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a b s t r a c t 

Recent literature shows that momentum strategies exhibit significant downside risks over 

certain periods, called “momentum crashes”. We find that high uncertainty of momentum 

strategy returns is sourced from the cross-sectional volatility of individual stocks. Stocks 

with high realised volatility over the formation period tend to lose momentum effect. We 

propose a new approach, generalised risk-adjusted momentum (GRJMOM), to mitigate the 

negative impact of high momentum-specific risks. GRJMOM is proven to be more profitable 

and less risky than existing momentum ranking approaches across multiple asset classes, 

including the UK stock, commodity, global equity index, and fixed income markets. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
1. Introduction 

Despite that momentum strategies (XSMOM) exhibit persistent profitability, their returns are volatile and face crash risks 

during specific periods. 1 Grundy and Martin (2001) found that momentum returns experience negative beta following bear 

markets. More recently, Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016) showed that stock market mo- 

mentum strategies suffer from infrequent and persistent strings of negative returns, called momentum crashes. Daniel and 

Moskowitz (2016) argued that momentum crashes are caused by the outperformance in losers returns over winners returns 

when markets rebound from panic states. 
� First Draft: November, 2019. This Version: September, 2022. 
�� We thank the two anonymous referees for helpful comments and insights that greatly improved the paper. We are grateful to Joon Won Bae, Bruce D. 

Grundy, Dashan Huang, Kai Li, Florian Mair, and Larry Pohlman for their helpful comments. We thank seminar participants at 2019 BAFA Corporate Finance 

and Asset Pricing Conference, Queen’s Management School, 2020 Financial Management Association Annual Meeting, 2020 SFM Conference, 2021 Frontiers 

of Factor Investing Conference and 2021 Eastern Finance Association Annual Meeting. 
∗ Corresponding author.: 

E-mail address: liu.jiadong@qub.ac.uk (J. Liu) . 
1 Evidence of momentum has been investigated in international stock markets, see, e.g., Fama and French (1998) , emerging markets, see, e.g., 

Rouwenhorst (1999) , commodity market, see, e.g., Miffre and Rallis (2007) , Narayan et al. (2015) , regional equity indices, see, e.g., Asness et al. (1997) , 

Bhojraj and Swaminathan (2006) , foreign exchange, see, e.g., Menkhoff et al. (2012b) , industries, see, e.g., Moskowitz and Grinblatt (1999) , and financial 

market anomalies, see, e.g., Ehsani and Linnainmaa (2021) , Fan et al. (2022) . 
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One commonality between Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016) is that both papers at- 

tributed momentum risks to time-varying volatility of the winner minus loser (WML) series. According to Barroso and 

Santa-Clara (2015) , this is called the momentum-specific risk which cannot be diversified away, as “momentum is a well- 

diversified portfolio and all its risk is systematic”. Therefore, both papers proposed different approaches to scale the position 

size of the WML returns and allow it to be time-varying. Since the WML series is not known until the constituents of the

momentum strategy are determined, their work essentially adjusts momentum returns after the portfolio is constructed. 

We argue that the uncertainty of WML returns is not only determined by the time-varying volatility of the WML series,

but also the cross-sectional volatility of individual stocks. The core mechanism of momentum is to allocate buy (sell) signals 

to assets with the highest (lowest) formation period returns. Stocks with high returns are usually associated with high 

volatility over the formation period. Therefore, the probability of an instrument being selected by a momentum portfolio is 

highly related to its realised volatility. In the UK market, 2 the number of stocks with the highest (top 10%) realised volatility

over the formation period and later selected into the momentum portfolio is 8.3 times the number of stocks with the lowest

(bottom 10%) realised volatility. 3 This clustering of high volatility stocks leads to highly volatile momentum portfolios, or 

momentum-specific risks. Therefore, we conclude that the momentum risks originate from the ranking procedure at the 

signalling stage, before the portfolio is constructed. 

More interestingly, we find that stocks with high realised volatility over the formation period tend to lose momentum 

effect, while stocks with low and medium realised volatility show strong momentum effect. Based on our four samples con- 

sisting of the UK stock, commodity, equity index, and fixed income markets, we decompose each of them into ten deciles

according to the stocks’ realised volatility over the formation period. 4 Panel regressions are performed to examine the mo- 

mentum effect for each of these ten deciles. We find that none of the momentum effect is statistically significant (reflected

in the t -statistics of the coefficients) for the three deciles associated with the highest levels of realised volatility. By contrast,

most assets in the bottom three deciles with the lowest realised volatility show significant positive momentum effect. 

Our findings relate to Grinblatt and Moskowitz (2004) and Da et al. (2014) , who documented that stocks creating extreme

monthly returns in a few months over the formation period demonstrate weaker return consistency than the ones with a 

steady price path. 5 The stocks showing extraordinary price movement yield high variation of returns over the formation 

period. Therefore, the cross-sectional momentum effect ceases to hold in the high volatility deciles as they contain stocks 

with weak return continuation. 

To measure the momentum risks, we calculate the spread between the volatility of a momentum strategy and that of 

a randomly selected portfolio. The randomly selected portfolio is sampled from the market and has the same number of 

assets as the momentum strategy. We call this measure the excess volatility of momentum strategies. 6 We calculate this 

excess volatility based on our sample consisting of four markets, namely the UK stock, commodity, equity index, and fixed 

income markets. The results suggest that the excess volatility of momentum strategies is statistically significant in all asset 

classes. Hence, confirming the existence of momentum-specific risks. 

An intuitive approach to reduce this excess volatility is to consider risk-adjusted returns at the momentum ranking stage. 

Pirrong (2005) and Rachev et al. (2007) formed their momentum strategies by ranking the Sharpe ratios (SRMOM) instead of 

period returns in the commodity futures market and US stock market, respectively. They have found that their risk-adjusted 

momentum strategies tend to outperform the original XSMOM. However, neither paper focused on economic rationales for 

using a risk-adjusted ranking method. Our paper fills this gap by providing evidence that using risk-adjusted momentum 

is related to the excess volatility specific to momentum strategies. In a risk-adjusted momentum ranking system, an asset 

with higher past volatility is less likely to be selected into the winner or loser portfolio. The idea is also consistent with the

volatility timing theory in improving portfolio performance, see, e.g., Fleming et al. (2001) , Fleming et al. (2003) , Kirby and

Ostdiek (2012) and Moreira and Muir (2017) . 7 

Our empirical results suggest that simply using the Sharpe ratio ranking of Pirrong (2005) and Rachev et al. (2007) elim-

inates part of the excess volatility of momentum strategies. However, it is far from optimal. Consider, for instance, an asset

that has high past absolute returns but at the same time is extremely volatile, simply adjusting its return by one standard

deviation is not sufficient to prevent the asset to be selected as momentum winner or loser. Therefore, it is natural to ask

the question: is there a generalisation of risk-adjusted momentum that allows investors to change the degree of aggressive- 
2 We extend the investigation of momentum crash studies to the UK market to provide complementary evidence to the US centric research conducted 

to date. The UK constitutes the largest stock market in Europe and historically (pre-World War 1) it was the largest market in the world. That being said, 

we also present results for the US market and find that they are consistent with our UK results. 
3 This ratio is 5.2 times for winners and 11.9 times for losers. Consistent with Daniel and Moskowitz (2016) who claimed that loser portfolio is the main 

cause of momentum crashes, we find that the problem of high volatility stock clustering is more severe in losers. 
4 The idea of dividing the portfolio into ten deciles according to asset realised volatility is similar to Ang et al. (2006) . 
5 Li and Liu (2022) also indicated that the assets with hump-shaped price path (upward at early stage of formation period but downward later) tend 

to lose positive momentum, and assets with rebound price path (downward over the early formation period but upward later) tend to lose negative 

momentum. Li (2021) further justified this finding from the sentiment aspect. 
6 The concept of excess volatility differs from the one that was first defined by Shiller (1981) and LeRoy and Porter (1981) . We use this term here as it 

measures momentum strategy risks in excess of a benchmark (the market portfolio). 
7 The core idea of volatility timing is to construct future portfolios based on the conditional/realised volatility or the conditional covariance matrix of 

asset returns. 
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ness to adjust returns? Ideally, this generalised method can remove those instruments that are less attractive in terms of 

reward-to-risk trade-off, while still keeping the high profitability of momentum strategies. 

In this paper, we propose such a solution, called generalised risk-adjusted momentum (GRJMOM). GRJMOM sorts mo- 

mentum winners and losers based on ranking asset risk-adjusted returns in order to mitigate the clustering problem in high 

volatility stocks. GRJMOM trading strategy leads to substantial statistical and economic superiority compared to XSMOM 

which ranks the absolute returns. In the UK stock market, GRJMOM yields an annualised return of 22.4% compared to the

XSMOM return of 17.9%, with the Sharpe ratio improving from 0.67 (XSMOM) to 1.18 (GRJMOM). More importantly, GRJ- 

MOM significantly reduces momentum risks from an annualised standard deviation of 27% (XSMOM) to 19% (GRJMOM) and 

performs much better in periods of momentum crashes. 

More specifically, the assets are ranked based on the ratio between period returns and the Nth power of their realised

volatility, ̂ R k 
t −12 ,t −1 

= 

R k 
t −12 ,t −1 

(σ k 
t ) 

N 
, where R k 

t −12 ,t −1 
is the period returns of asset k over the formation period; σ k 

t is the realised

volatility over the same period; the parameter N measures how aggressively the period return is adjusted by its realised 

volatility. The GRJMOM ranking scheme is structurally similar to a generalised volatility timing trading strategy proposed 

by Kirby and Ostdiek (2012) , who also assigned an exponential parameter to the realised volatility in determining portfolio 

weights. GRJMOM provides a flexible ranking system allowing for risk-focused adjustment during recessions and market 

crashes. 

The tuning parameter N can be of any value greater than or equal to zero. For example, if N = 0 , then we remove the

risk-adjustment from the returns. In such a case, the target GRJMOM is equivalent to the original XSMOM. If N = 1 , then

the Sharpe ratios (return-to-standard deviation) are ranked, which is similar to Pirrong (2005) and Rachev et al. (2007) . If

N = 2 , then the return-to-variance ratios are ranked where the risks are more aggressively adjusted. 

The optimum N can be calculated using a grid search method based on different degrees of risk aversions. A risk-neutral 

investor would focus on the relationship between N and portfolio returns; a risk-averse investor searches for the optimum 

N that minimises the portfolio volatility or maximises the Sharpe ratio. In each of the above cases, we can find one single

optimum value for this parameter N using our entire sample. For instance, if we plot the N versus the Sharpe ratios of the

corresponding risk-adjusted momentum strategies, we find that the relationship looks like a parabola. This means that we 

can always find the peak (or trough for minimising volatility problems) by changing the value of N. 

Furthermore, we propose a cross-validation method to allow the parameter N to be timing-varying, responding to the 

market dynamics over the period. Using an expanding window, the N that leads to the maximised portfolio Sharpe ratio 

is defined as the optimum. This method does not require any additional assumptions, allowing all the parameters to be 

generated automatically. Overall, we find that the optimal N increases over time, for all four asset classes. This means that 

the role of volatility is becoming more important in momentum strategies over the past decades. 

One benefit of GRJMOM is that it performs a cross-sectional adjustment to momentum signals before the portfolio 

is constructed. Like the plain momentum strategy, it also has a symmetric structure, where the long and short side in-

vestments are equal. Hence, the GRJMOM strategy can be compared directly to XSMOM. By contrast, Barroso and Santa- 

Clara (2015) and Daniel and Moskowitz (2016) conducted the time-series adjustment after the construction of momentum 

portfolios. Their volatility scaling approaches lead to a time-varying position size of their strategies. 8 According to Goyal and 

Jegadeesh (2017) , our GRJMOM strategy is a “zero net-investment strategy with the total active position being two dollars”. 

By applying the same scaling factor as in Barroso and Santa-Clara (2015) to the GRJMOM strategy, we find that GRJMOM

shows substantial outperformance to their constant target volatility scaled momentum strategy. 

Finally, we evaluate the risk exposure of GRJMOM using the 4-factor model ( Carhart, 1997; Fama and French, 1992 ) and

value & momentum everywhere model ( Asness et al., 2013 ). According to the regression results of the 4-factor model, the

GRJMOM strategies report outperforming abnormal returns across multiple markets. In UK stocks, for example, the abnormal 

profit of GRJMOM is 116% and 30% higher than those of XSMOM and SRMOM strategies, respectively. In the global asset

markets, GRJMOM also shows superior alphas compared to XSMOM and SRMOM. Similar performance is observed in the 

results of the value & momentum everywhere model. 

The remainder of this study is organised as follows. Section 2 details the data sources and construction of momentum 

portfolios. In Section 3 , we present our research motivation and analyse the sources of momentum risks. Section 4 demon-

strates how the generalised risk-adjusted momentum strategy is constructed. In Section 5 , we focus on analysing the rela-

tionship between GRJMOM and momentum crashes. In Section 6 , we employ factor models to evaluate the risk exposure of

GRJMOM. Finally, we conclude our findings in Section 7 . 

2. Data and portfolio construction 

2.1. Data 

Our dataset contains two major samples. First, we base our research on all the stocks traded on the London Stock Ex-

change from January 1965 to July 2018. Second, we obtain a global sample consisting of 70 investable instruments in three
8 Although these strategies are still zero net-investment strategies, they are exposed to more market risks over certain periods when the past volatility 

is low. 
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asset classes, including commodity, equity indices and fixed income. Among them, 27 are commodity index futures; 24 are 

global equity indices; 19 are sovereign bond or short-term deposit. The summary statistics of these three asset classes are 

available in Appendix A . The following sub-sections detail the data sources. 

2.1.1. UK stock market 

Our UK stock market sample consists of all the stocks traded on the London Stock Exchange available on Datastream. 

The entire sample consists of 8,195 stocks, whereas the number of available assets dynamically ranges between 1,231 and 

2,205 over the period spanning from January 1965 to July 2018. We obtain the daily closing price of the total return index

of these stocks. These type of indices take into account corporate actions, e.g., dividend payment, mergers and acquisitions, 

stock buyback, and therefore, is less biased. We first calculate the daily percentage returns and aggregate them in to raw

monthly returns. Then, we calculate the excess returns by subtracting the UK risk-free rate from the raw returns. The UK

one-month treasury yield is downloaded from Datastream as the risk-free rate. 

2.1.2. Global asset classes 

We obtain the daily closing prices of 27 constituents of the Standard and Poor’s Goldman Sachs Commodity Index (S&P 

GSCI) from Datastream. Such a dataset is also employed by Bianchi et al. (2015) and Koijen et al. (2018) . The advantages of

using the S&P GSCIs are that they reflect the real returns of investing in the underlying futures, incorporating the impact

of term structure, can be directly invested in, and use continuous price series which are not affected by price spread when

the nearest futures contract expires. Due to the number of indices available, the sample period ranges from January 1984 to

July 2018. 

Our equity index sample consists of global major stock indices from both developed and emerging economies. The entire 

universe includes 24 markets: Australia, Austria, Belgium, Canada, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, 

Malaysia, Netherlands, Norway, Portugal, Singapore, South Africa, Spain, Sweden, Switzerland, Taiwan, Thailand, the United 

Kingdom (UK), the United States (US). 9 The daily closing prices measured in US dollars are acquired from Morgan Stanley 

Capital International (MSCI) via Datastream. The sample ranges from January 1970 to July 2018. 

Finally, we collect prices of 19 sovereign bonds or short-term deposits from 8 developed economies with various ma- 

turities. They are Australian 3-year bond (AUS 3Y), Australian 10-year bond (AUS 10Y), Canadian 10-year bond (CA 10Y), 

Euro 2-year bond (EURO 2Y), Euro 5-year bond (EURO 5Y), Euro 10-year bond (EURO 10Y), Euro 30-year bond (EURO 30Y),

Eurodollar 1-month time deposit (EuroDollar 1M), Eurodollar 3-month time deposit (EuroDollar 3M), Euro 3-month inter- 

nal bank deposit (EURIBOR 3M), Japan 5-year bond (JP 5Y), Japan 10-year bond (JP 10Y), Switzerland 10-year bond (SWISS 

10Y), United Kingdom 1 year bond (UK 1Y), United Kingdom long gilt (UK 10Y), United States 2-year Treasure (US 2Y),

United States 5-year Treasure (US 5Y), United States 10-year Treasure (US 10Y), and United States 30-year Treasure (US 

30Y). These contracts are extensively investigated by previous studies, see, e.g., Moskowitz et al. (2012) , Asness et al. (2013) ,

Koijen et al. (2018) , and are highly liquid. The futures prices are retrieved from Bloomberg for the January 1993 to July 2018

period 

Across these three markets, we used the same method as we do in the UK stock market to aggregate daily into monthly

returns. For commodities and fixed income, the monthly raw returns are equal to the monthly excess returns since we 

employ futures prices. 10 For equity indices, we calculate the monthly excess returns by subtracting the US one-month T-bill 

yield from the raw returns. The monthly interest rate of the US one-month T-bill is collected from Kenneth French’s data

library. 

2.1.3. Other dataset 

To perform the factor regressions, the monthly percentage returns of the S&P GSCI, MSCI world index, Barclays Aggregate 

Bond Index, and the Financial Times Stock Exchange (FTSE) all share index are collected as market factors. We also collect

the returns series of Fama and French (1996) small market capitalisation minus big ( smb), high book-to-market ratio minus

low ( hml), and Carhart (1997) premium on winner minus loser ( umd) from Kenneth French’s data library. As our main target

is the UK stock market, we obtain the Euro area three factors which are available from January 1991. 11 Finally, we consider

the value & momentum everywhere factors documented by Asness et al. (2013) . The monthly percentage returns of these 

factors are obtained from the website of AQR Capital Management. 

2.2. Momentum portfolio construction 

We use 12 months as the formation period in our momentum strategies for both the UK stock market and the global as-

sets. 12 months is commonly used in the literature for both stock markets and different asset classes, see, e.g., Jegadeesh and

Titman (1993) and Asness et al. (2013) . The relative performance is measured based on 12 months period return or risk-

adjusted return, depending on different strategies. In each dataset, we buy the assets with the highest past performance 
9 Similar datasets are used in prior literature, see, e.g., Asness et al. (2013) . 
10 Moskowitz et al. (2012) clarified that excess returns are equivalent to raw returns in futures markets. 
11 We splice them with the US factors prior to that date. 
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(winners) and sell those with the lowest past performance (losers). An equal-weighted method is employed, and the port- 

folio is rebalanced monthly. 

Given the difference in the size of each sample, we sort winners and losers into different quantiles. First, for the UK

stock data, we divide the whole sample into deciles following literature such as Jegadeesh and Titman (1993) . Second, in

our global samples, the instruments are sorted into quartiles to make sure that the momentum portfolio is well-diversified. 12 

For instance, in a momentum strategy in the commodity market, we buy the top performing quartile and sell the bottom

performing quartile. In line with other momentum studies in equity markets, we skip the most recent month in the forma-

tion period to avoid short-term reversal. To allow for real-world implementation, we screen the firms that are continuously 

traded over the formation period and are also tradeable in the following month. 

3. The source of high uncertainty momentum strategies 

Despite the fact that the momentum strategies have been identified as producing abnormal performance across multiple 

assets classes, prior literature has also indicated that the volatility of momentum portfolios tend to be much higher than that

of a market portfolio. For instance, Barroso and Santa-Clara (2015) showed that the standard deviation of the WML series

is 45% higher than that of the market. We argue that this phenomenon is naturally due to the asset selection mechanism

of momentum strategies. A momentum strategy invests in stocks with the highest and the lowest relative returns over the 

formation period. While individual stocks with large absolute period returns are often associated with high volatility, these 

volatile stocks lead to the high uncertainty of the entire momentum portfolio. In this section, we perform an analysis to

support our view and investigate the sources of the high volatility in momentum strategies. 

3.1. Excess volatility of momentum strategies 

We start by measuring the momentum risks caused by the cluster of high volatility stocks in excess of a market portfolio

with the same number of assets. Similar to the idea of abnormal returns in asset pricing models, we define excess volatility

as the spread between the volatility of WML returns and that of a market benchmark strategy. 13 The benchmark is an equal-

weighted strategy formed by randomly investing in m stocks from the samples, where m is equal to the number of assets in

the corresponding momentum portfolio. Trading signals are renewed and the portfolio is rebalanced on a monthly level. We 

repeat the above steps ten thousand times and take the mean of the volatility. We perform the F -test to examine whether

the volatility of a momentum portfolio is equal to the average volatility of ten thousand drawings of randomly sampled

benchmark portfolios. 14 

Table 1 summarises the excess volatility of XSMOM strategies across various asset classes. The annualised standard devia- 

tions of WML returns are higher than those of the randomly selected market portfolios. The excess volatilities are statistically 

significant at the 1% level for UK stock, commodity, and fixed income markets. In the global equity index market, the excess

volatility is slightly lower, at 0.012, which is still statistically significant at the 10% level. 15 

To understand the causes of this excess volatility, we can assume that the probability of asset k being chosen as either a

winner or loser at time t , P t,k , is expressed as a function of its period return, R k 
t −12 ,t −1 

, and realised volatility, σ k 
t , 

16 over the

formation period, as: 

P k t = f (R 

k 
t −12 ,t −1 , σ

k 
t ) . (1) 

Therefore, the return of an equal weighted momentum portfolio, R t , is given by: 

R t = 

2 

m 

m ∑ 

k =1 

(signal k t | P k t ) ∗ r k t , (2) 

where m is the number of stocks included in each of the winner and loser portfolios; signal k t | P k t is the trading signal based

on the probability P k t which takes the value of 1 for winner and -1 for loser. The above equation implies that the total
12 Similar sorting methods are seen in, e.g., Miffre and Rallis (2007) and Bianchi et al. (2015) . 
13 The excess volatility here differs from the concept introduced by Shiller (1981) and LeRoy and Porter (1981) . In those papers, excess volatility was the 

difference between the standard deviation of stock returns in the real world and that predicted by the efficient market hypothesis of Fama (1965) . 
14 The F -test is used to examine whether the volatility of a given series is equal to that of another series, which can be expressed as: F = σ 2 

a /σ
2 
b 

, where 

σ 2 
a refers to the variance of a tested series, and σ 2 

b 
represents the variance of a target series. One disadvantage of the F -test is that it assumes normality 

in portfolio returns. Therefore, for robustness check, we also perform the Levene’s test ( Levene, 1960 ) which is less sensitive to departures from normality. 

The results suggest consistent significance as the F -test and are available upon request. 
15 Apart from the above-mentioned asset classes, we also test the excess volatility of momentum strategies in the foreign exchange (FX) market, in which 

the excess volatility is insignificant. Hence, concluding that the FX market does not require risk-managed momentum adjustment. For more detailed data 

description and strategy specification in the FX market, see Appendix B . 
16 We assume that each month consists of 21 trading days. For the global asset classes, the realised volatility over the formation period is estimated as: 

σ k 
t = 

√ 

21 ∗∑ 251 
j=0 ( r 

k 
d t−1 − j 

) 2 

252 
, where r k 

d 
is the daily return of asset k on day d. For the UK stock market, in line with the literature, we skip the most recent month 

over the formation period, so the realised volatility is estimated as: σ k 
t = 

√ 

21 ∗∑ 251 
j=21 ( r 

k 
d t−1 − j 

) 2 

231 
, where all parameters remain the same. 
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Fig. 1. Momentum signal allocation by formation period asset volatility (XSMOM) This figure summarises the relationship between individual asset volatil- 

ity and momentum signal allocation. At the end of each month t , we sort all available instruments into deciles according to their realised volatility over 

the formation period. Decile one consists of the instruments with the lowest volatility over the formation period, with decile ten containing the assets 

with the highest volatility. Each bar plots how many momentum trading signals are assigned to a given volatility decile. 

 

 

 

 

 

momentum portfolio return is the sum of momentum signals multiplied by their returns, where these signals are dom- 

inated by a probability function of asset return and realised volatility. As return and volatility are usually positively re- 

lated, the higher the mean/volatility, the higher the probability of an asset i to be chosen as a constituent of the momen-

tum portfolio. Therefore, we presume that the cluster of high volatility stocks leads to excess volatility in a momentum 

portfolio. 

3.2. Cluster of momentum signals in high volatility stocks 

Next, we perform decile portfolios to validate our hypothesis that the cluster of momentum signals are related to indi- 

vidual asset volatility. At the end of each month t , we sort all available instruments into deciles according to their realised

volatility over the formation period. Decile one ( D 1 ) consists of the stocks with the lowest volatility, and decile ten ( D 10 ) con-

tains those with the highest volatility. This method is also used by Ang et al. (2006) , Bali and Cakici (2008) and Fu (2009) ,

who sorted assets into deciles according to the idiosyncratic risks over a given period. Figure 1 reports how many momen-

tum signals are assigned to instruments in each decile. We observe that the number of signals increases gradually from D 
1 
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Table 1 

Performance of original momentum strategies across different markets 

Mean Vol Skew Kurt MP.vol EX.vol Obs 

UK stocks 0.17 0.26 -0.74 1.75 0.17 0.089 ∗∗∗ 632 

Commodity 0.094 0.23 0.052 0.23 0.17 0.055 ∗∗∗ 391 

Equity Index 0.080 0.19 -0.14 0.44 0.18 0.012 ∗ 557 

Fixed income -0.010 0.054 0.076 0.34 0.039 0.015 ∗∗∗ 247 

Mean, Vol, Skew and Kurt denote the annualised XSMOM returns, standard devia- 

tion, skewness and kurtosis, respectively. MP.vol is the average volatility of ten thou- 

sand drawings of randomly formed portfolios (market portfolio). These sampled equal- 

weighted portfolios have the same number of assets as in the corresponding momen- 

tum portfolio. EX.vol represents the excess volatility of the XSMOM strategy over the 

market portfolio. The F -test is performed to examine whether the volatility of a mo- 

mentum portfolio is equal to the average volatility of ten thousand drawings of ran- 

domly sampled benchmark portfolios. Obs is the degree of freedom for F -test. ‘ ∗ ’, ‘ ∗∗ ’, 

‘ ∗∗∗ ’ represent that the excess volatilities are statistically significant at the 10%, 5% and 

1% level. 

Table 2 

Performance of momentum strategies by volatility decile (UK stock) 

D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 D 9 D 10 

Mean 0.130 0.136 0.133 0.138 0.155 0.182 0.184 0.201 0.058 -0.254 

t -value 12.20 ∗∗∗ 12.82 ∗∗∗ 9.75 ∗∗∗ 9.09 ∗∗∗ 9.52 ∗∗∗ 10.30 ∗∗∗ 9.17 ∗∗∗ 8.29 ∗∗∗ 1.92 ∗∗ -2.55 ∗∗

Vol 0.078 0.077 0.100 0.111 0.119 0.130 0.147 0.177 0.223 0.732 

SR 1.664 1.749 1.331 1.240 1.299 1.405 1.251 1.131 0.262 -0.348 

‘ D 1 ’ to ‘ D 10 ’ represent the ten deciles constructed by ranking the realised volatility over the formation periods. Decile one 

contains instruments with the lowest realised volatility, with decile ten consisting of instruments with the highest realised 

volatility. Mean, t -value, Vol , and SR denote the annualised momentum returns, t -values of returns, standard deviations, and 

Sharpe ratios, respectively.‘ ∗ ’, ‘ ∗∗ ’, ‘ ∗∗∗ ’ represent that the t -values are statistically significant at 10%, 5% and 1% level. 

 

 

 

 

 

 

 

 

 

 

to D 10 . 
17 In the UK stock market, the number of signals in D 10 is 8.31 times the number in D 1 . In commodity, equity index

and fixed income markets, the numbers of signals in D 8 , D 9 and D 10 are 81.5%, 49.8% and 49.2% percent higher than those

in D 1 , D 2 and D 3 , respectively. These results suggest that stocks with high realised volatility during the formation period are

more likely to be selected by a momentum strategy. 

When comparing the winners and losers, we find that the clustering of momentum signals in high volatility assets is 

much stronger in losers than in winners. As shown in the UK stock market panel in Figure 1 , the loser signals increase more

dramatically from D 1 to D 10 than the winner ones. This means a large proportion of the loser signals are given to those high

volatility stocks throughout the investment horizon. Holding high volatility assets in losers might cause large drawdowns 

in portfolio returns during periods of instability and crises. Our result explains the finding of Daniel and Moskowitz (2016) ,

who suggested that momentum crashes are mainly caused by past losers. In the commodity and equity index panels in 

Figure 1 , the results still hold with the loser signals increasing more from D 1 − D 3 to D 8 − D 10 , in comparison with the

winners. 18 

3.3. Momentum and the cross-section of stock volatility 

To take our analysis a step further, we investigate how the cross-section of stock volatility impacts momentum effect. 

We implement the XSMOM strategy for each volatility decile in the UK stock market. 19 We sort sub-portfolios into quintiles

in order to construct well-diversified portfolios. 20 As seen from the results in Table 2 , the momentum mean return in D 10 

is negative and significantly different from zero, whereas the returns in the remaining deciles are all positive. This indicates 

that stocks with high volatility exhibit reversal instead of return continuation. In D 9 , the decile with the second highest

volatility, the annualised mean is at least 60% lower than those in other deciles. By contrast, momentum profits are all
17 The results of global asset portfolios (commodity, equity index and fixed income) do not show monotone increasing pattern. This is because their 

relative returns are ranked based on quartiles instead of deciles given the number of instruments available in these samples. Therefore, D 8 , D 9 and D 10 

need be considered together and compared to D 1 , D 2 and D 3 . In this sense, consistent with the UK stock market sample, the instruments in the high 

volatility quartile are more likely to appear in a momentum portfolio. 
18 In the fixed income market, however, the winner and loser signals increase by a similar rate. We argue this is because the volatility for different fixed 

income instruments does not vary a lot as in the other three markets. Data summary can be seen in Appendix A . 
19 We only implement the XSMOM strategy in the UK stock market as the sample sizes of the other asset classes are not large enough. A similar double 

sorted approach is also used by Zhang (2006) in US stock markets. 
20 As a robustness check, we also sort stocks into deciles to form the XSMOM strategy. The results show consistent patterns with our quintile approach 

and are available upon request. 
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Table 3 

Coefficients between formation period and holding period returns 

D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 D 9 D 10 

UK stocks -0.012 0.003 0.004 ∗∗∗ 0.002 0.003 ∗∗∗ 0.006 ∗∗∗ 0.003 ∗∗∗ -0.002 ∗ -0.003 ∗∗∗ -0.004 

(-1.36) (1.48) (3.03) (1.19) (2.61) (3.68) (2.89) (-1.76) (-3.32) (-1.23) 

Commodity 0.024 ∗∗∗ 0.023 ∗∗ 0.035 ∗∗ 0.014 0.005 -0.007 0.014 ∗ -0.004 -0.003 -0.011 

(2.62) (2.59) (2.59) (1.07) (0.39) (-0.70) (1.79) (-0.46) (-0.34) (-1.23) 

Equity Index 0.009 0.030 ∗∗ 0.024 ∗∗ 0.016 ∗ 0.011 0.007 0.020 ∗∗∗ 0.002 0.011 -0.003 

(1.01) (2.32) (2.20) (1.78) (1.24) (0.65) (2.81) (0.30) (1.24) (-0.48) 

Fixed income 0.038 ∗∗∗ 0.016 0.040 ∗∗ 0.006 -0.005 0.006 -0.016 -0.027 -0.011 -0.031 ∗∗

(3.73) (1.17) (2.43) (0.36) (-0.23) (0.34) (-1.04) (-1.52) (-0.44) (-2.51) 

‘ D 1 ’ to ‘ D 10 ’ represent the ten deciles constructed by ranking the realised volatility over the formation periods. Decile one contains instru- 

ments with the lowest realised volatility, and decile ten consists of instruments with the highest ones. Four sets of pooled regressions 

are run, and the t -statistics are estimated based on robust standard error of Thompson (2011) . ‘ ∗ ’, ‘ ∗∗ ’, ‘ ∗∗∗ ’ represent that the t -values are 

statistically significant at the 10%, 5% and 1% level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

significantly positive at the 1% level from D 1 to D 8 . The results imply that the momentum effect vanishes in high volatility

stocks, but is strong in low and medium volatility stocks. 

The poor performance of momentum portfolios in high volatility deciles ( D 9 and D 10 ) is consistent with the findings of

Grinblatt and Moskowitz (2004) and Da et al. (2014) . We contend that this is because the assets with large price changes

generate weaker return continuation than the ones with steady returns over the entire formation period. More recently, 

Li and Liu (2022) categorised the volatile price movements into hump price path (upward first and later downward) and 

rebound path (downward at the beginning and upward at the end). The authors found that the assets with hump path

(rebound path) cease to hold momentum effect when it is in the winner (loser) portfolio. Therefore, D 9 and D 10 capture

assets with weak return consistency, resulting in lower profits than the portfolios in the remaining deciles. 21 

Interestingly, our finding seems to contradict the results in Zhang (2006) and Bandarchuk and Hilscher (2013) , who 

proposed that the high volatility stocks yield high momentum profits. However, we find that they excluded those stocks 

with price lower than $5 which removed around 20% of stocks from the universe. Such a data filtering approach is not a

standard way of studying momentum crash risks. Recent momentum studies build portfolios based on all common stocks 

with available prices and market values, see, e.g., Novy-Marx (2012) , Da et al. (2014) , Moreira and Muir (2017) , Moreira and

Muir (2019) and Fama and French (2020) . Moreover, Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016) un-

covered the momentum crashes in the sample of all available common stocks. Kim and Lee (2017) claimed that the mo-

mentum crash is highly related the penny stock. Therefore, excluding low prices stocks does not benefit our understanding 

of momentum crashes. 

Another possible explanation stems from the perspective of short-sale constraints. Daniel et al. (2018) argued that short- 

sale is not available for most of the small stocks, causing newswatchers unable to sell momentum losers. Therefore, momen- 

tum effect ceases to hold due to the lack of short-term market under-reaction. We contend that this is one of the important

reasons for the poor momentum performance in high volatility deciles. Because these deciles mainly consist of small stocks 

as the returns of the small firms are more volatile than the big ones ( Ang et al., 2006; Fu, 2009 ). 

As a robustness check, we further examine the time-series momentum effect in the above-mentioned deciles sorted by 

realised volatility. In each decile, we regress one-month holding period returns on the returns over the formation period 

using the pooled panel regression. 22 The equitation is as follows: 

r k t = α + βR 

k 
t −12 ,t −1 + ε, in Decile n. (3) 

For asset k in D n , we define R k 
t −12 ,t −1 

as its return over the formation period. 23 Following Thompson (2011) and Wu and

Li (2011) , we control for both time-varying and cross-sectional fixed effects in our regression. If the β coefficient is positive

and significantly different from zero, then holding trading positions consistent with historical trends produces abnormal 

profits, and therefore, momentum effect exists in this decile. 

Consistent with our findings in Table 2 , the regression results in Table 3 exhibit that the momentum effect ceases to hold

in stocks with high volatility. Across all four markets, the β coefficients are either significantly negative or insignificant from 

D 8 to D 10 . 
24 We argue that this is because the asset returns are primarily driven by other factors instead of momentum

when volatility is high, e.g., macroeconomic factors or sentiment in times of recession. For the UK stock market, only those
21 As a robustness check, we apply the same approach in the US equity sample and find the consistent pattern. The supplement evidence is presented in 

Appendix C . 
22 This approach is extensively used by time-series momentum studies, e.g., Moskowitz et al. (2012) , Huang et al. (2020) , Bianchi (2021) , 

Papailias et al. (2021) and Liu and Papailias (2021) . 
23 We skip the most recent month of the formation period in the UK stock market, so the period return of asset k is R k t −12 ,t −2 . 
24 Our finding is similar to Ang et al. (2006) that the high ex-ante volatility reduces asset expected return. In contrast, Bali and Cakici (2008) and 

Fu (2009) argue that the pattern clarified by Ang et al. (2006) is determined by low liquid stocks. The relationship between asset risks and expect returns 

differs after excluding the low liquid stocks. However, for our momentum trading scheme we rank all available stocks, so it is rational to see our results as 

similar to Ang et al. (2006) . 
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Table 4 

Excess volatility of GRJMOM strategies across multiple markets 

Mean Vol Skew Kurt MP.vol EX.vol Obs 

UK stocks 0.22 0.19 -0.12 0.19 0.17 0.02 585 

Commodity 0.10 0.19 0.006 0.45 0.17 0.01 343 

Equity Index 0.10 0.15 -0.03 0.20 0.17 -0.03 510 

Fixed income 0.006 0.040 0.02 0.23 0.039 0.001 236 

Mean, Vol, Skew and Kurt denote the annualised GRJMOM returns, standard devi- 

ation, skewness and kurtosis, respectively. MP.vol is the average volatility of ten 

thousand drawings of randomly formed portfolios (market portfolio). These sam- 

pled equal-weighted portfolios have the same number of assets as in the corre- 

sponding momentum portfolio. EX.vol represents the excess volatility of the GR- 

JMOM strategy over the market portfolio. The F -test is performed to examine 

whether the volatility of a GRJMOM portfolio is equal to the average volatility 

of ten thousand drawings of randomly sampled benchmark portfolios. Obs is the 

degree of freedom for the F -test. None of the excess volatilities reported is signifi- 

cantly different from zero. 

 

 

 

 

 

 

 

 

 

 

 

 

stocks with intermediate realised volatility ( D 3 − D 7 ) show positive betas which are statistically significant. This means that 

low volatility stocks also do not show return continuation. One possible explanation is that stocks in D 1 and D 2 are illiquid

and do not draw enough investors’ attention. Therefore, they do not exhibit the momentum effect, as momentum is based 

on herding behaviour of under-reaction to news. 

For the commodity, equity index and fixed income markets, shown in Table 3 , the momentum effect is strong in the low

volatility deciles ( D 1 − D 3 ), but weak in the high volatility deciles ( D 8 − D 10 ). This indicates that the XSMOM strategies do

not work well in these markets, as most of the XSMOM signals are allocated in the high volatility deciles. Given that the

momentum effect behaves differently in various asset classes due to market size and fundamental variation, there is no “one 

size fits all” solution associated with simply applying the XSMOM strategies. A generalised approach is needed to improve 

the effectiveness of the momentum strategies. In the next section, we introduce such type of generalisation. 

4. Generalised risk-adjusted momentum 

Given that momentum signals are concentrated in high volatility assets which do not exhibit momentum effect, we pro- 

pose an improved and generalised version of momentum based on ranking risk-adjusted returns. 25 We call it the generalised

risk-adjusted momentum strategy (GRJMOM). This trading rule is superior to XSMOM as it dynamically considers the trade 

off between asset returns and volatility, and hence, alleviates the negative impact of high volatility clustering. In this section, 

we show the difference between GRJMOM, XSMOM and SRMOM. 

GRJMOM provides a flexible framework to allow investors to weight volatility differently according to market status 

over time. For example, in times of crisis, one might prefer to put more weight on volatility and focus less on return.

Consequently, a GRJMOM strategy selects instruments with lower volatility into winner/loser portfolios. Whereas in periods 

of a bullish market, one can amplify the impact of return by reducing the weight of volatility. We also introduce a cross-

validation approach to find the optimal time-varying parameter that yields the best performing GRJMOM strategy in this 

section. 

4.1. Ranking risk-adjusted returns 

An intuitive way to form a risk-adjusted momentum strategy is to sort the winners and losers based on relative Sharpe

ratios. The Sharpe ratios over the formation period are calculated as: 

SR 

k 
t −12 ,t −1 = 

R 

k 
t −12 ,t −1 

σ k 
t 

, (4) 

where SR k 
t −12 ,t −1 

is the Sharpe ratio of asset k over the formation period, R k 
t −12 ,t −1 

denotes the return and σ k 
t is the realised

volatility over the same period, as defined in Footnote 16 . Similar approaches are also seen in Pirrong (2005) , where the daily

standard deviations are calculated to scale returns. Both realised volatility and standard deviations are calculated based on 

the sum of squared daily returns. Therefore, they result in the same ranking for instruments to be selected as momentum

winners and losers. 

We next consider an alternative risk-adjusted ranking approach based on return-to-variance ratios proposed by 

Rachev et al. (2007) , where returns are more aggressively scaled by realised volatility. As suggested by its name, we simply
25 Previous studies have shown that controlling for certain level of volatility can improve the momentum performance, e.g., Rachev et al. (2007) and 

He et al. (2018) . 
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Fig. 2. Momentum signal allocation by asset volatility over formation periods (SRMOM and RVMOM) Decile one contains the lowest volatile instruments, 

and decile ten contains the highest. The number of signals accounts for how many momentum trading signals are allocated into a given decile. Sharpe 

ratio ranking means the momentum trading signals are sorted using asset Sharpe ratios over a formation period. RV ranking means the momentum trading 

signals are sorted using asset return-to-variance ratios over the formation period. 

 

 

 

 

 

 

 

 

 

 

 

 

calculate the return-to-variance (RV) ratio as follows: 

RV 

k 
t −12 ,t −1 = 

R 

k 
t −12 ,t −1 

(σ k 
t ) 

2 
, (5) 

where (σ k 
t ) 

2 is the realised variance. The momentum strategy based on ranking the return-to-variance ratio shown in 

Equation 5 is called the return-to-variance momentum (RVMOM). Compared to SRMOM, RVMOM weights volatility more 

aggressively relative to returns. For instance, Stock A has a return of 5% and realised volatility of 10%; Stock B has a return

of 10% and realised volatility of 20%. Under SRMOM, both stocks have Sharpe ratios of 0.5 and hence are ranked the same.

However, under RVMOM, the return-to-variance ratios become 5 and 2.5 times for Stock A and B, respectively. This is be-

cause the volatility of Stock B is higher than Stock A, and its weight is amplified by the RVMOM ranking system. Hence,

reducing its return-to-variance ratio. Therefore, Stock A is considered to be superior and more likely than Stock B to be

selected as the winner. 

Similar to the plots in Figure 1 , we show momentum signal distribution across different volatility deciles under the 

SRMOM and RVMOM schemes in Figure 2 . In each panel, the left plot is the momentum signal allocation using SRMOM

ranking, while the right plot is the one based on RVMOM ranking. The SRMOM ranking witnesses an improvement from 

XSMOM shown in Figure 1 , where the signals are well-diversified across different deciles in all of the four markets. More

specifically, under an SRMOM scheme, in the UK stock and the fixed income markets, only 24% and 20% of the total signals

are assigned to D 8 − D 10 , respectively. Whereas in the commodity and equity index markets, the proportions are slighter 

higher, with both at around 30%. 

Despite SRMOM mitigating the signal clustering problem in XSMOM, we argue that it is still not the optimal approach.

First, we previously showed that the momentum effect vanishes in high volatility instruments, while SRMOM still has a 

considerable weight in those deciles. Second, as shown in Table 3 , across the three global asset markets, namely commodity,

equity index and fixed income markets, low volatility deciles exhibit strong momentum effect. Therefore, it is reasonable 

to assume that an effective momentum strategy would put more weight in those instruments with low volatility. For this 

reason, RVMOM is superior to SRMOM as it measures volatility more aggressively. As shown in Figure 2 , more RVMOM

signals are allocated to low volatility deciles, i.e. D 1 − D 3 , than SRMOM. 

As shown in Equations 4 and 5 , both SRMOM and RVMOM employ constant numbers as the exponents of realised volatil-

ity in order to scale returns. A generalised version of them can be expressed as: 

̂ R 

k 
t −12 ,t −1 = 

R 

k 
t −12 ,t −1 

f (p k ) 
, (6) 
t 
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where p k t is the investor-specific risk measure and f (·) is the investor-specific function. For the risk measure, we keep 

using the realised volatility, i.e. p k t = σ k 
t . For the function, we use f (x ) = x N representing the aggressiveness utilised to scale

volatility in the risk-adjusted framework. The parameter N, as the exponential term, can be any value greater than or equal

to zero. Therefore, the generalised risk-adjusted ranking function is as follows: 

̂ R 

k 
t −12 ,t −1 = 

R 

k 
t −12 ,t −1 

(σ k 
t ) 

N 
. (7) 

A momentum strategy based on this generalised risk-adjusted ranking approach is called GRJMOM. GRJMOM allows investors 

to change the degree of volatility exposure relative to return, according to different market properties. 

Our GRJMOM is consistent with the idea of volatility timing in portfolio theory, where asset weights are determined by 

their volatility, see, e.g., Fleming et al. (2001) , Fleming et al. (2003) and Moreira and Muir (2017) . Specifically, our approach

is similar to a generalised volatility timing approach proposed by Kirby and Ostdiek (2012) . They suggested that portfolio

weights are determined by the conditional variance of risky-asset returns. They further added a tuning parameter to mea- 

sure how aggressively the weights are adjusted in response to the change in conditional variance. The parameter N in the

GRJMOM framework is qualitatively equivalent to their tuning parameter. We discuss the properties of the tuning parameter 

N and its relation with GRJMOM performance in the next subsection. 

4.2. The tuning parameter N 

4.2.1. How does N work? 

In GRJMOM framework, the tuning parameter N plays an important role in adjusting the returns in response to changing 

volatility. Similar to Kirby and Ostdiek (2012) , we define the tuning parameter N as the degree of aggressiveness about 

how investors value volatility in risk-adjust returns. Kirby and Ostdiek (2012) set the tuning parameter to be an integer

η = { 1 , 2 , 3 , 4 } as the exponent of variance. In our case, we let GRJMOM tuning parameter be any value satisfying N � 0 ,

as we assume asset volatility has a continuous impact on return adjustments. The larger the parameter N, the greater the

impact volatility has on returns. 

Next, we formally show the impact of tuning parameter N on risk-adjusted returns and momentum portfolio selection. 

We first assume that there are two risky assets a and b in the market, of which the past returns and standard deviations

are R a and σa , and R b and σb , respectively. We also assume that the past returns for assets a and b are of the same sign. 26 

When comparing the risk-adjusted return, ̂ R a and 

̂ R b , we simply examine whether the ratio, ̂ R a / ̂  R b , is greater than one or

not. According to Equation 7 , the relationship can be calculated as follows: 

̂ R a ̂ R b 

= 

R a / (σa ) N 

R b / (σb ) N 
= ( 

R a 

R b 

)( 
σb 

σa 
) N . (8) 

When both R a and R b are negative, the high-ranking assets are the high volatility stocks, which tend not to be selected

as losers. Unless in an extreme bear market where almost all the past 12 months stock returns are negative, an asset

yielding negative past 12 months return is unlike to be selected as a winner. Throughout the entire investment horizon, 

the proportion of these extreme situations is as low as 1.2% (8 out of 654 months). The merit of the GRJMOM ranking

approach is to assign more trading signals, winners or losers, to low volatility assets. When the parameter N is relatively

large, the high volatility assets are more concentrated in the middle of the ranking which are less likely to be selected in

the momentum portfolio. 

There are a few special cases when N takes certain values. If N = 0 and the denominator of Equation 7 , (σ k 
t ) 

N = 1 ,

the risk-adjusted return 

̂ R k 
t −12 ,t −1 

is equal the period return R k 
t −12 ,t −1 

. Hence, GRJMOM ranking scheme is the same as the 

XSMOM; if N = 1 , the risk-adjusted return 

̂ R k 
t −12 ,t −1 

is the Sharpe ratio of each instrument over the formation period, which

is equivalent to SRMOM; if N = 2 , then 

̂ R k 
t −12 ,t −1 

becomes the return-to-variance ratio, forming the RVMOM strategy. 

Knowing how the tuning parameter N works in GRJMOM system, we next empirically investigate the relationship be- 

tween N and momentum performance. Using a grid search method, we investigate how N affects momentum portfolio 

return, volatility and Sharpe ratio by increasing N at intervals of 0.1. Similar to Kirby and Ostdiek (2012) , we set the range

of N between zero and four. 27 

Figure 3 plots the above-mentioned relationship with different markets shown in different panels. It can be seen that, 

across all four markets, both momentum return and Sharpe Ratio monotonically increase with the growth of N until a 

threshold is reached. After the threshold, the further increase of N decreases the momentum profits. The trend fitted curve 

looks like a quadratic parabola, where we can always find an optimal point. We pay particular attention to the Sharpe

ratio as it is the choice for mean-variance optimising investors. The optimal N, returning the highest Sharpe ratio in the UK

stock, commodity, equity index and fixed income markets, are 2.8, 2.3, 2.6 and 2.3, respectively. This result suggests that 
26 We do not consider the situation that the return of one asset is positive and another is negative. In this case, it does not cause a problem in comparing 

risk-adjusted returns, as one is likely to be selected as the winner and another as the loser. 
27 One can certainly explore more by setting a larger range for N with smaller intervals, e.g., 0.01. However, the number of calculations does not add 

marginal value to this study, as the current setting is adequate to show the pattern. 
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Fig. 3. Trade-off between N and the performances of momentum portfolios Plots in the first column exhibit the trade-off between the tuning parameter N

and the annualised momentum portfolio returns across samples. Plots in the second and third columns display this relationship in terms of volatility and 

Sharpe ratios. A locally estimated scatter-plot smoothing (LOESS) curve is employed as the trend fitted line in each plot. Different panels show results for 

different markets. 
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the existing ranking systems, e.g., the XSMOM ranking (N = 0) or SRMOM ranking (N = 1) , are not optimal. By contrast, the

relationship between N and momentum portfolio volatility looks like a parabola which opens upward, where the optimum is 

when the volatility is at its lowest. 28 Volatility optimisation is preferred by those investors who want to minimise portfolio 

risks. 

4.2.2. Time-varying optimal N 

Benefiting from its flexible framework, GRJMOM allows the tuning parameter N to vary across different markets and over 

time. Distinct from XSMOM and SRMOM, one is free to determine the value of N based on their own risk preferences in

a GRJMOM system. Risk-neutral investors are more likely to set the parameter N producing the highest portfolio return; 

risk-averse investors choose N that generates minimised portfolio volatility or maximised Sharpe ratio. As mentioned above, 

we focus on the Sharpe ratio in this paper and use it as our parameter selection criteria. 

In this sub-section, we investigate how the best parameter N evolves over time. Beginning in month 60, we calculate 

the optimal N that generates the highest Sharpe ratio for each month, using an expanding window approach. The expand- 

ing window prediction (EWP) approach refers to an estimation or modelling method that uses all the observations from 

the first month to the most recent month, t − 1 , for each period. This approach is extensively implemented in portfolio

studies to estimate expected returns, variance and covariance matrix, see, e.g., DeMiguel et al. (2015) and Barroso and Sax-

ena (2022) . We employ the expanding estimation window as it considers the market historical performance across the 

long-term ( Gulen and Petkova, 2018 ). 

In Figure 4 , we plot the path of optimal N based on the best Sharpe ratio criteria in different asset classes. Overall, we

observe that the optimal N increases over time across all four markets, indicating that volatility becomes an indispensable 

element to be considered in changing global environment. The paths of N in the UK stock and commodity markets are

both volatile at the beginning of the investment horizon and then increase to above two after the 2008 financial crisis. For

example, the optimal N in the UK stock market increases to over two in the late 1970s due to the oil crisis but reduces to

below one afterwards until the 20 07-20 08 financial crisis. This makes sense that investors intend to alleviate the cluster of

high volatility instruments over crash periods, and hence, consider a more aggressive adjustment by increasing the value of 

N . By contrast, the N in equity index and fixed incomes markets are more stable but still reach 2.6 and 2 after 20 0 0. Our

results show that none of these optimal N reaches zero across different markets or over time, implying XSMOM inefficiency, 

which does not consider asset volatility. The out-of-sample GRJMOM strategy based on time-varying optimal N is discussed 

in the next sub-section. 

4.3. GRJMOM trading strategy 

After introducing the idea of risk-adjusted ranking and the time-varying N, we are able to form the GRJMOM strategy. 

In it, the winners and losers are sorted by ranking the risk-adjusted return based on Equation 7 . To estimate the optimal N,

we simply employ a cross-validation method which finds the best N using an expanding window approach. As is mentioned 

in Section 4.2.2 , the optimal N in month t − 1 is selected when the corresponding GRJMOM portfolio generates the highest

Sharpe ratio over the expanding window. 29 Then, we plug this N into Equation 7 , in order to sort the winners and losers

for the coming month, t . 

The GRJMOM strategy holds symmetric long and short legs in terms of winners and losers. Hence, it is a zero net-

investment strategy and can be compared directly to XSMOM and SRMOM strategies. Unlike the time-series momentum 

strategy ( Moskowitz et al., 2012 ) or the constant volatility scaled momentum ( Barroso and Santa-Clara, 2015 ), GRJMOM

does not use any leverage or time-varying position size over the investment horizon. The long side and the short side of

GRJMOM investment are always equal to $1. Therefore, the GRJMOM strategy is a “zero net-investment strategy with the 

total active position being $2”, as is defined by Goyal and Jegadeesh (2017) . 

We first examine whether the GRJMOM strategy mitigates the momentum-specific risk, and compare the results to those 

shown in Table 3 . In Table 4 , we measure the excess volatility of the GRJMOM returns across different markets. 30 In all

four markets, the excess volatility of GRJMOM returns becomes insignificantly different from zero. It even yields to nega- 

tive excess volatility compared to the market portfolio in the equity index market. Therefore, we conclude that GRJMOM 

successfully eliminates the momentum-specific risks caused by the cluster of high volatility instruments. 

For robustness check, we further measure an alternative risk exposure after controlling for asset pricing factors. We 

capture the standard error of the residuals from two factor models, i.e., the capital asset pricing model (CAPM) of 
28 In the commodity market as shown in Figure 3 Panel B, we do not observe an inflection point as the optimal N = 7 . 4 is greater than four. 
29 One can use different indicators to determine the value of N such as market volatility or sentiment. We choose to use the cross-validation method 

as it automatically determines which past information is relevant and which is not ( Hall et al., 2004 ). Moreover, the cross-validation method requires less 

information and is tractable. 
30 Since the GRJMOM strategy requests a 60-month initial estimation window to determine the first optimal N, the results here are slightly different from 

what is shown in Table 3 . 
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Fig. 4. Time-varying optimal N The figure reports the time-varying optimal N over the investment horizon for different markets. The first value of N is 

available from the 61st month, as an initial window of 60 months is used to calculate the outperformed Sharpe ratio of the momentum portfolio. Parameter 

N is constrained to lie between 0 and 4 with intervals of 0.1. 

 

 

 

 

 

 

Sharpe (1966) and 3-factor model (FF3) of Fama and French (1993) . 31 The model equations are: 

R i = α + β(mkt − r f ) + εt , 

R i = α + β1 (mkt − r f ) + β2 smb + β3 hml + εt , 
(9) 

where R i is the return series of a single leg (winner/loser) or the entire momentum portfolio for strategy i ; mkt is the

market factor; r f is the interest rate of US one-month T-bills; smb and hml are the size and value factors; εt denotes the

error term following a normal distribution that εt ∼ (0 , σ 2 
e ) . The market factor ( mkt) varies across markets: FTSE all share

index is used for UK stock market; S&P GSCI, MSCI World and Barclays Aggregate Bond indices are employed in commodity,

equity index, and fixed income markets, respectively. 

Table 5 summarizes the risk exposure of GRJMOM and XSMOM portfolios after controlling for market factors. Panel A 

reports the standard error of residuals by regressing GRJMOM and XSMOM returns on CAPM and Fama-French three-factor 

models. Panel B shows the differences in the standard error of residuals (XSMOM minus GRJMOM). We also employ the 

F -test to examine whether the differences in standard error of residuals are statistically significant or not. We observe that

GRJMOM significantly reduces the risk after controlling for market factors across different markets. As shown in Panel B, 

this difference is mainly due to the low volatility of residuals in losers portfolio. In the UK stock market, for example, the

GRJMOM winner has slightly higher volatility of residual than the XSMOM winner, while its loser’s standard error is only 
31 We also implement Fama-French-Carhart 4-factor model, by Fama and French (1996) and Carhart (1997) , and find the results are similar with those of 

the 3-factor model. 
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Table 5 

Conditional risks of original and GRJMOM strategies 

Portfolios UK stock Commodity Equity index Fixed income 

CAPM FF3 CAPM FF3 CAPM FF3 CAPM FF3 

Panel A: Standard error of residuals 

XSMOM winner 0.044 0.041 0.043 0.043 0.043 0.038 0.016 0.016 

XSMOM loser 0.075 0.074 0.044 0.044 0.038 0.041 0.010 0.010 

XSMOM WML 0.074 0.073 0.065 0.065 0.041 0.054 0.017 0.017 

GRJMOM winner 0.038 0.035 0.040 0.040 0.054 0.034 0.005 0.005 

GRJMOM loser 0.056 0.056 0.037 0.037 0.034 0.035 0.007 0.007 

GRJMOM WML 0.054 0.053 0.054 0.053 0.034 0.046 0.008 0.008 

Panel B: Differences in standard errors between XSMOM and GRJMOM (XSMOM minus GRJMOM) 

Winner 0.006 ∗∗∗ 0.006 ∗∗∗ 0.003 0.003 -0.011 ∗∗∗ 0.004 ∗∗∗ 0.011 ∗∗∗ 0.011 ∗∗∗

(1.34) (1.36) (1.16) (1.17) (0.63) (1.25) (10.63) (10.02) 

Loser 0.019 ∗∗∗ 0.018 ∗∗∗ 0.007 ∗∗∗ 0.007 ∗∗∗ 0.004 ∗∗∗ 0.006 ∗∗∗ 0.003 ∗∗∗ 0.003 ∗∗∗

(1.78) (1.76) (1.39) (1.39) (1.26) (1.38) (2.14) (2.17) 

WML 0.020 ∗∗∗ 0.021 ∗∗∗ 0.012 ∗∗∗ 0.012 ∗∗∗ 0.006 ∗∗∗ 0.009 ∗∗∗ 0.008 ∗∗∗ 0.008 ∗∗∗

(1.89) (1.94) (1.48) (1.49) (1.39) (1.41) (4.30) (4.39) 

This table summarises the risk exposure of GRJMOM and XSMOM portfolios after controlling for market factors. Panel 

A reports the standard error of residuals by regressing GRJMOM and XSMOM returns on CAPM and Fama-French three 

factor models. Panel B shows the difference in standard error of residuals (XSMOM minus GRJMOM) with f -values shown 

in the parentheses. The F -test is performed to examine whether the difference in residual standard errors between GR- 

JMOM and XSMOM portfolios is statistically significant. The degrees of freedom for the F -test here are consistent with 

those in Table 4 . ‘ ∗ ’, ‘ ∗∗ ’, ‘ ∗∗∗ ’ represent that the F -values are statistically significant at 10%, 5% and 1% level, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

0.056, which is 24% lower than that of the XSMOM loser. Given the fact that momentum crashes are mainly caused by the

losers portfolio ( Daniel and Moskowitz, 2016 ), GRJMOM tends to efficiently control the crash risks. 

Next, we examine the profitability of GRJMOM strategies. Table 6 summarises the performance metrics of GRJMOM 

strategies, in which the existing momentum strategies, XSMOM and SRMOM, are added as benchmarks. Each panel shows 

the strategy performance in a different market. We first focus on the performance of GRJMOM strategies in UK stock, com-

modity and equity index markets, since the annualised portfolio returns are positive and significantly different from zero in 

these samples. In UK stocks, the annualised return of GRJMOM is 22.4%, significantly outperforming those of the XSMOM 

and SRMOM strategies with annualised returns of 17.9% and 17.7%, respectively. The Sharpe ratio of GRJMOM strategy is 1.18 

per annual, whereas those of the XSMOM and SRMOM are 0.67 and 0.92. Similar patterns are observed in commodity and

equity index markets, where the returns and Sharpe ratios of GRJMOM strategies are significantly higher than those of the 

other two benchmarks. 

When looking at winner and loser portfolios separately, GRJMOM outperforms the benchmarks mainly because of the sig- 

nificant improvement of the losers. Ideally, a loser portfolio should create negative returns as it is a short position. However,

we find the losers of XSMOM and SRMOM strategies generate positive returns across UK stock and equity index markets, 

reducing the momentum profits. After the GRJMOM ranking, the positive returns are reduced to 2.9% in the UK stock mar-

ket, -3.5% in the commodity market and -0.9% in the equity index market. Moreover, the GRJMOM strategy significantly 

decreases the maximum drawdown. As shown in Panel A, the maximum drawdown of GRJMOM in the UK stock market is

0.47, while those of the XSMOM and SRMOM are 0.9 and 0.71, respectively. 

In the fixed income market, as shown in Table 6 Panel D, the annualised returns of all three momentum strate-

gies are insignificantly different from zero. This pattern is consistent with the findings in previous literature, see, e.g., 

Asness et al. (2013) , that the momentum effect fails to create significant abnormal profits in the fixed income asset class.

However, GRJMOM still generates a positive annualised return of 0.6%, whereas the other two benchmarks produce negative 

returns. We further investigate the performance of momentum winner and loser portfolios. In contrast with the other two 

approaches where winner does not show significant outperformance, the GRJMOM winner yields a statistically significant 

return ( t = 2.4) in the fixed income market. 

As a robustness check, we conduct a regression test to examine the outperformance of GRJMOM with respect to other 

existing momentum strategies, i.e. XSMOM and SRMOM. Following Daniel and Moskowitz (2016) , we regress the monthly 

returns of GRJMOM on a variety of factors containing the market, Fama and French (1993) size and value factors (FF factors),

and the XSMOM/SRMOM returns. Table 7 reports the alphas and their t -statistics of GRJMOM compared to other benchmarks 

and factors. 32 To control for potential time-series clustered standard errors, we adjust the t -statistics of each factor model 

using the Heteroskedasticity and Autocorrelation Consistent (HAC) estimator of Newey and West (1987) . 

Panel A of Table 7 reports the results based on the regressions of our GRJMOM portfolio on the market factors plus

XSMOM and FF factors plus XSMOM. For the market plus XSMOM model, the alphas of GRJMOM are at 1.0%, 0.5%, and 0.3%

per month ( t = 3.67, 2.68, 2.28) in UK stock, commodity and equity index markets, respectively. After adding the size and
32 In addition to the three factor model, we also adopt the Fama-French five-factor model of Fama and French (2015) to assess the abnormal profits in 

Appendix D and achieve the same conclusions. 
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Table 6 

Performance of momentum strategies across different asset types 

Strategies Portfolios Mean T-value SD SR MaxDD Skew Kurt 

Panel A: UK stock 

winner 0.260 ∗∗∗ 9.08 0.20 1.31 0.48 -0.12 0.35 

XSMOM loser 0.079 ∗ 1.66 0.33 0.24 0.97 0.49 1.04 

WML 0.179 ∗∗∗ 4.61 0.27 0.67 0.90 -0.73 1.63 

winner 0.228 ∗∗∗ 9.82 0.16 1.42 0.47 -0.14 0.35 

SRMOM loser 0.048 1.36 0.24 0.20 0.96 0.076 0.26 

WML 0.177 ∗∗∗ 6.32 0.19 0.92 0.71 -0.16 0.22 

winner 0.255 ∗∗∗ 9.86 0.18 1.43 0.45 -0.19 0.38 

GRJMOM loser 0.029 0.79 0.25 0.11 0.97 0.025 0.19 

WML 0.224 ∗∗∗ 8.16 0.19 1.18 0.47 -0.14 0.22 

Panel B: Commodity 

winner 0.060 1.57 0.20 0.29 0.62 -0.011 0.53 

XSMOM loser -0.014 -0.41 0.19 -0.076 0.76 0.19 0.57 

WML 0.074 ∗ 1.72 0.23 0.32 0.55 0.006 0.45 

winner 0.073 ∗∗ 2.01 0.19 0.38 0.53 -0.046 0.49 

SRMOM loser -0.013 -0.45 0.16 -0.084 0.66 0.041 0.35 

WML 0.086 ∗∗∗ 2.26 0.20 0.42 0.45 0.073 0.31 

winner 0.069 ∗∗ 2.05 0.18 0.38 0.52 -0.028 0.55 

GRJMOM loser -0.035 -1.30 0.15 -0.24 0.78 -0.035 0.40 

WML 0.10 ∗∗∗ 2.99 0.19 0.56 0.37 0.038 0.30 

Panel C: Equity index 

winner 0.079 ∗∗∗ 2.70 0.19 0.41 0.62 -0.35 0.50 

XSMOM loser 0.009 0.28 0.21 0.04 0.83 -0.074 0.22 

WML 0.070 ∗∗∗ 2.59 0.18 0.40 0.64 -0.027 0.20 

winner 0.091 ∗∗∗ 3.15 0.19 0.48 0.65 -0.37 0.58 

SRMOM loser 0.004 0.14 0.19 0.021 0.82 -0.13 0.20 

WML 0.087 ∗∗∗ 3.49 0.16 0.53 0.38 -0.013 0.18 

winner 0.088 ∗∗∗ 3.11 0.18 0.48 0.66 -0.29 0.46 

GRJMOM loser -0.009 -0.31 0.18 -0.048 0.87 -0.10 0.13 

WML 0.096 ∗∗∗ 4.25 0.15 0.65 0.42 -0.034 0.18 

Panel D: Fixed income 

winner 0.002 0.13 0.054 0.029 0.16 0.070 0.17 

XSMOM loser 0.015 1.63 0.042 0.37 0.11 -0.25 0.97 

WML -0.014 -1.09 0.056 -0.25 0.30 0.13 0.35 

winner -0.002 -0.32 0.030 -0.071 0.12 0.021 0.23 

SRMOM loser 0.005 0.58 0.037 0.13 0.12 -0.32 1.67 

WML -0.007 -0.73 0.042 -0.16 0.22 0.39 1.07 

winner 0.011 ∗∗∗ 2.40 0.020 0.54 0.041 0.23 0.30 

GRJMOM loser 0.005 0.56 0.038 0.13 0.077 0.29 1.03 

WML 0.006 0.65 0.040 0.15 0.15 -0.17 0.66 

Mean denotes the annualised portfolios returns. The portfolio returns are calculated by going long 

the selected assets. Vol, Skew and Kurt are the annualised standard deviation, skewness and kurtosis 

of portfolio returns. MaxDD denotes the annualised maximised drawdown. T -value is measured as 

t = 

μ∗
√ 

n/ 12 

σ , where μ is annualised portfolio return; n is sample size at a monthly level; σ is annu- 

alised standard deviation of portfolio returns. ‘ ∗ ’, ‘ ∗∗ ’, ‘ ∗∗∗ ’ represent that the t -values are statistically 

significant at 10%, 5% and 1% level, respectively. 

Table 7 

Alphas of GRJMOM with respect to XSMOM and SRMOM 

UK stock Commodity Equity index Fixed income 

Panel A: GRJMOM and XSMOM 

mkt + XSM FF + XSM mkt + XSM FF + XSM mkt + XSM FF + XSM mkt + XSM FF + XSM 

alpha 0.010 ∗∗∗ 0.011 ∗∗∗ 0.005 ∗∗∗ 0.005 ∗∗ 0.003 ∗∗ 0.003 ∗∗ 0.001 0.001 

t (3.67) (3.84) (2.68) (2.73) (2.28) (2.25) (1.26) (1.15) 

Panel B: GRJMOM and SRMOM 

mkt + SRM FF + SRM mkt + SRM FF + SRM mkt + SRM FF + SRM mkt + SRM FF + SRM 

alpha 0.005 ∗∗∗ 0.005 ∗∗∗ 0.003 ∗∗ 0.003 ∗∗ 0.002 ∗ 0.002 ∗ 0.001 ∗∗ 0.001 ∗

t (3.37) (3.25) (2.17) (2.21) (1.68) (1.75) (2.00) (1.88) 

This table presents the regression results of the GRJMOM returns with respect to the market (mkt), Fama-French 

size and value factors (FF) and XSMOM/SRMOM (XSM/SRM) portfolios captured in each asset class. The t -statistics 

are adjusted by the Heteroskedasticity and Autocorrelation Consistent (HAC) estimator of Newey and West (1987) . 

‘ ∗ ’, ‘ ∗∗ ’, ‘ ∗∗∗ ’ represent that the t -values are statistically significant at 10%, 5% and 1% level, respectively. 
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value factors of Fama and French (1993) as control variables, the intercepts are still statistically significant at 1.1%, 0.5%, 

and 0.3% per month ( t = 3.84, 2.73, 2.25) in UK stocks, commodities and equity indices, respectively. However, the alphas of

GRJMOM are insignificant at 0.1% per month in the fixed income market. In Panel B of Table 7 , we repeat the regressions

by examining the alphas of GRJMOM with respect to SRMOM. The alphas are statistically significant at at least a 10% level

in all four markets. These results suggest that the abnormal performance of GRJMOM is not captured by XSMOM, SRMOM 

or other market factors. 

To conclude, across all asset classes, our results indicate that the GRJMOM strategies produce higher profits and alphas, 

lower volatility and maximum drawdown than the XSMOM and SRMOM. Therefore, we consider GRJMOM as an effective 

and implementable investment strategy. 

5. GRJMOM and crash risks 

In this section, we investigate the relationship between GRJMOM and momentum crashes. First, for each asset class, we 

identify crash periods by calculating the worst month of momentum strategies and compare the performance of GRJMOM 

to the XSMOM and SRMOM over these crash periods. Second, we compare the GRJMOM strategy to the risk-managed WML 

portfolio, i.e. constant volatility scaling approach (CVS) of Barroso and Santa-Clara (2015) to identify the outperformed risks 

management method. GRJMOM exhibits statistically significant alphas, lower volatility and maximum drawdown compared 

to the CVS approach. 

5.1. Performance of GRJMOM over crash periods 

Figure 5 plots the cumulative performance of different momentum strategies over the entire investment horizon in each 

market. We highlight that the GRJMOM strategy (solid black line) produces the highest cumulative performance in all asset 

classes. We observe that the dollar investment of GRJMOM is more stable than XSMOM and SRMOM with the smallest max-

imum drawdown, as confirmed in the results of Table 6 . We also add shaded areas in Figure 5 indicating the worst periods

of the plain momentum strategy in each asset class, or momentum crashes. Our GRJMOM exhibits substantial improvements 

compared to XSMOM and SRMOM during these periods. 33 

In the UK stock market, the GRJMOM strategy mitigates the crash of XSMOM after the 20 07-20 08 financial crisis. Without

risk management, the momentum investors suffered from a loss of 84.6% over a six month period between 2009-2010, as 

shaded in Panel A of Figure 5 . By contrast, our GRJMOM reduces this drawdown to 19.7%. In 1971, a dollar invested in

the GRJMOM strategy would be worth over $10,0 0 0 by July 2018, whereas the same investment in XSMOM and SRMOM

strategies would be worth only $557 and $1,877, respectively. 

The GRJMOM strategies also show dominant performance in the global asset classes, followed by the SRMOM and XS- 

MOM. In the commodity market ( Figure 5 Panel B), we identify a similar crash period during 2009-2010 after the global

financial crisis. Although our GRJMOM approach faces a small crash at the beginning of the shaded period, it later makes a

strong rebound, leading to an overall gain during the crash period. In the equity index market ( Figure 5 Panel C), we observe

a similar pattern where GRJMOM gains profits during the crash periods. Finally, in the fixed income sample ( Figure 5 Panel

D), neither the XSMOM nor SRMOM strategies generate positive cumulative profits. In this case, our GRJMOM still realises a 

profit and mitigates the momentum crashes. 

For a more in-depth analysis of the performance of GRJMOM over crash periods, we select the periods when momen- 

tum performs the worst over the entire investment horizon. We first find the ten worst single month’s returns of XSMOM

strategy in the UK market. Among them, the worst momentum crash occurred in April 2009, leading to a single month’s

return of -75.9%. Then, following Gulen and Petkova (2018) , we compare the GRJMOM returns to the XSMOM and SRMOM

over these months in Panel A of Table 8 . The GRJMOM outperforms XSMOM in nine out of the ten months, the rest of the

one month returns being virtually the same. In April 2009, GRJMOM generated a return of -17.9%, which is 58% higher than

that of XSMOM. We also conduct the same analysis in the global asset classes samples and arrive at the same conclusion.

These results are presented in Appendix E . 

As a robustness check, we also report the six-month cumulative returns of different momentum strategies over the three 

worst crash periods. As shown in Panel B of Table 8 , the results remain unchanged from the single month. GRJMOM shows

its superiority in mitigating crash risks. In the 2009 crash, GRJMOM only loses 11.1% over the six months, while SRMOM and

XSMOM lose 20.5% and 86.6%, respectively. These results are consistent with above-mentioned findings based on Figure 5 , 

indicating that GRJMOM is an effective risk-managed approach and profitable strategy. 

According to Grundy and Martin (2001) , Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016) , momentum 

crashes appear after the market panics when the momentum losers reverse from the trough faster than the winners. In this

case, the profits generated by the winners are not enough to cover the losses caused by the losers. Without considering

these reversals of losers, the plain momentum ranking system fails to allocate the ‘real losers’ into the portfolio after the

market panics. Our GRJMOM approach incorporates asset realised volatility over the formation periods at the ranking stage 

so that these ‘false losers’ are excluded from the portfolio as they exhibit high volatility. This explains why GRJMOM yields

profitable short legs, avoiding the reversals in losers during the crash periods. 
33 The performance of the GRJMOM strategy remains strong in the US stock market, as is shown in Appendix C . 
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Fig. 5. Cumulative performance of risk-adjusted momentum strategies across markets These plots exhibit the cumulative performance of XSMOM, SRMOM 

and GRJMOM strategies across asset classes throughout the whole sample period. The dollar value of investment (y-axis) is logarithmically scaled in the 

UK stock market, given the huge difference across the three strategies. The shaded areas indicate the worst periods of the plain momentum strategy in 

each asset class or momentum crashes. 
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Table 8 

Performance of GRJMOM and momentum crashes (UK stock market) 

Order Date Strategy Difference 

XSMOM SRMOM GRJMOM GRJ-XS GRJ-SR 

Panel A: Single month return 

1 2009-04 -0.759 -0.244 -0.179 0.580 0.065 

2 1975-01 -0.437 -0.253 0.010 0.447 0.263 

3 2013-08 -0.246 -0.173 -0.063 0.184 0.110 

4 2009-01 -0.241 0.075 0.076 0.317 0.001 

5 2000-04 -0.221 -0.199 -0.213 0.008 -0.013 

6 2018-04 -0.219 -0.028 -0.028 0.191 0.000 

7 2009-08 -0.213 -0.098 -0.058 0.155 0.040 

8 1994-01 -0.210 -0.157 -0.214 -0.004 -0.057 

9 2001-10 -0.209 0.039 -0.038 0.172 -0.076 

10 2009-03 -0.202 0.008 0.019 0.221 0.012 

Panel B: Six months cumulative return 

1 2009-06 -0.866 -0.205 -0.111 0.755 0.094 

2 1975-03 -0.538 -0.328 -0.001 0.537 0.327 

3 2003-09 -0.390 -0.173 -0.286 0.104 -0.112 

Panel A reports the ten worst single month returns of the XSMOM strategy in the 

UK stock market. Panel B reports the six-month cumulative returns over the three 

worst crash periods, where the date indicates the last month. GRJ-XS (GRJ-SR) de- 

notes the difference between GRJMOM and XSMOM (SRMOM), which is calculated 

by subtracting one from another. 

Table 9 

Scaled GRJMOM versus CVS 

Mean T-value SD SR MaxDD Skew Kurt 

Panel A: CVS 

UK stock 0.317 6.851 0.320 0.991 0.744 -0.295 0.321 

Commodity 0.087 2.167 0.212 0.409 0.428 -0.021 0.155 

Equity index 0.111 3.188 0.227 0.492 0.620 -0.012 0.197 

Fixed income -0.003 -0.267 0.045 -0.061 0.181 0.279 0.367 

Panel B: Scaled GRJMOM 

UK stock 0.355 9.169 0.267 1.327 0.566 -0.091 0.148 

Commodity 0.101 3.064 0.174 0.578 0.377 -0.029 0.029 

Equity index 0.127 4.143 0.199 0.639 0.536 -0.079 0.226 

Fixed income 0.004 0.327 0.047 0.075 0.211 -0.107 0.373 

Panel C: Alphas of scaled GRJMOM (benchmark: CVS) 

UK stock Commodity Equity index Fixed income 

alpha 0.010 ∗∗∗ 0.004 ∗∗ 0.003 ∗∗ 0.0004 

t (3.90) (2.50) (2.05) (0.50) 

The reported statistics contain annualised mean ( Mean ), t -value of mean ( t ), standard deviation ( SD ), Sharpe Ratio( SR ), 

maximize drawdown ( Maxdd ), skewness ( Skew ), and kurtosis ( Kurt ). Panel A and B summarise the performance metrics 

of the CVS and GRJMOM portfolios. Panel C reports the alphas and t -statistics of the regression: R Scaled.GRJMOM = α + 

β1 (R mkt − R r f ) + β2 R CV S . The t -statistics in Panel C are adjusted by the Heteroskedasticity and Autocorrelation Consistent 

(HAC) estimator of Newey and West (1987) .‘ ∗ ’, ‘ ∗∗ ’, ‘ ∗∗∗ ’ represent t -statistics that are statistically significant at 10%, 5%, 

and 1% levels, respectively. 

 

 

5.2. GRJMOM versus volatility scaling approach 

Barroso and Santa-Clara (2015) argued that the momentum-specific risk is the main cause of momentum crashes. In order 

to mitigate momentum-specific risks, they proposed a simple but effective scaling approach based on past realised volatility 

of the WML series, called the constant volatility scaling (CVS) approach. According to Fan et al. (2018) , the CVS approach

outperforms the dynamic volatility scaling (DVS) approach of Daniel and Moskowitz (2016) in various asset classes. In this 

study, we compare our GRJMOM performance to the CVS approach to check which one is better in managing momentum 

risks. 

As mentioned in the introduction, GRJMOM is structurally the same as a plain momentum strategy which invests $1 in 

both the long and short leg. The position size taken when following the GRJMOM strategy is constant over time. By contrast,

the CVS approach creates a time-dynamic momentum portfolio size, where the momentum return is inversely scaled by its 

six months ex-ante volatility. The CVS WML returns are calculated as: 

r ∗W ML,t = 

σtarget 

σW ML,t 

r W ML,t , (10) 
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Table 10 

Factors loading of GRJMOM versus XSMOM and SRMOM strategies (FF-4) 

Strategies alpha mkt smb hml umb Adj R 2 

Panel A: UK stock 

XSMOM 0.012 ∗∗∗ -0.308 ∗∗∗ 0.010 -0.175 0.820 ∗∗∗ 0.295 

(3.19) (-3.75) (0.08) (-1.25) (4.58) 

SRMOM 0.015 ∗∗∗ -0.318 ∗∗∗ 0.085 -0.305 ∗∗∗ 0.421 ∗∗∗ 0.254 

(6.10) (-7.30) (0.76) (-3.58) (7.01) 

GRJMOM 0.017 ∗∗∗ -0.145 ∗∗ 0.107 -0.239 ∗∗ 0.434 ∗∗∗ 0.18 

(7.10) (-2.15) (0.93) (-2.24) (6.04) 

Panel B: Commodity 

XSMOM 0.005 ∗ 0.187 0.046 0.018 0.313 ∗∗∗ 0.063 

(1.76) (1.63) (0.35) (0.14) (4.95) 

SRMOM 0.007 ∗∗∗ 0.261 ∗∗∗ 0.083 -0.049 0.243 ∗∗∗ 0.094 

(2.59) (3.36) (0.83) (-0.47) (4.04) 

GRJMOM 0.008 ∗∗∗ 0.230 ∗∗∗ 0.115 -0.075 0.194 ∗∗∗ 0.084 

(3.29) (3.37) (1.46) (-0.78) (3.28) 

Panel C: Equity index 

XSMOM 0.004 ∗ -0.003 -0.013 0.117 0.357 ∗∗∗ 0.072 

(1.78) (-0.04) (-0.11) (1.08) (4.96) 

SRMOM 0.005 ∗∗ 0.060 0.038 0.101 0.242 ∗∗∗ 0.035 

(2.26) (0.80) (0.40) (1.16) (3.85) 

GRJMOM 0.007 ∗∗∗ 0.082 0.049 -0.002 0.099 0.007 

(3.12) (1.09) (0.58) (-0.02) (1.59) 

Panel D: Fixed income 

XSMOM -0.002 ∗∗ 0.139 ∗ -0.006 0.002 0.049 ∗∗∗ 0.029 

(-2.00) (1.81) (-0.18) (0.05) (2.62) 

SRMOM -0.001 -0.040 0.011 -0.004 0.008 0.008 

(-0.48) (-0.67) (0.45) (-0.15) (0.46) 

GRJMOM 0.001 -0.152 ∗∗ 0.008 0.023 -0.021 0.039 

(1.50) (-2.01) (0.39) (1.01) (-1.33) 

Panels in this table display the results of OLS regressions based on Fama-French-Carhart four-factor model in differ- 

ent markets. The dependent variables are the monthly returns of XSMOM, SRMOM and GRJMOM strategies. The in- 

dependent variables include: the market ( mkt), size ( smb), value ( hml), momentum ( umd) factors. Each panel exhibits 

the regression results of a given asset class. The alpha represents the monthly abnormal returns after controlling for 

risk factors. The t -statistics are adjusted by the Heteroskedasticity and Autocorrelation Consistent (HAC) estimator of 

Newey and West (1987) . ‘ ∗ ’, ‘ ∗∗ ’, ‘ ∗∗∗ ’ represent statistically significant t -values at 10%, 5% and 1% levels, respectively. 

Adj R 2 refers to the adjusted R-squared. 

 

 

 

 

 

 

where r W ML,t is the WML return; r ∗
W ML,t 

is the scaled WML return; σW ML,t is the realised volatility of r W ML,t over the past

six months; and σtarget is a constant target volatility. In order to make the two strategies comparable with to each other, we

apply the same scaling factor σtarget / σW ML,t to our GRJMOM, so that both strategies have the same risk exposure. 34 

Barroso and Santa-Clara (2015) defined the target volatility σtarget as the annualised volatility of the market index in the 

long-run. Following their approach, we obtain the target volatility by calculating the annualised volatility of each market 

index at, 18.50% (FTSE all share), 18.56% (S&P GSCI), 13.11% (MSCI world) and 6.21% (Barclays Aggregate Bond). 

Table 9 presents the performance metrics of GRJMOM and CVS strategies across the four markets. The scaled GRJMOM 

exhibits higher means and Sharpe ratios in each market, indicating strong profitability. In terms of risk management, the 

scaled GRJMOM shows a lower standard deviation than the CVS in three of the four markets, with the exception being fixed

income, where the two are virtually the same. We also regress the return of scaled GRJMOM on the market risk premium

and the CVS return. Alphas are at least statistically significant at a 5% level in UK stocks, commodities and equity indices,

while in the bond market the difference is relatively small. 35 These improvements imply that the GRJMOM ranking is a 

more efficient risk-adjusted approach than the CVS approach in momentum investing. 

6. Factor analysis 

To understand the superiority and risk exposure of the GRJMOM strategy, we now focus on examining the abnormal 

performances of GRJMOM by running different asset pricing models. We employ two extensively used multi-factor regres- 

sions: i) the four factor model documented by Fama and French (1996) and Carhart (1997) , and ii) the value & momentum

everywhere factors of Asness et al. (2013) . 36 
34 It is unfair to directly compare the GRJMOM and CVS approach as the average position size of the latter is greater than $1. In the UK stock market, for 

example, for each one dollar invested in the GRJMOM strategy, the average investment in CVS is $1.61 over time. 
35 We also estimate the alphas through the FF3 and FF5 models, and the results are indifferent from those of the CAPM. 
36 We further employ the Fama-French five-factor model of Fama and French (2015) and achieve the same results. For more details, please refer to 

Appendix D . 
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Table 11 

Factors loading of GRJMOM versus XSMOM and SRMOM strategies (value & momentum every- 

where) 

Strategies alpha mkt val mom Adj R 2 

Panel A: UK stock 

XSMOM 0.012 ∗∗∗ -0.190 ∗∗ -0.090 1.003 ∗∗∗ 0.381 

(2.74) (-2.19) (-0.85) (5.69) 

SRMOM 0.016 ∗∗∗ -0.213 ∗∗∗ -0.170 ∗∗ 0.614 ∗∗∗ 0.372 

(6.32) (-3.67) (-2.09) (8.51) 

GRJMOM 0.018 ∗∗∗ -0.101 -0.147 0.666 ∗∗∗ 0.365 

(6.60) (-1.54) (-1.43) (7.37) 

Panel B: Commodity 

XSMOM 0.001 0.019 -0.034 1.046 ∗∗∗ 0.734 

(0.13) (0.41) (-0.63) (18.32) 

SRMOM 0.003 0.118 ∗∗∗ -0.076 0.813 ∗∗∗ 0.625 

(1.48) (2.72) (-1.64) (15.53) 

GRJMOM 0.005 ∗∗ 0.113 ∗∗ -0.066 0.670 ∗∗∗ 0.498 

(2.40) (2.08) (-1.34) (11.45) 

Panel C: Equity index 

XSMOM 0.003 -0.007 -0.371 ∗∗∗ 0.821 ∗∗∗ 0.367 

(1.54) (-0.12) (-4.41) (12.89) 

SRMOM 0.005 ∗∗ 0.055 -0.344 ∗∗∗ 0.682 ∗∗∗ 0.31 

(2.21) (0.89) (-4.27) (9.59) 

GRJMOM 0.006 ∗∗∗ 0.123 ∗ -0.307 ∗∗∗ 0.489 ∗∗∗ 0.224 

(2.73) (1.72) (-3.58) (6.51) 

Panel D: Fixed income 

XSMOM -0.001 0.075 -0.079 0.515 ∗∗∗ 0.116 

(-1.54) (1.04) (-0.59) (3.47) 

SRMOM -0.000 -0.070 0.016 0.264 ∗∗ 0.034 

(-0.30) (-1.10) (0.15) (2.15) 

GRJMOM 0.001 -0.144 ∗∗ -0.029 -0.079 0.034 

(1.49) (-2.04) (-0.25) (-0.91) 

Panels in this table display the results of OLS regressions based on value & momentum ev- 

erywhere factors across different markets. The dependent variables are the monthly returns 

of XSMOM, SRMOM and GRJMOM strategies, respectively. The factors include: the market 

factor ( mkt); value everywhere factor ( smb); momentum everywhere factor ( mom ). The t - 

statistics are adjusted by the Heteroskedasticity and Autocorrelation Consistent (HAC) estima- 

tor of Newey and West (1987) . ‘ ∗ ’, ‘ ∗∗ ’, ‘ ∗∗∗ ’ represent t -values that are statistically significant at 

10%, 5%, and 1% levels, respectively. Adj R 2 refers to the adjusted R-squared. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10 shows the factor loading of GRJMOM returns by running Fama-French-Carhart four-factor models. In it, mkt , smb, 

hml, and umb denote the market, size, value, and momentum factors, respectively. The GRJMOM strategy exhibits alphas of 

1.7%, 0.8%, 0.7%, and 0.1% per month in the UK stock, commodity, equity index and fixed income markets, respectively. 

The alphas are statistically significant at a 1% level for the UK stock, commodity and equity index markets, whereas they

are positive but insignificant in the fixed income markets. As discussed previously, this makes sense because fixed income 

markets do not exhibit strong momentum effects. Across the four markets, the alphas of GRJMOM are all higher than those

of other momentum trading schemes. The largest spread appears in the UK stock market, where the alpha of GRJMOM is

0.6% higher than that of the XSMOM. 

We next examine the risk exposures of these strategies against risk factors. We find that GRJMOM, in most cases, is

significantly positively related to the movement of the market factors, except for the fixed income market where the rela- 

tionship is negative. GRJMOM has no relation to the size effect but is negatively related to the value effect. More importantly,

we show that GRJMOM greatly reduces its exposure to the momentum factor, umd. By contrast, XSMOM has beta coefficients 

of 0.82 in the UK stock market, indicating that this strategy is highly exposed to the momentum factor. 

In addition, we run similar regressions using the value & momentum everywhere factors of Asness et al. (2013) . These

factors provide a common global generalisation of risk premia which work in both stock markets and different asset classes. 

Table 11 presents the results of the following regression: 

R W ML = α + β1 (mkt − r f ) + β2 v al + β3 mom + εt , (11) 

where mkt is the market factor that is consistent with above-mentioned market factor in Equation 9 ; v al and mom denote

the value and momentum factor constructed by the corresponding asset class as provided in Asness et al. (2013) . As shown

in Table 11 , the GRJMOM strategies produce the highest abnormal returns across all asset classes. Consistent with the results

in Table 10 , the alphas of GRJMOM are significantly different from zero at the 1% level, except for the fixed income market.

In the UK stock market, the alpha of GRJMOM is 0.6% and 0.2% per month higher than those of the XSMOM and SRMOM,

respectively. 

Consistent with the results in FF-4 factor regressions, GRJMOM exposes more of its risk to the movement of the market

but less to the momentum factors. In the UK stock market, SRMOM and GRJMOM returns are significantly negatively related 
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to the value effect, while XSMOM does not show statistically significant coefficients. For commodities, the SRMOM strategy 

implementation results in insignificant intercepts in the value & momentum everywhere model (Panel B of Table 11 ), while

it generates a signficant positive alpha in the FF-4 model (Panel B of Table 10 ). The insignificant alpha implies that the

SRMOM strategy is not an efficient risk-adjusted ranking approach, at least for commodities. 

To sum up, according to the results from the two multi-factor, the abnormal return of our innovation is at least 40%

higher than that of the XSMOM strategy, and at least 14% better than that of the SRMOM strategy. The results of the factor

loadings strongly support the superiority of GRJMOM across asset classes. Hence, we conclude that our innovation is an 

appropriate risk-adjusted momentum ranking approach that manages risk exposures and returns significant alpha. 

7. Conclusion 

In this study, we found that the high uncertainty of momentum strategies is driven by the cross-sectional realised volatil- 

ity of individual assets. Instruments with high volatility over the formation period are more likely to be selected into a

momentum portfolio. Therefore, momentum portfolios usually display high excess volatility compared to a randomly se- 

lected portfolio with the same number of assets. The empirical results in the paper strongly support our argument based 

on evidence from various asset classes, including UK stock, commodity, equity index and fixed income markets. 

We show that stocks with high realised volatility over the formation period tend to lose momentum effect, while stocks 

with low realised volatility show strong momentum. The plain momentum strategy, which focuses on high volatility stocks, 

does not perform well when the market is in a state of high uncertainty. Our results indicate that a risk-adjusted momentum

strategy is needed to reduce the risks of momentum strategies, and hence improve the performance. 

We develop a generalised risk-adjusted ranking procedure to alleviate the excess risks momentum strategies, called GRJ- 

MOM. It provides a flexible and generalised framework to rank risk-adjusted returns when sorting momentum winners and 

losers. Distinct from the existing risk-adjusted ranking method, GRJMOM allows investors to switch the aggressiveness of 

returns scaled by their realised volatility, in responding to different market conditions. 

Evidence shows that our innovation can diversify the clustering of high volatility instruments present in the original 

momentum portfolios, and alleviate both conditional and unconditional risks present in WML returns. This diversification 

further improves the performance of momentum strategies across all asset classes. The GRJMOM strategies show higher 

returns and Sharpe ratios, as well as lower volatilities and maximised drawdown compared to other momentum trading 

rules. This outperformance is further supported by the high abnormal profits when running multi-factor regressions. 

The study contributes to the literature in risk-managed momentum and momentum crashes, as seen in Barroso and 

Santa-Clara (2015) and Daniel and Moskowitz (2016) . It provides a different view on the mitigations of momentum risk, 

which is sourced from cross-sectional ranking instead of time-series scaling. As suggested by our results, GRJMOM is a better 

approach than the CVS approach of Barroso and Santa-Clara (2015) by exhibiting significantly higher performance. Although 

there are other strategies that can alleviate momentum crashes such as the firm characteristics and residual momentum, 

suggested by Guo et al. (2021) , the true rationale behind them remains unclear. Future research can focus on exploring

these topics. 

Appendix A. Summary statistics 

Our global sample includes three asset classes: 27 commodity future indices, 24 stock indices and 19 fixed income fu- 

tures. We obtain end of day prices for commodities and stock indices from Datastream, with those from fixed income 

markets being sourced from Bloomberg. The available dates vary across assets, but all the price series end in July 2018.

Table A.12 reports the summary statistics and sample start dates of our global samples. 

As shown in the table, the return variation is significant across commodities. Panel A presents a summary of our com-

modity sample which consists of 27 constituents of the Standard and Poor’s Goldman Sachs Commodity Index (S&P GSCI) 

from Datastream. The sample period is from January 1984 to July 2018. Brent produces the highest annualised return at 

17.70% per annual, with Copper generating the best Sharpe ratio at 0.4835, whereas Natural gas creates the lowest return 

at -22.97% per annual and the worst risk-adjusted performance at -0.4073. Panel B reports the statistics of our equity index

universe which consists of 24 markets. All the price series in this sample are measured in US dollars. Not surprisingly, all

stock indices create positive returns over the entire sample period. The annualised return and Sharpe ratio of Portugal are 

only 1.82% and 0.0727, respectively, which are much lower than those of the remaining markets. In contrast, the Hong Kong

market generates the highest annualised return at 18.88%. Panel C presents the statistics of the fixed income sample which 

contains 19 sovereign bonds or short-term deposits futures with various maturities. The annualised returns of fixed income 

are all positive and quite low. The highest return is only 3.96% for Euro 30 year sovereign bond future, whereas the Japanese

five year sovereign bond future earns only 0.09% per annul. 

Annualised volatilities also vary across instruments in each asset class. In the commodity class, Natural gas reports the 

highest annualised volatility at 56.41%, and Live cattle is the lowest at 17.04%. In our equity index sample, the annualised

volatility of US stock index is 19.81% which is the only equity index lower than 20%, whereas the Thai stock index reports

the highest volatility at 35.77%. The Australian 10 year sovereign bond future presents the lowest volatility at 1.49% per 

annum, and the Euro 30 years bond future shows the highest volatility at 15% per annum. 
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Table A1 

Summary statistics of global asset classes 

Instrument Mean SD SR Start.Date 

Panel A: Commodity 

Brent 0.1770 0.3862 0.4583 1999-01-11 

WTI Crude oil 0.1143 0.4040 0.2830 1987-01-08 

Gas oil 0.1619 0.3577 0.4525 1999-01-07 

Heating oil 0.1010 0.3815 0.2648 1984-01-31 

Natural gas -0.2297 0.5641 -0.4073 1994-01-10 

RBOB gas 0.1869 0.3956 0.4724 1988-01-08 

Gold 0.0150 0.1901 0.0786 1984-01-31 

Platinum 0.0568 0.2614 0.2175 1984-01-31 

Silver 0.0211 0.3331 0.0634 1984-01-31 

Lean.hogs -0.0619 0.2697 -0.2296 1984-01-31 

Live cattle 0.0240 0.1704 0.1406 1984-01-31 

Feeder cattle 0.0296 0.1847 0.1603 2002-01-08 

Aluminum -0.0349 0.2344 -0.1489 1991-01-08 

Copper 0.1431 0.2960 0.4835 1984-01-31 

Lead 0.1023 0.3522 0.2904 1995-01-09 

Nickel 0.1135 0.40 0 0 0.2838 1993-01-11 

Tin 0.1467 0.4366 0.3360 2007-03-16 

Zinc 0.0237 0.3100 0.0764 1991-01-09 

Cocoa -0.0468 0.3380 -0.1385 1984-01-31 

Coffee -0.0357 0.4122 -0.0867 1984-01-31 

Corn -0.0793 0.2790 -0.2844 1984-01-31 

Cotton 0.0259 0.2801 0.0926 1984-01-31 

Soybean 0.0405 0.2600 0.1558 1984-01-31 

Soybean.oil -0.0068 0.2743 -0.0248 2005-01-10 

Sugar 0.0257 0.4034 0.0637 1984-01-31 

Wheat Chicago -0.0591 0.3096 -0.1910 1984-01-31 

Wheat Kansas -0.0651 0.3219 -0.2023 1999-01-07 

Panel B: Equity index 

Australia 0.0944 0.2510 0.3760 1970-01-01 

Austria 0.1073 0.2527 0.4247 1970-01-01 

Belgium 0.1066 0.2266 0.4704 1970-01-01 

Canada 0.1026 0.2106 0.4874 1970-01-01 

Denmark 0.1567 0.2252 0.6959 1970-01-01 

France 0.1167 0.2537 0.4601 1970-01-01 

Germany 0.1231 0.2548 0.4832 1970-01-01 

Hong Kong 0.1888 0.3306 0.5711 1970-01-01 

Italy 0.0704 0.2867 0.2457 1970-01-01 

Japan 0.1303 0.2445 0.5330 1970-01-01 

Netherlands 0.1293 0.2392 0.5407 1970-01-01 

Norway 0.1404 0.3067 0.4577 1970-01-01 

Portugal 0.0182 0.2498 0.0727 1988-01-01 

Spain 0.0770 0.2647 0.2908 1970-01-01 

Sweden 0.1668 0.2821 0.5914 1970-01-01 

Switzerland 0.1374 0.2129 0.6452 1970-01-01 

United Kingdom 0.1030 0.2451 0.4201 1970-01-01 

United States 0.1143 0.1981 0.5769 1970-01-01 

Korea 0.1503 0.3978 0.3777 1988-01-01 

Malaysia 0.1030 0.2918 0.3528 1988-01-01 

Singapore 0.1381 0.2582 0.5348 1970-01-01 

South Africa 0.1435 0.3266 0.4393 1993-01-01 

Taiwan 0.1178 0.3384 0.3481 1988-01-01 

Thailand 0.1330 0.3577 0.3719 1988-01-01 

Panel C: Fixed income futures 

AUS 3Y 0.0062 0.0152 0.4057 1989-12-19 

AUS 10Y 0.0048 0.0149 0.3206 1987-09-21 

CA 10Y 0.0195 0.0847 0.2298 1989-09-18 

EURO 2Y 0.0050 0.0157 0.3200 1997-03-10 

EURO 5Y 0.0198 0.0420 0.4713 1991-10-07 

EURO 10Y 0.0353 0.0658 0.5359 1990-11-26 

EURO 30Y 0.0396 0.1500 0.2637 1998-10-05 

EuroDollar 1M 0.0033 0.0102 0.3276 1990-04-06 

EuroDollar 3M 0.0022 0.0115 0.1909 1986-04-02 

EUIBOR 3M 0.0025 0.0067 0.3734 1998-12-09 

JP 5Y 0.0 0 09 0.0228 0.0385 1996-02-19 

JP 10Y 0.0181 0.0577 0.3138 1985-10-22 

UK 1Y 0.0042 0.0171 0.2472 1988-02-29 

UK 10Y 0.0120 0.1052 0.1143 1982-11-19 

US 2Y 0.0034 0.0215 0.1573 1990-06-26 

US 5Y 0.0084 0.0513 0.1635 1988-05-23 

US 10Y 0.0230 0.0825 0.2795 1982-05-04 

US 30Y 0.0296 0.1391 0.2124 1980-01-02 

SWISS 10Y 0.0300 0.0632 0.4757 1992-06-17 

This table introduces the summary statistics of our global asset classes. Panel A summaries the statistics of 27 constituents of the Standard 

and Poor’s Goldman Sachs Commodity Indices. Panel B presents the statistics for 24 investable Morgan Stanley Capital International indices. 

Panel C reports the statistics of 19 sovereign bonds or short-term deposits futures. The prices of commodity and equity indices are obtained 

from Datastream, and those of fixed income are collected via Bloomberg. Columns two to four illustrate annualised average return ( Mean ), 

standard deviation ( SD ) and Sharpe ratio ( SR ). All results are based on daily returns over the entire sample period and converted to annual 

levels. the last column presents The start date of every instrument, and all return series end in July 2018. 
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Overall, the annualised average returns of commodity futures are more volatile than others; equity indices all demon- 

strate positive average returns and slightly lower volatility than commodities; fixed income futures report the smallest an- 

nualised returns and standard deviations. 

Appendix B. Excess volatility in foreign exchange market 

Following Lustig et al. (2011) and Menkhoff et al. (2012a) , our FX universe contains 48 currencies: Australia, Austria, 

Belgium, Brazil, Bulgaria, Canada, Croatia, Cyprus, Czech Republic, Denmark, Egypt, Euro area, Finland, France, Germany, 

Greece, Hong Kong, Hungary, Iceland, India, Indonesia, Ireland, Israel, Italy, Japan, Kuwait, Malaysia, Mexico, Netherlands, 

New Zealand, Norway, Philippines, Poland, Portugal, Russia, Saudi Arabia, Singapore, Slovakia, Slovenia, South Africa, South 

Korea, Spain, Sweden, Switzerland, Taiwan, Thailand, Ukraine, and the United Kingdom. Due to the introduction of Euro and 

data restrictions, the number of available currencies are dynamic over time horizon and ranges from 21 to 38, which is

consistent with Menkhoff et al. (2012a) . 37 

Different from other asset classes, excess returns here is composed of the spot price return and interest differentials. 

According to Menkhoff et al. (2012a) and Menkhoff et al. (2012b) , 38 monthly percentage excess return on month t + 1 of

currency k is calculated as: 

rx k t+1 ≡ i k t − i i −
(s k t+1 − s k t ) 

s k t 

, (B.1) 

where i k t is the foreign interest rate; i t is the domestic interest rate, which is the short-term interest in US; s k t is the spot

exchange rate at month end. We rationally assume that the forward discount rate is equivalent to the interest rate differen-

tials as uncovered interest parity holds in this sample ( Akram et al., 2008; Menkhoff et al., 2012a ). Thus, the excess monthly

percentage returns are approximate to: 

rx k t+1 ≈
( f k t − s k t ) 

s k t 

− (s k t+1 − s k t ) 

s k t 

= 

( f k t − s k t+1 ) 

s k t 

, (B.2) 

where f k t is is the month end one-month forward in month t . The data of both spot and one-month forward exchange rates

against one US dollar are obtained from Barclays Bank International and WM/Reuters via Datastream. 

Table B.13 exhibits a summary statistic of our foreign exchange universe. Indonesia reports the highest annualised return 

at 48.93% per annum; Ukraine displays the poorest averaged return, at -37.87% per annual. Meanwhile, Ukraine shows the 

highest annualised standard deviation, at 27.45%; Saudi Arabia reports the lowest one, at 0.42%. Furthermore, Egypt illustrates 

the highest Sharpe ratio, at 1.8691; Netherlands shows the lowest value at -2.9886. 

Following the portfolio construction method mentioned in Section 2.2 , we conduct the XSMOM strategy in the FX market. 

We find that the excess volatility of the XSMOM strategy is 0.005, which is not statistically significant. We argue that the

high reward-to-risk ratio in the FX market causes this pattern. The mean of absolute Sharpe ratio is greater that one in in

this market, whereas this statistic is no more than 0.5 across other asses classes. This results in asset returns, as opposed

to volatilities, over the formation period, dominating the momentum ranking for this asset class. Since GRJMOM aims to 

alleviate the excess volatility caused by the impact of high volatility instruments, a market without excess momentum 

volatility does not need such an adjustment. Hence, we exclude the FX market from our sample. 
37 Thirteen currencies are omitted due to the introduction of Euro: Austria, Belgium, Finland, France, Germany, Ireland, Italy, Portugal and Spain omit in 

1999; Greece is omitted in 20 0 0; Slovenia is omitted in 2006; Cyprus is omitted in 2007; Slovakia is omitted in 2008. 
38 Menkhoff et al. (2012a) and Menkhoff et al. (2012b) capture excess log returns of different currencies, but we measure percentage returns as docu- 

mented by Koijen et al. (2018) to be consistent with the return calculations for the other asset classes. 
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Table B1 

Summary statistics of foreign exchange sample 

Economics Mean SD SR Start date 

Australia 0.0541 0.1392 0.3884 1985-01-31 

Austria -0.0587 0.1311 -0.4480 1985-01-31 

Belgium -0.0419 0.1285 -0.3256 1985-01-31 

Brazil 0.1644 0.1833 0.8973 2004-03-30 

Bulgaria 0.0128 0.1139 0.1119 2004-03-30 

Canada 0.0126 0.0893 0.1415 1985-01-31 

Croatia 0.0280 0.1180 0.2372 2004-03-30 

Cyprus -0.0626 0.0948 -0.6605 2004-03-30 

Czech 0.0048 0.1422 0.0339 1997-01-01 

Denmark -0.0074 0.1203 -0.0619 1985-01-31 

Egypt 0.3682 0.1970 1.8691 2004-03-30 

EURO 0.0005 0.1158 0.0040 1999-01-01 

Finland 0.0389 0.1059 0.3677 1997-01-01 

France -0.0255 0.1269 -0.2008 1985-01-31 

Germany -0.0619 0.1296 -0.4779 1985-01-31 

Greece 0.2124 0.1258 1.6879 1997-01-01 

Hongkong -0.0035 0.0070 -0.5033 1985-01-31 

Hungary 0.1019 0.1601 0.6365 1997-10-28 

India 0.1092 0.0696 1.5677 1997-10-28 

Indonesia 0.4893 0.2694 1.8161 1997-01-01 

Ireland -0.0018 0.0957 -0.0188 1993-11-01 

Israel -0.0118 0.0929 -0.1266 2004-03-30 

Italy 0.0522 0.1266 0.4124 1985-01-31 

Iceland 0.1281 0.1763 0.7270 2004-03-30 

Japan -0.0575 0.1264 -0.4547 1985-01-31 

Kuwait 0.0090 0.0287 0.3139 1997-01-01 

Malaysia 0.0951 0.1318 0.7220 1985-01-31 

Mexcio 0.1587 0.1283 1.2367 1997-01-01 

Netherlands -0.3179 0.1064 -2.9886 1985-01-31 

New Zealand 0.0496 0.1465 0.3388 1985-01-31 

Norway 0.0316 0.1326 0.2380 1985-01-31 

Philippines 0.1024 0.0978 1.0466 1997-01-01 

Poland 0.0340 0.1631 0.2083 2002-02-12 

Portugal 0.1039 0.1279 0.8125 1985-01-31 

Russia 0.1757 0.1659 1.0594 2004-03-30 

Saudi Arabia 0.0020 0.0042 0.4600 1997-01-01 

Singapore -0.0323 0.0640 -0.5040 1985-01-31 

Slovak -0.1299 0.1290 -1.0069 2002-02-12 

Slovenia -0.0295 0.1011 -0.2917 2004-03-30 

South Africa 0.1909 0.1819 1.0493 1985-01-31 

Korea 0.0068 0.1280 0.0533 2002-02-12 

Spain 0.0554 0.1295 0.4283 1985-01-31 

Sweden 0.0252 0.1297 0.1942 1985-01-31 

Switzerland -0.0537 0.1348 -0.3987 1985-01-31 

Taiwan -0.0036 0.0524 -0.0696 1997-01-01 

Thailand 0.0504 0.1050 0.4805 1997-01-01 

Ukraine -0.3187 0.2745 -1.1610 2004-03-30 

United Kingdom 0.0233 0.1169 0.1990 1985-01-31 

Columns two to four illustrate annualised statistics: average return ( Mean ), standard deviation ( SD ) and Sharpe ratio 

( SR ) captured by daily returns over entire sample period. The start dates of instruments are presented in the fifth 

column. 

 

 

 

 

 

 

 

 

Appendix C. Supplementary evidence based on the US stocks 

In this Appendix, we replicate our main analysis to demonstrate that our findings still hold in the US stock market.

Following US momentum studies such as Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016) , we collect stock

level data from the Center for Research in Security Prices (CRSP). We obtain daily and monthly holding period returns for all

common stocks (with CRSP share code 10 and 11) listed on NYSE, AMEX, or NASDAQ. In line with the data filter method of

Daniel and Moskowitz (2016) , we require that a firm must have a valid share price as of the formation date and that there

be a minimum of eight monthly returns over the past 12 months formation period. The entire sample period ranges from

January 1965 to July 2018, which is consistent with our UK stock market sample period. 

Using the same momentum portfolio construction approach as outlined in the main text, we sort stock period returns 

(skipping the most recent month) into deciles, where Decile Ten refers to the winners, and Decile One represents the losers.

Then, we buy the winners and sell the losers to build the XSMOM portfolios, which are rebalanced at the end of each month.
25 



M. Fan, F. Kearney, Y. Li et al. Journal of Economic Dynamics & Control 144 (2022) 104524 

Table C1 

Performance of momentum strategies by volatility decile (US stock) 

D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 D 9 D 10 

Mean 0.096 0.125 0.098 0.073 0.106 0.082 0.084 0.105 0.115 0.054 

T-value 5.03 ∗∗∗ 6.44 ∗∗∗ 5.18 ∗∗∗ 3.55 ∗∗∗ 5.37 ∗∗∗ 3.68 ∗∗∗ 3.70 ∗∗∗ 4.38 ∗∗∗ 4.33 ∗∗∗ 1.43 

Vol 0.139 0.141 0.137 0.150 0.143 0.163 0.164 0.174 0.193 0.272 

SR 0.694 0.887 0.714 0.489 0.740 0.507 0.510 0.603 0.597 0.198 

‘ D 1 ’ to ‘ D 10 ’ represent the ten deciles constructed by ranking the realised volatility over the formation periods. Decile 

one contains instruments with the lowest realised volatility, with decile ten consisting of instruments with the highest 

realised volatility. Mean, T-value, Vol , and SR denote the annualised momentum returns, t -values of returns, standard 

deviations, and Sharpe ratios, respectively. ‘ ∗ ’, ‘ ∗∗ ’, ‘ ∗∗∗ ’ represent that the t -values are statistically significant at 10%, 5% 

and 1% level. 

Fig. C1. Cumulative performance of risk-adjusted momentum strategies in the US markets These plots exhibit the cumulative performance of XSMOM, 

SRMOM and GRJMOM strategies in the US stock market throughout the whole sample period. The dollar value of investment (y-axis) is logarithmically 

scaled, given the huge differences across the three strategies. The shaded areas indicate the worst periods of the plain momentum strategy, or momentum 

crashes. 

 

 

 

 

 

 

 

 

Following the same procedure, we construct the SRMOM and GRJMOM decile portfolios by ranking the stock’s Sharpe ratios 

and generalised risk-adjusted returns over the formation period, respectively. 

We first explore the links between the momentum effect and the cross-section of stock volatility in the US stock market. 

In line with our approach used in Table 2 , we sort the available stocks into deciles according to their realised volatility over

the formation period. Then, we sort these ten sub-portfolios, D 1 − D 10 , into quintiles in order to construct well-diversified

portfolios. Table C.14 presents the momentum performance in each volatility determined decile. The mean of momentum 

returns in D 10 is insignificantly different from zero, whereas the returns in the remaining deciles are all significantly positive 

at the 1% level. The results imply that the momentum effect vanishes in high volatility stocks, which coincides with our

findings in other markets. 

Next, we investigate how the GRJMOM portfolio performs in the US stock market. Figure C.6 plots the cumulative per-

formance, where $1 is invested into each strategy at the beginning of the first month in the sample time horizon. We

highlight that the GRJMOM strategy (solid black line) produces the highest cumulative performance. The final dollar value 

of investment of GRJMOM achieves $551.72 in July 2018, whereas those of XSMOM and SRMOM are only $4.38 and $349.02,

respectively. The poor cumulative performance of the XSMOM portfolio is sourced from two crashes in 1975 and 2009, 

whereas our GRJMOM strategy does not suffer from such extreme drawdowns. The shaded areas in Figure C.6 present the

crash periods of the plain momentum strategy. The XSMOM and SRMOM portfolios report large semi-annual drawdowns in 

2009, 86.44% and 51.63%, respectively. By contrast, GRJMOM reduces the losses to 39.06%. 

The empirical results in the US stock sample echo our two conclusions addressed in other samples. First, the momentum 

effect vanishes in the high volatility stocks but remains firm in others. Second, the GRJMOM strategy is an effective tool to

mitigate the crash risks in the US stock market. Compared to SRMOM, our innovation successfully alleviated the crash after 

the 20 07-20 08 financial crisis. 
26 



M. Fan, F. Kearney, Y. Li et al. Journal of Economic Dynamics & Control 144 (2022) 104524 

 

 

 

 

 

 

Appendix D. Robustness check: Fama-French five-factor model 

For robustness, we also perform our model selection process and factor analysis based on the Fama-French five-factor 

model (FF5) ( Fama and French, 2015 ). We first validate the outperformance of the GRJMOM strategy compared to the XS-

MOM and SRMOM strategies. Controlling for the FF5 factors, Panel A of Table D.15 shows that the superiorities of our

GRJMOM strategies are statistically significant at the 5% level across various asset classes, except for fixed income. This con- 

clusion is in line with the results in Table 7 that GRJMOM significantly outperforms XSMOM and SRMOM after controlling

for multiple market factors. 

We further regress the return of scaled GRJMOM on the Fama-French five factors plus the CVS return. Panel B of

Table D.15 shows that alphas are at least statistically significant at the 5% level across three asset classes, e.g., UK stocks,

commodities, and equity indices, while the difference is relatively small across fixed income. The statistically significant in- 

tercepts support our findings in Table 9 , where the GRJMOM ranking is a more efficient risk-adjusted approach than the CVS

approach for momentum investors. 
Table D1 

Alphas of GRJMOM based on FF5 

Benchmark UK stock Commodity Equity index Fixed income 

Panel A: Alphas of GRJMOM with respect to XSMOM and SRMOM 

XSMOM alpha 0.010 ∗∗∗ 0.006 ∗∗∗ 0.004 ∗∗∗ 0.001 

t (6.59) (3.07) (2.95) (1.58) 

SRMOM alpha 0.004 ∗∗∗ 0.003 ∗∗ 0.003 ∗∗ 0.001 ∗∗
t (2.93) (2.41) (2.41) (2.21) 

Panel A: Alphas of scaled GRJMOM with respect to CVS 

CVS alpha 0.011 ∗∗∗ 0.005 ∗∗∗ 0.003 ∗∗∗ 0.001 

t (4.07) (2.86) (2.66) (0.96) 

This table presents the superiorities of the GRJMOM strategy after controlling for the Fama-French five factors. Panel A reports the re- 

gression results of the GRJMOM returns with respect to the Fama-French five factors and XSMOM/SRMOM portfolios captured in each asset 

class. Panel B reports the alphas and t -values of the regression: R Scaled.GRJMOM = α + β1 R CV S + βF F 5 , where F F 5 refers to the Fama-French five 

factors. The t -statistics are adjusted by the Heteroskedasticity and Autocorrelation Consistent (HAC) estimator of Newey and West (1987) . 

‘ ∗ ’, ‘ ∗∗ ’, ‘ ∗∗∗ ’ represent that the t -values are statistically significant at 10%, 5% and 1% level, respectively. 

Table D2 

Factors loading of GRJMOM versus XSMOM and SRMOM strategies (FF5) 

Strategies alpha mkt smb hml rmw cma Adj R 2 

Panel A: UK stock 

XSMOM 0.015 ∗∗∗ -0.358 ∗∗∗ 0.034 -0.431 ∗ 0.888 ∗∗∗ 0.517 0.126 

(3.31) (-3.45) (0.19) (-1.89) (3.17) (1.11) 

SRMOM 0.017 ∗∗∗ -0.358 ∗∗∗ 0.094 -0.323 ∗∗∗ 0.507 ∗∗∗ -0.044 0.182 

(6.07) (-7.07) (0.67) (-2.92) (2.67) (-0.19) 

GRJMOM 0.018 ∗∗∗ -0.173 ∗∗∗ 0.126 -0.271 ∗∗ 0.706 ∗∗∗ 0.097 0.103 

(6.38) (-2.73) (0.89) (-2.19) (3.40) (0.36) 

Panel B: Commodity 

XSMOM 0.007 ∗∗ 0.185 0.040 -0.068 -0.226 ∗∗ 0.186 0.025 

(2.39) (1.53) (0.26) (-0.53) (-2.15) (1.02) 

SRMOM 0.009 ∗∗∗ 0.263 ∗∗∗ 0.083 -0.114 -0.231 ∗∗ 0.029 0.068 

(3.44) (3.18) (0.67) (-1.03) (-2.44) (0.19) 

GRJMOM 0.011 ∗∗∗ 0.233 ∗∗∗ 0.118 -0.124 -0.222 ∗∗ -0.048 0.068 

(4.20) (3.32) (1.28) (-1.24) (-2.37) (-0.34) 

Panel C: Equity index 

XSMOM 0.007 ∗∗ -0.054 0.033 -0.061 0.196 0.131 0.001 

(2.46) (-0.59) (0.25) (-0.35) (1.54) (0.63) 

SRMOM 0.007 ∗∗∗ 0.016 0.083 0.054 0.162 ∗ -0.077 0.003 

(2.82) (0.21) (0.80) (0.42) (1.75) (-0.50) 

GRJMOM 0.008 ∗∗∗ 0.040 0.063 0.102 0.031 -0.302 ∗∗ 0.005 

(3.68) (0.55) (0.67) (0.79) (0.35) (-2.00) 

Panel D: Fixed income 

XSMOM -0.002 0.133 ∗ 0.003 -0.020 0.018 0.005 0.002 

(-1.64) (1.75) (0.07) (-0.35) (0.40) (0.07) 

SRMOM -0.001 -0.042 0.002 0.018 -0.024 -0.040 0.008 

(-0.19) (-0.68) (0.09) (0.50) (-0.63) (-0.81) 

GRJMOM 0.001 ∗ -0.150 ∗∗ -0.009 0.074 ∗ -0.046 -0.071 0.045 

(1.75) (-1.98) (-0.37) (1.91) (-1.23) (-1.38) 

Panels in this table display the results of OLS regressions based on the Fama-French five-factor model in different markets. The dependent vari- 

ables are the monthly returns of XSMOM, SRMOM and GRJMOM strategies. The independent variables include: the market ( mkt), size ( smb), 

value ( hml), profitability ( rmw ), investment ( cma ) factors. Each panel exhibits the regression results of a given asset class. The alpha represents 

the monthly abnormal returns after controlling for risk factors. The t -statistics are adjusted by the Heteroskedasticity and Autocorrelation Con- 

sistent (HAC) estimator of Newey and West (1987) . ‘ ∗ ’, ‘ ∗∗ ’, ‘ ∗∗∗ ’ represent statistically significant t -values at 10%, 5% and 1% levels, respectively. 

Adj R 2 refers to the adjusted R-squared. 
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Table D.16 shows the factor loading of GRJMOM returns by running Fama-French five-factor models. In it, mkt , smb, 

hml, rmw , and cma denote the market, size, value, profitability, and investment factors, respectively. The GRJMOM strategy 

exhibits alphas of 1.8%, 1.1%, 0.8%, and 0.1% per month in the UK stock, commodity, equity index and fixed income markets,

respectively. The alphas are statistically significant at a 1% level, except for fixed income. In line with Table 10 and 11 , the

alphas of GRJMOM are at least 14% higher than those of other momentum trading schemes across the four asset classes.

Such results further support the superiority of our GRJMOM ranking. 

Appendix E. GRJMOM and momentum crashes (global asset classes) 

Table E.17 reports the monthly performance of GRJMOM over the crash periods in commodity, equity index, and fixed 

income markets. In general, we find that our innovation successfully mitigates momentum crashes. In the commodity mar- 

ket, the largest downward of XSMOM -32.9% in March 1998, is reduced to -9.9% after GRJMOM ranking. In nine of these ten

worst months, GRJMOM reduces the losses of XSMOM, and leads to profits in two cases, i.e., March 2002 and May 2009. In

comparison with the SRMOM strategy, our innovation also performs better in each of these months. Similar patterns are also 

observable in equity index and fixed income markets. Thus, we conclude that GRJMOM successfully alleviates momentum 

crashes in each asset class, which is consistent with our previous findings for UK stocks, as shown in Table 8 . 
Table E1 

Performance of GRJMOM and momentum crashes (global asset classes) 

Order Date Strategy Difference 

XSMOM SRMOM GRJMOM GRJ-XS GRJ-SR 

Panel A: commodity 

1 1999-03 -0.329 -0.099 -0.099 0.230 0.000 

2 1985-07 -0.168 -0.106 -0.106 0.062 0.000 

3 2010-07 -0.148 -0.140 -0.131 0.017 0.010 

4 2015-02 -0.146 -0.177 -0.167 -0.021 0.010 

5 2003-03 -0.143 -0.124 -0.074 0.069 0.050 

6 2008-07 -0.141 -0.147 -0.132 0.009 0.015 

7 2009-05 -0.140 0.004 0.131 0.272 0.128 

8 2012-09 -0.133 -0.130 -0.071 0.062 0.059 

9 2002-03 -0.128 -0.022 0.009 0.137 0.031 

10 1990-02 -0.128 -0.102 -0.037 0.091 0.065 

Panel B: equity index 

1 1975-01 -0.316 -0.208 -0.208 0.108 0.000 

2 1987-10 -0.233 -0.233 -0.213 0.021 0.021 

3 1998-09 -0.177 -0.112 -0.101 0.076 0.011 

4 1973-04 -0.166 -0.103 -0.103 0.063 0.000 

5 1998-10 -0.161 -0.065 -0.042 0.118 0.023 

6 1999-04 -0.146 -0.033 -0.002 0.144 0.030 

7 1986-10 -0.144 -0.141 -0.133 0.011 0.008 

8 1998-02 -0.140 -0.140 -0.099 0.041 0.041 

9 1974-05 -0.136 -0.130 -0.130 0.006 0.000 

10 1986-05 -0.129 -0.106 -0.071 0.058 0.035 

Panel C: fixed income 

1 2003-09 -0.064 -0.020 -0.022 0.042 -0.001 

2 2003-07 -0.047 0.007 0.054 0.101 0.047 

3 2009-01 -0.042 0.017 0.033 0.075 0.016 

4 2015-06 -0.039 -0.026 0.000 0.039 0.025 

5 2014-01 -0.037 -0.031 0.018 0.055 0.049 

6 2010-12 -0.035 -0.022 -0.008 0.028 0.014 

7 2016-10 -0.034 -0.017 0.006 0.040 0.023 

8 1996-02 -0.033 -0.012 -0.012 0.021 0.000 

9 1994-02 -0.033 -0.022 -0.022 0.011 0.000 

10 2011-07 -0.031 -0.023 0.000 0.031 0.023 

This table reports the ten worst single month returns of the XSMOM strategy across 

commodity, equity index, and fixed income markets. Order one means the poorest 

performing one. GRJ-XS (GRJ-SR) is the difference between GRJMOM and XSMOM 

(SRMOM) returns, which is calculated using the returns of GRMOM and subtracting 

those of XSMOM (SRMOM). 
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