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Abstract 29 
A major challenge of genome-wide association studies (GWAS) is to move from 30 
phenotypic associations to biological insight. Here, we integrate a large trans-ancestry 31 
GWAS on blood lipids with a wide array of functional genomic datasets to discover 32 
regulatory mechanisms underlying lipid associations. We first identify lipid-associated 33 
genes with expression quantitative trait locus - colocalizations, and then add chromatin 34 
interaction data to narrow the search for functional genes. Polygenic enrichment 35 
analysis across tissues and cell types confirms the central role of the liver in lipids, and 36 
highlights the selective enrichment of adipose-specific chromatin marks in high-density 37 
cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with 38 
lipid-associated loci, we identify TFs relevant in lipid biology. Finally, we present an 39 
integrative framework to prioritize causal variants at GWAS loci, producing a 40 
comprehensive list of candidate causal genes and variants with multiple layers of 41 
functional evidence. Two prioritized genes, CREBRF and RRBP1, show convergent 42 
evidence across functional datasets supporting their roles in lipid biology.  43 
 44 
Introduction 45 
 46 
Most GWAS findings have not directly led to mechanistic interpretations, largely 47 
because 90% of GWAS associations map to non-coding sequences 1,2. Mechanistic 48 
interpretations in GWAS have proven challenging because the strongest signals 49 
identified in GWAS typically contain many variants in strong linkage disequilibrium (LD) 3 50 
and functional mechanisms including genes of action are often not clear from GWAS 51 
data alone 4. 52 
 53 
Linking trait-associated variants to genome function has emerged as a promising model 54 
for mechanistic interpretation of non-coding findings in GWAS. This 'variant-to-function' 55 
model is premised on recent observations that non-coding variants often affect a trait 56 
of interest through the regulation of genes and processes in trait-relevant cell types or 57 
tissues 2. Implementing this functional model in GWAS has become more feasible as 58 
large-scale functional genomic resources, such as epigenomic 5,6 and transcriptomic 59 
catalogues 5 have been systematically generated across a wide range of human cell 60 
types and tissues. Indeed, the integration of functional genomics with GWAS has 61 
identified regulatory mechanisms in variants associated with obesity 7 and 62 
schizophrenia 8, yielding important functional insights in genetic architecture of human 63 
complex traits.  64 
 65 
The history of the human genetics of lipids mirrors the success and challenge of GWAS. 66 
Increasing sample size and genetic diversity has significantly boosted the power of 67 
discovery: the first lipid GWAS in 2008 with 8,816 European-descent individuals 68 
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identified 29 lipid-associated loci9 ; the latest study of 1.6 million individuals across five 69 
ancestries [Graham et al 2021] found 941. Despite the dramatic increase in the number 70 
of associations, our biological understanding of many of these genetic discoveries 71 
remains limited. The causal gene has been confidently assigned at only a small fraction 72 
of these loci 2, and the regulatory mechanism connecting variant to phenotype has been 73 
conclusively characterized only for a handful of genes 10. Furthermore, systematic 74 
mapping of lipid-associated variants to their biological functions has been missing in 75 
literature at the time of this study. 76 
 77 
Here we conduct a genome-scale integrative analysis on  the largest GWAS to-date of 78 
five lipid phenotypes (LDL, or low density cholesterol; HDL, or high density cholesterol; 79 
TC, or total cholesterol; nonHDL, or non-high density cholesterol; and TG, or 80 
triglycerides) involving 1.6 million individuals from five ancestries [Graham et al 2021]. 81 
Combining the lipid GWAS with a wide array of functional genomic resources in diverse 82 
human tissues and cell types, we identify regulatory mechanisms of noncoding genetic 83 
variation in lipids with a full suite of computational approaches. Further, we develop a 84 
generalizable framework to understand how tissue-specific gene regulation can explain 85 
GWAS findings, and demonstrate its real-world value on lipid-associated loci. 86 
 87 
Results 88 
Figure 1: Starting with GWAS summary statistics for five lipid phenotypes, we integrate these 89 
with eQTL and chromatin interaction data to identify potential genes mediating the GWAS 90 
association, and use epigenomic annotations from ChIP-seq and ATAC-seq data both to 91 
identify regulatory mechanisms at these loci, and to arrive at genome-level insights into lipid 92 
biology, such as tissue relevance. 93 
 94 

We systematically integrated lipid GWAS results [Graham et al 2021] with multiple layers 96 
of functional genomic data from diverse tissues and cell types to understand regulatory 97 
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mechanisms at lipid-associated loci (Figure 1). Specifically, we overlaid GWAS loci with 98 
expression quantitative trait loci (eQTL) and chromatin-chromatin interactions to 99 
identify causal genes. We further assessed polygenic enrichments of tissue-specific 100 
histone marks to prioritize relevant tissues and examined GWAS loci at transcription 101 
factor (TF) binding sites to detect lipid-relevant TFs. Finally, we combined all these layers 102 
to provide a holistic view of gene regulation at lipid loci in relevant tissue and cell types. 103 
 104 
Co-localization with eQTLs identifies candidate lipid-relevant genes 105 
 106 
We identify shared association signals between lipid levels and expression of nearby 107 
genes as a first step given that most GWAS signals are presumed to influence complex 108 
traits through their impact on gene expression 11. To do so, we tested for colocalization 109 
of each of the significant lipid GWAS association signals (1,750 loci considering the five 110 
traits examined) with significant cis-eQTL data across 49 human tissues from the GTEx 111 
consortium 5. Here, we defined GWAS signals as 1,750 loci reaching genome-wide 112 
significance and corrected for shadow signals (Methods) in a trans-ancestry meta-113 
analysis for at least one of five lipid traits. 114 
 115 
We then restricted our analysis to those loci likely mediated through regulatory 116 
mechanisms as opposed to coding variation. In particular, we excluded all loci with 117 
credible sets containing at least one missense variant (369 of 1,750 loci, 21% of credible 118 
sets (Paper2). Of the remaining 1,381 GWAS loci, 696 significantly colocalized with eQTLs 119 
(the ratio of posterior probability of a shared signal to the posterior probability of two 120 
signals being > 0.9 12 ; Methods) in at least one of 49 tissues for at least one lipid 121 
phenotype. This resulted in 1,076 co-localized eGenes (an eGene is any gene with a 122 
significant eQTL as defined by GTEx); (range of 1 to 16 genes per locus; Table S1). Since 123 
with eQTL data alone it is difficult to disentangle a single functional gene from multiple 124 
functional (and likely coregulated) genes at a locus 13 we performed all downstream 125 
analyses with all 1,076 colocalized genes, to further prioritize functional genes at loci 126 
with multiple eGenes. 127 
 128 
To acquire additional functional insights of colocalized genes, we assessed their 129 
enrichments across a wide range of existing biological and clinical gene sets. Colocalized 130 
genes showed enrichments in 20 KEGG pathways 14 at FDR 5% (Table S2), including 131 
known lipid-related processes such as cholesterol metabolism, PPAR signaling and bile 132 
secretion. These genes were enriched in 33 Mendelian genes from ClinVar 15 associated 133 
with lipid-related ICD codes (ICD code E78), (3.5 fold enrichment, including APOB, LPL, 134 
and APOE), suggesting the shared genetic basis of Mendelian and complex lipid 135 
phenotypes 16. These genes were also enriched in 15 genes with rare-variant burden for 136 
lipid phenotypes from UK Biobank (11-fold enrichment, including genes APOB, LPL, LIPG 137 
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and ANGPTL4; Figure 2), confirming shared mechanisms of rare and common variation 138 
underlying lipid traits16,17. Altogether the results demonstrate the biological relevance of 139 
candidate functional genes prioritized by our approach. 140 
 141 
Figure 2: Enrichment of eQTL/Capture-C overlap, and enrichment in 33 ClinVar gold standard 142 
genes. A. Numbers of genes identified by two approaches: eqtl colocalization (top panel) and 143 
promoter capture-c interactions (bottom panel) B. The intersection of eQTL and Capture-C 144 
datasets shows an enrichment beyond what is expected by chance, assuming both genesets 145 
are independent. C. The overlap between our list of prioritized genes with three sets of genes 146 
previously associated with lipid biology. Capture-C prioritized genes (on the left) show no 147 
enrichment, whereas colocalized genes (right) show a much higher overlap than expected by 148 
chance. 149 

 151 
Chromatin-chromatin interactions improve eQTL-based colocalization 152 
 153 
Our eQTL-based colocalization analysis uses a linear sequence of DNA, and ignores 154 
physical interaction between non-adjacent DNA segments, another regulatory layer 155 
underlying complex human traits 18. To add this layer to our analysis, we generated 156 
promoter-focused Capture-C (henceforth called Capture-C) data from HepG2 liver 157 
carcinoma cells (denoted as HepG2.1) and hepatocyte-like cells (HLC) derived from 158 
differentiating iPSCs (the latter is described in 19), as well as publicly-available Capture-C 159 
datasets from HepG2 17,20 (denoted as HepG2.2) and adipose tissue 21. We defined a 160 
GWAS-relevant interaction as any Capture-C interaction between any gene and the 95% 161 
credible set for a GWAS locus22. Credible set sizes ranged from 1 to 417 variants at the 162 
1,750 examined loci, with a median size of 5 variants per credible set. In total, 1,079 163 
GWAS loci had at least one variant in the credible set with a physical interaction with a 164 
gene promoter and 3,543 of 26,621 genes with promoter-interactions had promoters 165 
physically interacting with at least one GWAS credible set variant (Table S3). Unlike 166 
eQTL-colocalized genes, these genes interacting with their credible sets showed limited 167 
enrichment in relevant KEGG pathways and lipid-related genes from ClinVar (Figure 2B). 168 
We observed a similar lack of enrichment when we restricted the physical interaction 169 
analysis  to protein-coding genes.  170 
 171 
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Genes physically interacting with GWAS loci helped shortlist functional genes from eQTL 172 
colocalization despite their lack of enrichments in known gene sets. Of 1,079 credible 173 
sets with promoter interactions, 224 also colocalized with eQTLs for the same gene 174 
(Figure 2A). Among these loci with concordant eQTL colocalizations and Capture-C 175 
interactions, only 39% of them mapped to a single gene using eQTL data alone, whereas 176 
adding Capture-C information increased this fraction to 80%. At the gene level, 233 177 
genes were implicated in both eQTL colocalization and Capture-C interactions, 178 
representing an enrichment of 2.4. These results showcase the potential value of 179 
combining eQTLs with physical chromatin interactions to prioritize functional genes at 180 
GWAS loci. 181 
 182 
Since eQTLs are likely to reside in the same TADs as the genes they regulate 23, we 183 
examined topologically associated domain (TAD) structure from independent datasets 184 
at lipids GWAS loci with eQTL colocalizations. Of eQTL-GWAS colocalizations in which the 185 
sentinel variant resided within a liver TAD 24, the colocalized gene resided in the same 186 
liver TAD 84.8% of the time (enrichment P < 0.001 with 1000 permutations; Methods). 187 
When we restricted colocalizations to those supported by Capture-C data in any cell 188 
type, 91.2% fall in the same TAD. These results add to the existing evidence for TAD 189 
boundaries being regulatory insulators in the cell [cite a recent review] and confirm our 190 
integration of chromatin interactions with eQTL colocalizations as an effective strategy 191 
to hone in on functional genes. 192 
 193 
Tissue-specific enrichment of GWAS signals differentiates lipid traits 194 
 195 
Regulatory variants often affect complex traits in a tissue-specific manner 25, as shown 196 
in our eQTL colocalization analysis. Specifically, by computing the ratio of the number of 197 
colocalizations in a tissue to eQTL sample size in that tissue, we identified that the liver 198 
was universally enriched for colocalized eGenes with respect to sample size across all 199 
lipid traits whereas adipose was selectively enriched in HDL and TG only (Figure S1). 200 
Motivated by these findings, we leveraged systematic approaches and additional data to 201 
identify relevant tissues and cell types for each lipid trait.  202 
 203 
We implemented stratified LD score regression (S-LDSC), a polygenic approach not 204 
restricted only to genome-wide significant variants, on tissue-specific transcriptomic 205 
and epigenomic annotations to identify relevant tissues for each lipid trait (Methods). 206 
Consistent with previous studies and our eQTL-based analysis, liver-related tissues 207 
(tissue-groupings are defined in Table S4) showed strong enrichments across all lipid 208 
traits (S-LDSC enrichment p-values ranging from 1e-3 in TG to 1e-04 in TC), for both 209 
expression (Fig 3A) and chromatin annotations (Figure 3B). This result was further 210 
confirmed by two other approaches (DEPICT 26: Figure S2; RSS-NET 27: Table S5). To 211 
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assess the robustness of our S-LDSC results based on trans-ancestry GWAS data, we 212 
applied S-LDSC to two population-specific GWAS in GLGC (European and East Asian) 213 
together with population-specific LD scores (Methods), and we obtained similar results 214 
(Table S6).  215 
 216 
Figure 3: Tissue relevance of lipid loci. Partitioning heritability of summary statistics on gene 217 
expression (top panel) and active regulatory marks (bottom panel) across tissues. Each 218 
plotted point represents each tested dataset for enrichment of heritability; multiple 219 
annotation datasets are tested for the same tissue group. Each color represents a single 220 
tissue group, and the y-axis represents P-value of enrichment of heritability. Liver-related 221 
tissues, in teal, consistently show strongest enrichment of heritability. 222 
 223 

 225 
 226 
 227 
The S-LDSC results also highlighted tissues selectively enriched in certain lipid traits 228 
similar to the eQTL-based analysis. The most enriched category for HDL using 229 
chromatin annotation is ‘Adipose H3K4me1’; for TG, enrichment in liver-related tissues 230 
is similar to enrichment in adipose. For LDL, TC and non-HDL, enrichment P-values for 231 
the liver were much more significant than for any other tissues (Figure 3B). We observed 232 
the same pattern in S-LDSC results based on gene expression (Figure 3A). This finding is 233 
consistent with the known influence of adipose on plasma HDL levels 28, and the role of 234 
adipose as TG deposits. These results were corroborated by eQTL colocalizations 235 
stratified by phenotype (Figure S1) and DEPICT analysis on gene expression 26 (Figure 236 
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S2).  Together, these results strongly implicate the liver as the tissue of action for all five 237 
lipid traits, but additionally implicate adipose tissue as playing a role in HDL and TG.  238 
 239 
Given the importance of the liver and adipose in modulating lipid levels, we further 240 
identified the relevant cell types within these tissues. Using published single-cell data 241 
from adipose and liver, we performed gene-set enrichment analysis 29 to identify cell-242 
type clusters enriched for genes colocalized with any lipid trait. Out of 11 identified cell 243 
types in 20 clusters in the liver, only hepatocytes were enriched at P < 0.05 (Figure S3), 244 
consistent with previous results20. In adipose, only adipocyte clusters and macrophage-245 
monocyte clusters showed suggestive enrichment in colocalized genes (Figure S4). Of 246 
note, the enrichment in adipocytes was significant when we restricted this analysis to 247 
genes that were colocalized only with HDL and TG (FDR-corrected P < 0.05), consistent 248 
with the selective enrichments of adipose in HDL and TG (but not the other lipid traits) 249 
from our S-LDSC analysis. Evaluations at cellular resolution are required to understand 250 
the cell-type specific mechanisms underlying lipid GWAS loci, but our results could form 251 
a useful basis for future studies. 252 
 253 
Overlapping GWAS signals with binding sites highlights lipid-relevant TFs 254 
 255 
TFs have been implicated as a key mediator of linking genetic variation to complex traits 256 
30. To understand lipid GWAS in the context of TF activity, we assessed enrichment of  257 
genome-wide significant variants at TF binding sites using GREGOR 31 and performed 258 
polygenic enrichment analysis of TF binding sites using S-LDSC. 259 
 260 
Using ChIP-Seq data from 161 TFs across 91 cell types from the ENCODE project 6, 32.7% 261 
of lipid credible sets overlapped with at least one TF binding site. Using GREGOR 31, we 262 
identified 137 TFs whose binding sites were significantly enriched in GWAS lead SNPs for 263 
at least one lipid phenotype (enrichment > 2; FDR adjusted P-value < 0.05, Figure S5, 264 
Table S7). Among these 137 enriched TFs, 69 of them (50%) showed significant 265 
enrichments across all five lipid phenotypes, suggesting a potential core regulatory 266 
circuit shared by all lipid traits (Figure S5). The TF with the strongest enrichment in all 267 
phenotypes was ESRRA (Estrogen-related receptor alpha), a nuclear receptor active in 268 
metabolic tissues; ESRRA has been implicated in adipogenesis and lipid metabolism, 269 
and ESRRA-null mice display an increase in fat mass and obesity 32. 270 
 271 
The GREGOR analysis also highlighted 68 TFs significantly enriched in specific subsets of 272 
(but not all five) lipid phenotypes (Figure S8). For example, we found 4 TFs (FOXM1, 273 
PBX3, ZKSCAN1, ZEB1) enriched in HDL and TG only, 4 TFs (EZH2, NFE2, NFATC1, 274 
KDM5A) enriched in HDL only and 11 TFs (FOSL1, IRF3, JUN, MEF2C, NANOG, PRDM1, 275 
RUNX3, SIRT6, SMC3, STAT3, ZNF217) enriched in TG only. Of these TFs, the central role 276 
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of ZEB1 in adiposity 33 and fat cell differentiation has been demonstrated 34. Taken 277 
together, these TF-centric findings corroborate the selective enrichments of adipose in 278 
HDL and TG (but not the other lipid traits) identified in our previous tissue prioritization 279 
analyses.  280 
 281 
Similar to tissue prioritization, we also performed polygenic enrichment analysis of TF 282 
binding sites using S-LDSC (Table S8), which differed from GREGOR analysis by looking 283 
at not only the genome-wide significant associations but also the polygenic signal 284 
irrespective of GWAS P-values. On the same 161 ENCODE TFs, this polygenic analysis 285 
identified 25 TFs whose binding sites were significantly enriched in heritability for at 286 
least one lipid phenotype (Fig S6), and reassuringly, 24 of 25 TFs are also significant in 287 
GREGOR analysis. Among these enriched TFs,  eight of them (34%) were significantly 288 
enriched in all five lipid traits (CEBPB, CEBPD, FOXA2, HDAC2, HNF4G, NFYA, RXRA, SP1; 289 
enrichment P < 0.05). Of those TFs significant in both analyses, Retinoid X receptor 290 
alpha (RXRA) is also a colocalized gene near a GWAS hit (chr9:137,268,682). RXRA is a 291 
ligand-activated transcription factor that forms heterodimers with other receptors 292 
(including PPARG) and is involved in lipid metabolism 35 and homeostasis. While RXRA 293 
has been implicated as the causal gene at its GWAS locus 36, our study is the first to 294 
demonstrate its role in lipid biology through its regulatory influence on other lipid 295 
GWAS genes.  296 
 297 
Multi-layer functional integration reveals regulatory mechanisms at GWAS loci  298 
 299 
Motivated by our finding that integrating chromatin interaction improved eQTL 300 
colocalizations, we further collated multiple lines of functional evidence at each GWAS 301 
locus for mechanistic inference. We started with the list of genes with evidence for both 302 
eQTL colocalization in the liver or adipose and credible set physical interactions. We 303 
next annotated each variant in the 95% credible set with various indicators of regulatory 304 
function, including its open chromatin status in liver or adipose-related cell types, its 305 
proximity to a promoter or an enhancer, and its RegulomeDB regulation probability 37 306 
(see Table S9 for the complete list of annotations used). To account for complexities of 307 
regulatory mechanisms and limitations of functional datasets, we combined evidence 308 
across these datasets to prioritize variants at GWAS loci (Figure 4A). Specifically, we 309 
prioritized variants with at least three independent lines of functional evidence 310 
(chromatin openness, physically interaction with target genes, and promoter/enhancer 311 
status in liver or adipose), with at least two being in the same tissue with colocalization 312 
with the target gene, and with a RegulomeDB score > 0.5. Applying this simple 313 
procedure to lipid GWAS we identified 14 candidate loci, each with the strongest multi-314 
layer evidence pointing to a single functional variant (Table 1). Below we used RRBP1 315 
and CREBRF to highlight key features of this multi-layer integration framework. 316 
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 317 
The first example RRBP1 (Ribosomal binding protein 1) could be identified from eQTL 318 
colocalization alone, but our multi-layer integration approach strengthened the 319 
conclusion via convergent evidence from various sources (Figure 4B). The RRBP1 eQTL 320 
signals in the liver colocalize with LDL, TC and nonHDL. The 'T' allele of the single lead 321 
variant (chr20:17,844,684, hg19)  decreases RRBP1 expression levels and increases LDL, 322 
TC and nonHDL levels. This lead variant at RRBP1 is in open chromatin in HLC, and also 323 
physically interacts with the RRBP1 promoter (250kb away) in adipose and HepG2. All 324 
these data based on the lead variant consistently point to RRBP1 as the functional gene 325 
underlying this locus, which is further supported by external data. RRBP1 specifically 326 
tethers the endoplasmic reticulum to the mitochondria in the liver--an interaction that is 327 
enriched in hepatocytes--and regulates very low density lipoprotein (vLDL) levels 38. Rare 328 
variants in RRBP1 are associated with LDL in humans 39 and silencing RRBP1 in liver 329 
affects lipid homeostasis in mice 38.  330 
 331 
Figure 4. A. Variant annotation and prioritization scheme at each credible set. B. Evidence for 332 
gene RRBP1 from functional genomics data. The LDL GWAS locus at this region is an eQTL for 333 
gene RRBP1 in the liver (second panel). Variants in the credible set of this locus interact with 334 
the gene promoter in both adipose and HepG2 Capture-C data. The interacting variant is also 335 
in an open chromatin peak in three liver-related cell types. C. Multiple sources of functional 336 
genomics data support CREBRF as a gene contributing to HDL levels. The HDL GWAS locus at 337 
this region is an eQTL for gene CREBRF in Adipose (second panel). Variants in the credible set 338 
at this locus interact with the CREBRF promoter in adipose. The interacting variant is also in 339 
open chromatin in liver-related cell types.  340 
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 342 
 343 
The second example CREBRF (CREB3 regulatory factor) demonstrates the power of our 344 
multi-layer integration framework in prioritizing functional variants (Figure 4C). The 345 
eQTL signals of CREBRF colocalized with a GWAS locus for HDL with 30 candidate 346 
variants. In contrast, our multi-layer approach identified a single candidate variant 347 
(chr5:172,566,698) at this locus that physically interacts with the CREBRF promoter in 348 



adipose, was predicted to be a regulatory element (RegulomeDB score=0.91). 349 
Consistent with the index variant (chr5:172,591,337), the allele 'A' at this functional 350 
variant increased HDL levels and increased CREBRF expression in adipose. Missense 351 
variants in CREBRF have been linked to body mass index, and the gene has been linked 352 
to obesity risk in Samoans  40 41. 353 
 354 
Discussion 355 
 356 
Here we integrate the largest trans-ancestry lipid GWAS to date with a wide array of 357 
functional genomic resources to understand how noncoding genetic variation affects 358 
lipids through gene regulation. Specifically, we identify 1,076 genes whose eQTL signals 359 
colocalize with lipid GWAS signals and demonstrate how physical chromatin interaction 360 
can improve standard eQTL-based colocalization. We assess tissue-specific enrichments 361 
of lipid GWAS signals and demonstrate the selective importance of adipose in HDL and 362 
triglyceride biology. We examine binding site enrichments of 137 TFs in lipid GWAS and 363 
expand our understanding of lipid GWAS loci (e.g., RXRA) in the context of TF activity. 364 
Finally, we build a simple and interpretable prioritization framework that automatically 365 
combines multiple lines of evidence from orthogonal datasets, pinpointing a single 366 
functional variant at each of 14 lipid-associated loci (e.g., RRBP1 and CREBRF). While 367 
there are studies that interpret lipid GWAS associations 20,42,43, the size of our trans-368 
ancestry GWAS and multi-layer functional integration represent a comprehensive effort 369 
and an important step forward in this direction. 370 
 371 
Our multi-layer analysis has two key strengths. First, despite a large array of functional 372 
genomic resources being embedded, our analysis produces results with high 373 
consistency. For example, the selective enrichment of adipose in HDL and TG identified 374 
by S-LDSC is confirmed by our eQTL-based colocalization and TF binding site overlap. 375 
Another example is the prioritization of RRBP1, which can be identified from eQTL-based 376 
colocalziation alone and it is further validated by chromatin openness and interaction. 377 
Such convergent evidence from various sources improves the confidence of our 378 
findings. Second, our analysis highlights that combining multiple layers of regulatory 379 
information can improve sensitivity to prioritize functional genes and variants. For 380 
example, we refined eQTL colocalized genes (1,076) to a smaller set of functional genes 381 
(233) through integration with promoter Capture-C data. Another example is CREBRF, 382 
where eQTL-based colocalization implicates 30 candidate variants and adding other 383 
regulatory layers points to a single functional variant. Moving forward, we expect these 384 
findings will serve as useful guidelines for future integrative genomic analyses of other 385 
traits.  386 
 387 
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Our results rely on the breadth and accuracy of functional genomic datasets used in our 388 
analyses. First, unlike our lipid GWAS, current functional datasets 44 are limited both in 389 
sample size and ancestral diversity, which can affect discovery and replication of 390 
regulatory mechanisms in diverse populations. Second, some functional datasets are 391 
generated at limited resolution. For example, our colocalizations are based on eQTLs 392 
from bulk tissue RNA-seq 5,45, which may miss detailed cell types and biological 393 
processes in which lipid-associated SNPs regulate gene expression 45. Third, some 394 
functional datasets are not available across the full spectrum of human tissues and cell 395 
types. For example, our chromatin-chromatin interaction analysis only examines a few 396 
cell types in two known lipid-related tissues, producing results that may be biased 397 
towards known lipid biology. As more comprehensive and accurate functional genomic 398 
resources are becoming publicly available in diverse cellular contexts and ancestry 399 
groups, the resolution and power of integrative analyses like ours we applied here will 400 
be markedly increased.  401 
 402 
Other limitations of this study stem from computational methods embedded in our 403 
framework. First, the colocalization approach 'coloc' assumes one causal variant per 404 
locus, whereas recent studies suggest extensive allelic heterogeneity 46 consistent with a 405 
model of a milieu of related transcription factors binding within a single locus. 406 
Accounting for allelic heterogeneity in summary statistics-based colocalization typically 407 
requires modeling of LD matrix 47, which is computationally intensive in large-scale 408 
analyses derived from many cohorts with diverse ancestries, like the trans-ancestry 409 
GWAS examined here. Second, due to restricted access to individual genotypes of 201 410 
cohorts, we cannot produce trans-ethnic LD scores within GLGC but have to use 411 
European-based LD scores in all S-LDSC analyses. This approach, though less rigorous in 412 
principle, provides robust results in practice (as confirmed by our ancestry-specific 413 
analysis), largely because 79% of cohorts in GLGC are of European descent [Graham et 414 
al 2021]. That said, we caution that the same approach might fall short in ancestrally 415 
diverse studies with few European individuals 48. Third, our multi-layer variant 416 
prioritization framework is built on a series of simple rules that are easy to implement 417 
on large datasets. This approach could possibly be formalized as statistical models (e.g., 418 
priors in Bayesian methods 27, but certainly simplify computation and improve 419 
scalability of our framework. Despite the technical limitations, our approach here can 420 
serve as a useful benchmark for future development of methods with improved 421 
statistical rigor and computation efficiency. 422 
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In summary, mapping noncoding genetic variation of complex traits to biological 423 
functions can benefit greatly from thorough integration of multiple layers of functional 424 
genomics, as demonstrated in the present study. Although tested on lipids only, our 425 
integrative framework is straightforward to implement more broadly on many other 426 
phenotypes, likely yielding functional insights of heritable traits and diseases in humans.  427 

Methods 428 

GWAS 429 
 430 
We performed GWAS for five blood lipid traits (LDL, HDL, TC, TG, and nonHDL) in 1.65 431 
million individuals from five ancestry groups \cite{Graham2021} (AFR: African and 432 
African-admixed; EAS: East Asian; EUR: European; HIS: Hispanic; SAS: South Asian; at 91 433 
million variants imputed primarily from the Haplotype Reference Consortium or 1000 434 
Genomes Phase 3. The individual GWAS and meta-analyses (described in Graham et al, 435 
2021) were performed using the hg19 version of the human reference genome. We 436 
used MR-MEGA 49 for meta-analysis across cohorts. 437 
 438 
We defined 'sentinel variants' as lead variants representing independent trait-439 
associated loci in the genome. These windows are the greater of 500kb or 0.25cM 440 
around the sentinel variant; genetic distances were defined using reference maps from 441 
HapMap 3. We performed a second round of conditional analysis conditioning on the 442 
lead variants to identify and remove any significant windows that are actually shadow 443 
signals (or dependent on) of a neighboring locus to enforce true independence of 444 
associated loci. 445 
 446 
Co-localization with gene expression 447 
 448 
We performed statistical colocalization with eQTLs obtained from GTEx v8. These 449 
summary statistics were in GRCh38, so we first lifted over the GWAS summary statistics 450 
(in hg19) from the trans-ethnic summary statistics to GRCh38 using UCSC liftOver 451 
executable 50. For each of the five lipid traits, we used the same 'sentinel variants' 452 
defined in the previous section to represent approximately independent GWAS-453 
associated windows (also removing shadow signals as described before). 454 
 455 
For each such window, we ran an eQTL colocalization using GTEx v8 eQTL summary 456 
statistics 5. For each of 49 GTEx tissues, we first identified all genes within 1Mb of the 457 
sentinel SNP, and then restricted analysis to those genes with eQTLs ('eGenes') in that 458 
tissue (FDR < 0.05). We used the R package 'coloc' (run on R version 3.4.3, coloc version 459 
3.2.1) 51 with default parameters to run co-localization between the GWAS signal and the 460 
eQTL signal for each of these cis-eGenes, using as input those SNPs in the defined 461 
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window, i.e. all SNPs present in both datasets. A colocalization posterior probability of 462 
(PP3+PP4) > 0.8 was used to identify loci with enough colocalization power, and PP4/PP3 463 
> 0.9 was used to define those loci that show significant colocalization, described 464 
previously 12. 465 
 466 
Overlap with promoter Capture-C data 467 
 468 
We used four promoter Capture-C datasets from three cell/tissue types to capture 469 
physical interactions between gene promoters and their regulatory elements. We 470 
employed three biological replicates of HepG2 liver carcinoma cells 52, another HepG2 471 
dataset described in Selvarajan et al 12,20,  hepatocyte-like cells (HLC) produced by 472 
differentiating three biological replicates of iPSCs, which in turn were generated from 473 
peripheral blood mononuclear cells using a previously published protocol 19, and an 474 
adipose dataset obtained from Pan et al 21 that was produced using primary human 475 
white adipocytes. 476 
 477 
The detailed protocol to prepare HepG2 or HLC cells for the promoter Capture-C 478 
experiment is described in 52. Briefly, for each dataset, 10 million cells were used for 479 
promoter Capture-C library generation. Custom capture baits were designed using an 480 
Agilent SureSelect library design targeting both ends of DpnII restriction fragments 481 
encompassing promoters (including alternative promoters) of all human coding genes, 482 
noncoding RNA, antisense RNA, snRNA, miRNA, snoRNA, and lincRNA transcripts, 483 
totaling 36,691 RNA baited fragments shows the custom bait map boundaries in hg19 484 
coordinates). Each library was then sequenced on an Illumina NovoSeq (HLC), or 485 
Illumina HiSeq 4000 (HLC), generating 1.6 billion read pairs per sample (50 base pair 486 
read length.) HiCUP 53 was used to process the raw FastQ files into loop calls; we then 487 
used CHiCAGO 53,54 to define significant looping interactions; a default score of 5 was 488 
defined as significant. 489 
 490 
Starting with Capture-C maps processed as described above, we re-annotated the baits 491 
to gene IDs from Gencode v19 55 to ensure uniformity of gene annotations with the rest 492 
of our pipeline. For each bait, we identified any gene whose transcription start site (TSS) 493 
from any transcript in Gencode v19 was within 175 base pair distance from the bait to 494 
account for differing bait designs for external datasets which may not directly overlap 495 
canonical TSS. From GRanges (version 1.42.0 run on R 4.0.2)56, the findOverlaps function 496 
was used for this annotation with the 'maxgap' input set to 175. The final result 497 
annotated each bait to a unique gene name and Ensembl ID. The Ensembl IDs were 498 
formatted to remove the ID suffix, which included all numeric values after the ".". All 499 
datasets were additionally filtered to only include interactions in which the interacting 500 
end was not another bait. 501 
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 502 
Overlap between promoter Capture-C data and GWAS credible sets 503 
 504 
To identify genetic variants associated with any of the five lipid traits that physically 505 
interact with locations in the genome that may influence lipid biology, we continued to 506 
use the R package ‛Genomic Ranges’ 56  to find overlap between previously defined 507 
credible sets for each traits' GWAS and the previously annotated promoter Capture-C 508 
data, which we refer as Capture-C/GWAS interactions. For all individual variants within 509 
all GWAS-associated loci for the five lipid traits, we identified which variants overlapped 510 
any interacting end of the four previously annotated promoter Capture-C data. 511 
 512 
Enrichment of colocalized gene-sentinel variant pairs in topologically associated domains 513 
 514 
To compute enrichment of colocalized gene-sentinel pairs in the same TAD, we used 515 
publicly-available TADs from the liver 24. We compared the number of colocalizations 516 
with the sentinel variant and colocalized gene in the same TAD divided by all 517 
colocalizations in which the sentinel variant lies in a TAD.  518 
 519 
Enrichment in single cell data from liver and adipose 520 
 521 
We overlapped our list of colocalized genes with publicly available single cell RNA-522 
sequencing data from cells in the liver 57 and 38,408 cells from the adipose 58. For both 523 
datasets, we downloaded normalized TPM data and existing tSNE cluster annotations 524 
for each cell. For each cluster, we defined median expression for each gene across all 525 
cells in that cluster. Then for each cluster, we calculated the enrichment P-value for our 526 
list of colocalized genes using the ‘fgsea’ R package, which looks for overrepresentation 527 
of our gene list in ranked genes for each cluster 59, implemented in R 3.4.3. 528 
 529 
Pathway Enrichment  530 
 531 
We used ClusterProfiler v3.6.0 60 to look for pathways over-represented in each gene list 532 
(genes with eQTL colocalization, and genes interacting with GWAS credible sets). 533 
Specifically, we used the enrichKEGG function to look for pathway enrichment in KEGG 534 
pathways. We first re-mapped gencode IDs to gene symbols using the Gencode v24 535 
annotation and then used the biomaRt package 53,54,61 in R to convert gene symbols to 536 
Entrez IDs, and then ran enrichKEGG to identify enriched pathways significant at a 537 
Benjamini-Hochberg threshold of 0.05. 538 
 539 
Stratified LD score regression for prioritizing tissues 540 
 541 
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We used LDSC version 1.0.162 to estimate the enrichment of heritability of our summary 542 
statistics in different epigenetic and transcriptomic annotations (including gene 543 
expression from GTEx, and histone epigenetic marks from Roadmap), using python 544 
2.7.9. We first converted the summary statistics for each phenotype to LDSC-formatted 545 
summary statistics using 'munge_sumstats.py'. Then, we used 'ldsc.py' using the 546 
baseline_v1.2 baseline model and 'Multitissuechromatin1000Gv3' and 547 
'Multitissuegeneexpr1000Gv3' annotations to estimate enrichment of heritability, using 548 
active chromatin marks and gene expression regularly. Links to downloaded files are in 549 
Supplementary Information. For primary analyses, we used trans-ethnic GWAS 550 
summary statistics, and ld scores from 1000Genomes European samples. 551 
 552 
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