antigens led to a significant rise in specific IgA and IgG in the lower airways [111].
Consequently, further preclinical studies in mice using OprF-OprI [112] and one study
using components of the T3SS [113] enhanced survival, reduced bacterial growth, and led
to overall lower levels of pro-inflammatory cytokines.

Bacterial ghosts are another novel method of vaccine delivery. They are generated
from Gram-negative bacteria by inducing release of their intracellular contents, resulting in
an empty preserved bacterial envelope with intact surface antigens and PAMPs [114]. In
the first study of its kind, Sheweita et al. developed chemically-induced BGs to vaccinate
diabetic rats against P. aeruginosa [115]. Orally administered BGs induced a specific humoral
and cell-mediated immune response. Subsequent oral challenge with P. aeruginosa demon-
strated high levels of protection against systemic spread in vaccinated rats. Furthermore, a
rat diabetic ulcer model showed a higher healing rate and overall complete survival when
comparing vaccinated and unvaccinated groups. Interestingly, generation of BGs permits
conservation of key Gram-negative external bacterial components. This can potentially
induce cross-protectivity against other Gram-negative bacteria.

5.3.4. Nanoparticles

Study of various biopolymer and nanoparticle delivery systems shows promise to
enhance subunit antigen immunogenicity for potential use in humans. Nanoparticles have
undergone extensive research for antigen delivery through a range of routes, including
oral, parenteral, and more recently, topical. Dissolving microneedle patches were used as a
platform to deliver heat-inactivated P. aeruginosa [116]. This study showed encouraging
properties and significantly reduced bacterial burden in the lungs of vaccinated mice
when compared with unvaccinated controls. While only a proof of concept, this study
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demonstrates the potential use of nanoparticles as components of unique delivery systems
for easy and cost-effective approaches to vaccination.

Mannose-modified chitosan microspheres delivering OprF-OprI antigens elicited spe-
cific systemic and mucosal humoral responses [117]. Furthermore, intranasal immunisation
established potent Th1/Th2 cellular immunity. Gold nanoparticles enhanced the specific
antibody production and the immunogenicity of an exotoxin A and detoxified LPS con-
jugate vaccine [118]. Aluminium (oxy) hydroxide nanorods delivering whole-cell killed
PAO1 promoted a rapid initial immune response [119], which may prove beneficial in pre-
venting colonisation in the lung. Evaluation of two unique nanoparticle formulations using
PopB [120] demonstrated that addition of a novel TLR4 agonist, BECC438 (a detoxified
lipid A analogue), provided the highest protective efficacy in mice, offering an initial step
into optimising this formulation for use in humans. Polylactic co-glycolic acid (PLGA) is a
promising vaccine delivery system for the encapsulation of P. aeruginosa antigens. Conjuga-
tion with exotoxin A resulted in a stable and highly immunogenic vaccine. This resulted
in a potent cellular and humoral immune response, and conferred greater protection and
cytokine and antibody production compared to exotoxin A alone [121]. Similarly, a PLGA
vaccine using alginate antigen showed significantly increased opsonizing antibody titres
and reduced bacterial burden compared to vaccination with only alginate [122].

Biopolymers adsorbed with various combinations of ten vaccine candidate antigens
all conferred protection in a murine model of acute pneumonia [123]. Moreover, the best
performing antigen combination induced a 30% increase in survival (up to 90%) when
administered intranasally compared to intramuscular administration. Intranasal vaccine
delivery both stimulates a stronger local mucosal immune response and is a much easier
approach for vaccine administration and distribution.

6. Conclusions

Preclinical and clinical studies have demonstrated the extremely challenging nature
of developing a vaccine against P. aeruginosa. Most vaccines to date have used traditional
methods of vaccine design involving the use of well-studied virulence factors such as
vaccine antigens. Further development of many of the vaccines outlined above has likely
ended, and new methods of vaccine candidate discovery, namely, reverse vaccinology,
should be employed. Complex and virulent P. aeruginosa infections cause high morbidity
and mortality in many populations, and the emergence of MDR strains will continue to be
a challenge for patients and health professionals worldwide. Development of a vaccine
against this pathogen will help to prevent infections and ultimately save lives for years into
the future.
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