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Q-Learning Aided Intelligent Routing with Maximum Utility
in Cognitive UAV Swarm for Emergency Communications

Long Zhang, Member, IEEE, Xiaozheng Ma, Zirui Zhuang, Member, IEEE, Haitao Xu, Member, IEEE,
Vishal Sharma, Senior Member, IEEE, and Zhu Han, Fellow, IEEE

Abstract—This paper studies the routing problem in a cognitive
unmanned aerial vehicle (UAV) swarm (CU-SWARM), which
employs the cognitive radio into a swarm of UAVs within a three-
layer hierarchical aerial-ground integrated network architecture
for emergency communications. In particular, the flexibly con-
verged architecture utilizes a UAV swarm and a high-altitude
platform to support aerial sensing and access, respectively, over
the disaster-affected areas. We develop a Q-learning framework
to achieve the intelligent routing to maximize the utility for
CU-SWARM. To characterize the reward function, we take
into account both the routing metric design and the candidate
UAV selection optimization. The routing metric jointly captures
the achievable rate and the residual energy of UAV. Besides,
under the location, arc, and direction constraints, the circular
sector is modeled by properly choosing the central angle and
the acceptable signal-to-noise ratio for UAV to optimize the
candidate UAV selection. With this setup, we further propose
a low-complexity iterative algorithm using the dynamic learning
rate to update Q-values during the training process for achieving
a fast convergence speed. Simulation results are provided to
assess the potential of the Q-learning framework of intelligent
routing as well as to verify our overall iterative algorithm via
the dynamic learning rate for training procedure. Our findings
reveal that the proposed algorithm converges in a few number
of iterations. Furthermore, the proposed algorithm can increase
the accumulated rewards, and achieve significant performance
gains, as compared to the benchmark schemes.

Index Terms—Emergency communications, UAV swarm, cog-
nitive radio, intelligent routing, maximum utility, Q-learning.

I. INTRODUCTION

In times of emergencies and natural disasters, one of sig-
nificant impact is the sudden and wide-scale breakdown or
interruption of terrestrial communications infrastructure. For
instance, cellular base stations (BSs) may be partially or totally
dysfunctional or paralyzed in disaster-affected areas due to
physical destructions and power outages [1]. The wireless
networks might fail to provide the necessary coverage and
capacity for the public and disaster responders, hindering
emergency response and disaster relief operations. On the one
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hand, the public needs to connect to important resources or
declare their safety to responders via emergency calls, text
messages, or even social media updates. On the other hand,
the disaster responders are dispatched to the affected region
for disaster response and relief. As the first 72 hours following
the disaster are the most critical, an alternative post-disaster
communication system is needed to be quickly deployed for
providing disaster sensing (e.g., situational awareness), coordi-
nating emergency and recovery operations, as well as allowing
the public to deliver massive amounts of information timely
[2]. Consequently, it is highly necessary to set up emergency
communications in post-disaster areas for extended, flexible,
resilient, and rapidly deployable network coverage.

For reaching this goal, several technical solutions have
been recognized as potential candidates for disaster and emer-
gency scenarios, such as device-to-device [3], full-duplex [4],
movable BSs [5], satellite communications [6], etc. However,
the existing solutions lack efficient situational awareness over
disaster areas, and are limited by complex ground conditions
and uninterruptible power supplies. Particularly, some of the
methods are mostly infrastructure based, depending on ground
BSs to schedule the resource allocation [7]. Moreover, con-
strained wireless backhaul capacity and inefficient deployment
of ground devices (GDs) pose new technical challenges on
network design and planning of emergency communications
[5]. To overcome these challenges, unmanned aerial vehicles
(UAVs) can be utilized for quickly restoring communications
in emergency and disaster situations [7]–[9]. Due to their
high mobility and flexible deployment in the three-dimensional
(3D) space, UAVs are often exploited as aerial BSs (ABSs) for
temporary coverage and traffic offloading over disaster areas.
For air-to-ground communications, UAVs are more likely to
set up strong line-of-sight (LoS) links with GDs and normally
working BSs in disasters, thus enhancing the wireless coverage
and improving the system capacity [10].

Beyond that, UAVs loaded with sensors and cameras are
also being used to provide the disaster responders with better
disaster sensing timely, enabling them to assess situations and
efficiently respond based on the aerial sensing data of the
disaster areas [11]. Intuitively, the more UAVs deployed to an
affected area for disaster sensing, the better response efforts
could be achieved, because additional UAVs add more sensing
data of such areas. Compared with a single UAV, UAV swarm
has the potential to create an autonomous multi-UAV network
by distributing disaster sensing tasks and coordinating opera-
tion of a large number of small UAVs [12]. Regarding the UAV
swarm, the UAVs communicate with each other while in flight
for self-organization and collaboration in an airborne flying ad
hoc manner. Without the support of centralized infrastructure,
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each UAV connects and transmits the aerial sensing data with
neighboring UAVs which are the intermediate UAVs within
its communication range. Compared with the UAVs in lower
altitude above the ground, high-altitude platforms (HAPs) in
the stratosphere are more suitable to provide the disaster
information fusion for emergency situations, due to larger area
coverage, bigger payload capacity, and longer flight endurance
[1]. Therefore, the integration of HAPs with UAV swarm
motivates the prospect of implementing the hierarchical aerial
sensing and access for emergency communications, which has
been recognized as a key enabler for 6G systems of 2030s [1].

Despite the appealing potential of HAP-UAV hierarchical
architecture for converged aerial sensing and access, such a
design poses extra challenges particularly with spectrum usage
for practical system design in emergency scenarios1. First,
relying on the ad hoc mode, it will not be an effective way to
use static spectrum access for deploying the UAV swarm. Sec-
ond, it will not be sufficient to collect and transmit the aerial
sensing data with high capacity via the pre-allocated spectrum
resource for UAVs. Hence, efforts on dynamic and on-demand
spectrum access for HAP-UAV hierarchical networking should
be made to tackle this problem. Fortunately, the paradigm of
cognitive UAV swarm (CU-SWARM) that employs cognitive
radio (CR) to realize the spectrum coexistence of UAVs and
cellular primary networks has gained growing interests from
the research community [13]–[15]. With the built-in cognitive
capabilities, the UAVs exploit dynamic spectrum access for
opportunistic utilization of the licensed sub-channels over the
sharing resource block (RB) held by primary users (PUs) in
disasters to optimize the overall spectrum usage.

A. Motivation and Contributions

Under the HAP-UAV hierarchical structure, when the UAVs
are located outside the coverage area of an HAP serving as the
disaster data fusion, it is essential for creating the multi-hop
routing for them by choosing immediate UAVs as the relays to
forward the sensing data timely, until these data finally reach
the UAVs located inside the HAP coverage area. However,
the inherent features of CU-SWARM, e.g., flying constraints,
high mobility, dynamic spectrum access, drastically changing
network topology, lack of global information, etc., also bring
a number of issues to overcome particularly with the multi-
hop routing design. To fully unleash the potentials of such an
HAP-UAV hierarchical design, the following challenges must
be well solved at the routing design so as to effectively realize
the disaster information fusion for emergency situations:

1) Dynamic mobility: Due to the high mobility and flying
constraints in CU-SWARM, the flying trajectory of UAV
must be carefully identified and discussed by taking the
practical mobility modelling into account when design-
ing the routing scheme.

2) Dynamic spectrum access with imperfect sensing: Joint
spectrum sensing (SS) and routing design is a necessary
consideration in spectrum sharing CU-SWARM. Imper-
fect SS needs to be well captured at the sensing decision

1Unless otherwise stated, we use the terms HAP-UAV hierarchical architec-
ture and three-layer hierarchical aerial-ground integrated network architecture
interchangeably throughout this paper.

for each UAV due to the varying ground-to-air channel
conditions and physical hardware impairments.

3) Distributed implementation: The problem of local infor-
mation and limited interaction for UAVs arises due to
the lack of global information, and thereby, the routing
decision should be performed in a distributed manner.

Aiming to tackle these challenges for better adapting to the
dynamically changing environment and distributed implemen-
tation, flexible and efficient routing is required to be carefully
designed in a smarter and more agile manner. Reinforcement
learning (RL), more specifically Q-learning, shows powerful
capabilities to solve complicated decision-making problems
in dynamically varying environment. Since it does not need
a model of the environment, Q-learning is more suitable
for the dynamic and partially observed external environment
with low computational complexity, ease of implementation,
and guaranteed convergence [16], [17]. Besides, Q-learning
process can be executed in a distributed manner without global
information, which is more in line with the inherent properties
of UAV’s local information and limited interaction in CU-
SWARM.

Motivated by the aforementioned discussions, this paper is
an attempt to address the routing problem in CU-SWARM
under the HAP-UAV hierarchical structure by resorting to the
Q-learning. We aim to design an intelligent routing framework
with maximum utility through adaptive learning and intelligent
decision making, while complying to the requirements of
dynamically changing environment and distributed implemen-
tation. Notably, to the best knowledge of authors, this is the
first trial establishing an intelligent routing framework with
maximum utility in HAP-UAV hierarchical aerial-ground in-
tegrated network architecture for emergency communications.
Our contributions can be summarized as follows:

• We present a three-layer hierarchical aerial-ground inte-
grated network architecture for emergency communica-
tions over the large-scale disaster-affected areas. This is
a new architectural design approach to beyond-terrestrial
domain view of network design via flexibly converged
aerial and terrestrial networks, including a UAV swarm
and an HAP to support aerial sensing and access, respec-
tively.

• We develop a Q-learning framework to achieve the in-
telligent routing with maximum utility for CU-SWARM,
which considers the integration of CR with a swarm of
UAVs via an ad hoc manner across the aerial sensing layer
of the hierarchical architecture. A Gauss-Markov (GM)
mobility model is employed to model the random flying
trajectory for the UAV in CU-SWARM. The convergence
of aerial and terrestrial networks is carefully considered
by applying the underlay paradigm into the implemen-
tation of CU-SWARM, which allows the coexistence of
CU-SWARM and ground cellular primary network.

• We derive the reward function of the Q-learning frame-
work by designing the routing metric and optimizing the
selection of candidate UAVs. We determine the routing
metric by maximizing the utility, which jointly captures
the achievable rate and the residual energy of UAV. The
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imperfect SS is incorporated into the sensing decision for
each UAV, which affects the achievable rate of UAV pair.
With the location, arc, and direction constraints, we par-
ticularly devise a circular sector over the two-dimensional
(2D) rectangular area to optimize the candidate UAV
selection by appropriately setting up the central angle of
circular sector as well as the acceptable signal-to-noise
ratio (SNR) of UAV. The dynamic learning rate is adopted
for updating Q-values during the training process to yield
a fast convergence speed.

B. Paper Organization

The rest of the paper is organized as follows. In Section
II, we introduce the related works. The network architecture
is discussed in Section III. Section IV describes the system
model. In Section V, the Q-learning framework is proposed
for achieving the intelligent routing with maximum utility. The
performance evaluation results are presented in Section VI.
Finally, concluding remarks are provided in Section VII.

II. RELATED WORKS

A. Aerial-Ground Integrated Network Architecture

Incorporating aerial access networks into ground networks
for realizing the aerial-ground integrated networks has drawn
considerable attention from the research community recently.
Majority of the existing studies focus on deploying the UAVs,
also referred to as the low-altitude platforms (LAPs), to assist
wireless communications and networking for GDs, through the
double-layer aerial-ground integrated networks, e.g., millime-
ter wave communications [18], mobile edge networks [19],
vehicular networks [20], etc. However, it is challenging to only
deploy the UAVs at lower altitudes in sophisticated mobile
environments with more performance benefits of longer flying
endurance and wider area coverage.

More recently, there has been increasing interest in fusing
HAPs, UAVs, and ground networks for setting up the three-
layer aerial-ground integrated network architecture with dif-
ferent applications [21]–[25]. Ahmadinejad and Falahati in
[21] designed an aerial heterogeneous wireless with an HAP
and multiple UAVs serving as the quasi-stationary ABSs to
provide radio access services to the GDs via the downlink
orthogonal division multiple access. A non-orthogonal mul-
tiple access (NOMA)-enabled airborne access vehicular ad
hoc networks (VANETs) architecture was proposed in [22] to
provide reliable downlink communication services to vehicles
by an HAP and several UAV relays via the decode-and-forward
protocol. Apart from the downlink access services brought
by the hierarchical aerial-ground network architecture in the
research efforts [21], [22], some related works [23]–[25] have
studied the uplink transmission or offloading as well. In [23],
Qin et al. adopted an XAPS model with an HAP serving as
a macro ABS and several LAPs serving as small ABSs to
empower the clustered-NOMA systems in 6G heterogeneous
Internet of Things (IoTs). Lakew et al. in [24] explored a
heterogeneous aerial access IoT network consisting of an
HAP, several UAVs, and IoT devices in underserved areas for
achieving joint intelligent computation offloading and resource
allocation. An HAP-aided aerial edge computing architecture

was introduced in [25], where the HAP was used to execute the
offloading tasks from the UAVs that were deployed to collect
the data from the GDs.

The above solutions [21]–[25] have laid a solid foundation
on the three-layer aerial-ground integrated network architec-
ture. To our best knowledge, the use of UAV self-organization
and collaboration to create the UAV swarm for distributing
sensing tasks has not been addressed in HAP-UAV hierarchical
architecture and remains an appealing study. With the flight
property of cooperation and self-organization, the UAVs are
more likely to send the sensing data with neighboring UAVs
in a hop-by-hop manner, which motivates us to explore the
multi-hop routing problem in this work. Furthermore, different
from previous studies on the HAP-UAV hierarchical structure,
we design a novel three-layer aerial-ground integrated network
architecture by fusing the sensing in the UAV swarm and the
access provided by the HAP.

B. Routing in UAV Swarms

A large body of related works in the literature [26]–[30]
have been proposed to investigate the problem of routing for
UAV swarms from different perspectives. In [26], Mukherjee
et al. proposed an offloading path selection scheme in ad
hoc edge UAV swarms, where the UAVs were deployed close
to the GDs to offload their computation tasks. The optimal
multi-hop path through the UAVs was obtained via Multi-
Armed Bandit by jointly optimizing the residual energy, the
available processing power, the hop distance, and the task load
of each UAV. By minimizing the computation and routing
cost of the running workflows, Liu et al. in [27] proposed an
online algorithm via Markov approximation to jointly optimize
the computation offloading and multi-hop routing scheduling
for UAV swarms in dynamic edge-cloud computing systems.
In [28], Song et al. designed an enhanced flooding-based
routing protocol by employing the random network coding
and clustering for UAV swarms, which realized the efficient
routing without any routing path discovery or network topol-
ogy information. By using the particle swarm optimization,
Arafat and Moh in [29] presented an energy-efficient swarm-
intelligence-based clustering algorithm in UAV networks for
emergency communications. The particle fitness function was
defined by capturing multiple factors, such as inter-cluster dis-
tance, intra-cluster distance, residual energy, and geographic
location. In [30], Li et al. proposed a mean field game
theoretical approach for cross-layer dynamic source routing
protocol in flying ad-hoc networks, by incorporating the link
quality into the cross-layer cost function design. Despite the
above mentioned works devoted to solving the routing problem
in UAV swarms, the underlay spectrum usage for practical
system design in emergency situations of interest was not
considered in their studies, which may cause low efficiency in
the transmission of aerial sensing data. Besides, the 3D UAV
movement and simplified collision policy were assumed in
[29] for the simulation setup, while the Poisson cluster process
was adopted to model the random positions of UAVs in [28].
However, all of the research progress in [26]–[30] did not take
the flying trajectories of UAVs into account when designing
their routing schemes or algorithms.
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C. Q-Learning Aided Routing for Network Scenarios

Recent progress has been made to explore the potential of
Q-learning in routing design for various network scenarios,
e.g., CR networks [16], transportation systems [31], VANETs
[32], [33], optical networks-on-chips [34], etc. Paul and Maity
in [16] formulated an outage minimization problem for multi-
hop routing in CR networks under multiple constraints, e.g.,
SS reliability, energy causality, etc. A RL-based Q-routing
algorithm was designed to find the optimal routing, and the
impact of network topologies on the runtime complexity of Q-
routing was also examined. To solve a stochastic shortest path
problem for sustainable transportation systems, Cao et al. in
[31] developed a Q-learning approach, of which the converged
Q-values was defined the actual probabilities of arriving on
time. By employing the dynamic neural networks to learn the
Q-values, the proposed method can scale well to larger road
networks with arbitrary deadlines. In [32], Li et al. proposed
a position-based hierarchical protocol known as QGrid via
the RL to improve the message delivery rates with minimum
latency and hop counts in VANETs. The QGrid combined
both the macroscopic aspect and microscopic aspect when
making its routing decision via the Q-value table. In [33],
Luo et al. designed an intersection-based hierarchical routing
protocol in VANETs, and designed a multidimensional Q-table
to select the optimal road segments for packet forwarding at
intersections. Zhang and Ye in [34] introduced a thermal-aware
adaptive routing strategy using the tableless approximation Q-
learning to find the optimal low-loss paths in the presence of
on-chip temperature changes for optical networks-on-chips.

For the above research, only the work in [16] was focused
on the CR network scenario, where the impact of PU reappear-
ance on the amount of energy harvesting and the outage during
secondary transmissions was considered. However, there was
no explicit consideration for imperfect SS used for detecting
the PU’s transmission or non-transmission over a frequency
channel, and therefore, the application of this work in practice
may be limited. By contrast, in this work, we incorporate
the imperfect SS into the sensing decision for each UAV,
which is more in line with the practical considerations that
both the varying channel conditions and physical hardware
impairments may affect the sensing results. In addition, none
of the aforementioned works [16], [31]–[34] considered to
optimize the action selection taken by the agent for reducing
the complexity of Q-learning algorithm when designing the
reward function in their Q-learning frameworks. Therefore, a
key motivation of this paper is to explore the candidate UAV
selection strategy for optimizing the action selection taken by
each agent, which is also the challenge brought by Q-learning.

III. NETWORK ARCHITECTURE

We consider a hierarchical aerial-ground integrated network
architecture for emergency communications over a terres-
trial large-scale disaster scenario, as shown in Fig. 1. The
hierarchical architecture is composed of three layers with
different functionalities and properties, i.e., terrestrial layer,
aerial access layer, and aerial sensing layer.
• In the terrestrial layer, the disaster-affected area consists

of a finite number of cells that constitute a ground cellular

HAP

ECRV

Disaster-affected area

Dysfunctional cell

Normal cell

HAP coverage area

Flying rectangular area

Terrestrial layer

Aerial sensing layer

Aerial access layer

PBS PU UAV

Fig. 1. Illustration of a hierarchical aerial-ground integrated network archi-
tecture for emergency communications.

primary network. Each cell owns a multi-antenna primary
BS (PBS) that communicates with multiple associated
PUs distributed in the cell coverage area via licensed
orthogonal sub-channels over a spectrum RB. Here, nor-
mally working cells and dysfunctional cells coexist in the
primary network since part of the PBSs become severely
damaged during disasters. Partial cellular coverage will
be guaranteed for a certain number of PUs.

• In the aerial sensing layer, a large number of rotary-wing
UAVs equipped with onboard sensors, cameras, GPS
devices, and radio transceiver modules are released and
dispatched over the disaster-affected area to participate in
the missions of disaster sensing. The large-scale deploy-
ment of UAVs forms a swarm of UAVs that communicate
with each other while in flight for self-organization and
collaboration in an airborne flying ad hoc manner. Each
UAV is able to transmit the sensing data with its neigh-
boring UAVs located within its communication range.

• In the aerial access layer, a quasi-stationary HAP is de-
ployed as a standalone infrastructure for disaster informa-
tion fusion. The HAP is capable of carrying communica-
tion payloads and operating at stratospheric altitude above
the disaster area. To enable efficient disaster response,
the HAP is connected to an emergency communications
response vehicle (ECRV) located in a remote ground area
via a feeder link. The HAP assumes the role of a network
gateway, through which the sensing data are gathered
from the UAVs via uplink, and where from the ECRV
extracts the sensing data from the UAV swarm.

In particular, we consider the integration of CR technology
with the UAV swarm to implement a CU-SWARM in the aerial
sensing layer for emergency communications. In this way, the
overall spectrum usage can be enhanced by allowing each UAV
to coexist with the PUs over the same RB. For enabling the
cognitive capability, the radio transceiver of each UAV can be
tuned to any licensed sub-channel of the RB. To accomplish
the disaster information fusion at the aerial access layer, we
have to take into account the following two cases:

• Single-hop case: From the HAP’s point of view, by
integrating with multiple antennas, it can directly collect
the sensing data transmitted from the UAVs located inside
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Fig. 2. The synchronized time-slotted frame structure.

the HAP coverage area via single hop.
• Multi-hop case: For the UAVs located outside the HAP

coverage area, the multi-hop routing is required for them
to employ other immediate UAVs as the relays to forward
the sensing data in a hop-by-hop manner, until these data
reach the UAVs located inside the HAP coverage area.

Having this in mind, we in this paper focus on the prob-
lem of multi-hop routing in CU-SWARM for identifying the
optimal next-hop UAV as the relay to forward the sensing
data. Under such a setup, we concentrate on an underlay CU-
SWARM coexisting with the ground cellular primary network
sharing the authorized orthogonal sub-channels over the same
RB simultaneously. With the underlay paradigm, the PUs have
the full privilege to access their licensed sub-channels at any
time, while the UAVs are allowed to opportunistically utilize
idle sub-channels unoccupied by the PUs.

IV. SYSTEM MODEL

For illustration convenience, we use the synchronized time-
slotted frame structure to describe the coexistence of the CU-
SWARM and cellular primary network, as shown in Fig. 2. The
CU-SWARM operates periodically within the cognitive frame
of duration T . Each cognitive frame consists of the disaster
sensing phase with duration τ and the disaster information
fusion phase with duration T−τ . In the disaster sensing phase,
the UAVs are dispatched to perform the disaster sensing over
the disaster area of interest. For ease of exposition, the duration
τ of disaster sensing phase is further discretized into K equally
spaced time slots with length δl = τ

K . Note that K is chosen
to be sufficiently large, which makes δl so small that the
UAV’s location can be considered as approximately unchanged
within each time slot. After the disaster sensing phase, each
UAV performs the spectrum sensing (SS), and then selects
the optimal route and forwards the sensing data to the HAP
in the disaster information fusion phase. Thereby, the disaster
information fusion phase is divided into two subphases: the
SS subphase with duration τs, and the routing decision and
forwarding subphase with duration T − τ − τs.

In this section, we first introduce the primary network model
in Subsection IV-A, and then discuss the CU-SWARM network
model in IV-B.

A. Primary Network Model

For the primary network, the whole RB is divided into C
licensed sub-channels, denoted by a set C = {1, 2, · · · , C},
each having an equally-sized bandwidth of BP . During each
primary frame, the licensed sub-channel is either occupied
by a PU or unoccupied. From the UAV’s point of view, the

licensed sub-channel is alternatively switching between the
ON (busy) state and the OFF (idle) state. The ON state means
the sub-channel is being occupied by the PU, whereas the OFF
state indicates the PU is absent and the sub-channel can be
freely occupied by UAV. We thus model the PU behavior over
sub-channel c as an independent and identically distributed
alternating ON-OFF random process within each primary
frame. The duration of the ON state and the OFF state on
sub-channel c is statistically independent of each other, and is
denoted by two random variables T cON and T cOFF, respectively,
for c ∈ C. As in [35], T cON and T cOFF generally follow an
exponential distribution with a mean of E [T cON] = 1

λc1
and

E [T cOFF] = 1
λc0

, respectively, and thereby have the probability
density functions expressed as follows

T cON ∼ f cON (ς) = λc1e
−λc1ς , ς ∈ [0, T ] , (1)

T cOFF ∼ f cOFF (ς) = λc0e
−λc0ς , ς ∈ [0, T ] . (2)

Note that distribution parameters λc0 and λc1 can be effectively
estimated by a maximum likelihood estimator [36]. For con-
venience, let us define a binary random variable as follows to
indicate whether sub-channel c is being occupied by the PU
(ON state) or not (OFF state) at time ς , for ς ∈ [0, T ], i.e.,

Sc (ς) =

{
1, if sub-channel c is busy at time ς,
0, if sub-channel c is idle at time ς.

(3)

Thereby, the prior probabilities of sub-channel c being idle
or occupied by the PU at time ς can be respectively given by

Pr {Sc (ς) = 0} =
λc1

λc0 + λc1
, (4)

Pr {Sc (ς) = 1} =
λc0

λc0 + λc1
. (5)

We then easily have Pr {Sc (ς) = 0}+ Pr {Sc (ς) = 1} = 1.

B. CU-SWARM Network Model

1) Mobility Model: We consider the underlay CU-SWARM
consisting of N UAVs, denoted by a set N = {1, 2, · · · , N},
to undertake the disaster sensing missions in the aerial sensing
layer. Without loss of generality, a 3D Cartesian coordinate
system is considered. During the disaster sensing phase, each
UAV is assumed to fly a random trajectory within a 2D
rectangular area Υ (Ll,Lw) at a fixed altitude Hu above the
ground, following the GM mobility model2 [37], [38]. Here, Ll
and Lw denote the length and the width of the 2D rectangular
area. The reason for using the GM mobility model is that the
UAV’s trajectory as for disaster responders is generally smooth
and without sudden stops and sharp turns, and the flying speed
and direction at the current time is always highly correlated to

2Note that in general, the UAV can fully take advantage of the flexible
3D mobility via trajectory design [4], [8], [9] or location planning [22], [23]
for improving the system performance. In this work, we focus on a random
trajectory for the UAV during disaster sensing phase, by setting up a proper
altitude for terrain or building avoidance. Particularly, the UAV’s utility as
shown later obtained from selecting the potential next-hop UAV depends on
both the residual energy of UAV and the achievable rate between UAV pair.
Thus, the routing decision taken by the agent is mainly associated with the
distance between UAV pair at time slot K. Therefore, the trajectory design
or location planning for the UAV will not affect the representation of reward
function in our intelligent routing framework via Q-learning.
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the speed and direction at the previous time [38]. In practice, it
can be used for random search on a specified target area, which
is better suited for UAV disaster sensing in disaster-affected
areas. Note that the GM mobility model can be designed to
adapt to different levels of randomness for UAV via an adopted
tuning parameter. We set the fixed altitude Hu for each UAV
due to the minimum altitude requirement for terrain or building
avoidance without frequent aircraft ascending and descending
over a terrestrial disaster scenario.

Through the discretization of disaster sensing phase with du-
ration τ , the trajectory of UAV n at time ς in the 3D coordinate
system can be approximated by a K-length sequence com-
posed of K discrete points within Υ (Ll,Lw), i.e., qn (ς) ≈
{(qn [k] , Hu)

τ}Kk=1, where qn [k] = (xn [k] , yn [k]) ∈ R2×1

refers to the horizontal location of UAV n at time slot k, for
n ∈ N and ς ∈ [0, τ ]. We assume that the horizontal location
qn [K] = (xn [K] , yn [K]) of UAV n will be kept unchanged
at time slot K, which continues for the whole duration of the
disaster information fusion phase with duration T − τ . With
the GM mobility model, the flying speed vn [k] and direction
ϕn [k] of UAV n at time slot k are calculated based on the
flying speed vn [k − 1] and direction ϕn [k − 1] at time slot
k − 1 using the following equations

vn [k] = βvn [k − 1] + (1− β) v +
√

1− β2Gv [k − 1] , (6)

ϕn [k] = βϕn [k − 1]+(1− β)ϕ+
√

1− β2Gϕ [k − 1] , (7)

where β ∈ [0, 1] is a tuning parameter used to vary the
degrees of randomness, v and ϕ are the mean values of flying
speed and direction for UAV, respectively, when k → ∞,
and Gv [k − 1] and Gϕ [k − 1] are two random variables that
follow the independent and unrelated Gaussian distributions.
Given the flying speed and direction of UAV n in (6) and (7),
the horizontal location qn [k] of UAV n at time slot k within
Υ (Ll,Lw) can be determined by

xn [k] = xn [k − 1] + vn [k − 1] cosϕn [k − 1] , (8)

yn [k] = yn [k − 1] + vn [k − 1] sinϕn [k − 1] . (9)

2) Spectrum Sensing Model: To identify the occupation
status of the licensed sub-channels for PUs during the disaster
information fusion phase, each UAV performs the SS via the
energy detection policy [39]. This can be modeled as a binary
hypothesis testing problem, which distinguishes between two
hypotheses HIn,c and HBn,c for UAV n corresponding to the
idle and busy states of the PU on sub-channel c at time ς
respectively, for n ∈ N and ς ∈ [τ, τ + τs], i.e.,{

HIn,c : Sc (ς) = 0 (idle),
HBn,c : Sc (ς) = 1 (busy).

(10)

The performance of SS is described by two metrics, namely,
the detection probability and the false alarm probability [40].
Note that a higher detection probability brings about better
protection to UAVs, whereas a lower false alarm probability
results in efficient utilization of sub-channels. Denote ξn,c
as the decision threshold for UAV n to decide whether sub-
channel c is occupied by the PU. For simplicity, we set the
detection threshold ξn,c for sub-channel c to be the same for

TABLE I
FOUR DIFFERENT CASES OF IMPERFECT SS.

Case Actual state Sensing result Probability

1 HI
n,c

(Idle)
H̃I

n,c

(Vacant) ρ
(1)
n,c=Pr

{
HI

n,c

∣∣∣H̃I
n,c

}
2 HI

n,c

(Idle)
H̃B

n,c

(Occupied) ρ
(2)
n,c=Pr

{
HI

n,c

∣∣∣H̃B
n,c

}
3 HB

n,c

(Busy)
H̃I

n,c

(Vacant) ρ
(3)
n,c=Pr

{
HB

n,c

∣∣∣H̃I
n,c

}
4 HB

n,c

(Busy)
H̃B

n,c

(Occupied) ρ
(4)
n,c=Pr

{
HB

n,c

∣∣∣H̃B
n,c

}
all the UAVs during the SS subphase. Then, the detection
probability and false alarm probability of UAV n for sub-
channel c can be respectively obtained as

ρDn,c = Q

(
ξn,c − 2ϑc (Γn,c + 1)√

4ϑc (2Γn,c + 1)

)
, (11)

ρFn,c = Q
(
ξn,c − 2ϑc√

4ϑc

)
, (12)

where Γn,c is the received SNR of the primary signal at UAV
n on sub-channel c, ϑc is the bandwidth-time product for sub-
channel c, and Q (x) is the cumulative distribution function of
the standard Gaussian distribution, which can be defined by
Q (x) = 1√

2π

∫ +∞
x

e−
y2

2 dy.
Due to the varying ground-to-air channel conditions and

the physical hardware impairments [41], the UAVs cannot
completely ensure the perfect SS. Imperfect SS should be
fully considered. Particularly, two errors of SS are inevitable,
namely, the false alarm and miss detection. The false alarm
indicates sub-channel c is detected as occupied by the PU but
it is actually idle, while the miss detection means sub-channel
c is detected as vacant when it is truly busy. Combining
the relationship between actual state and sensing result in
imperfect sensing, we thus focus on four different cases, which
are listed in Table I. For Case 1 and Case 4, the UAV makes
the correct decision. Besides, Case 2 is a false alarm, and Case
3 is a miss-detection. We denote H̃Bn,c as the sensing result that
sub-channel c is occupied by the PU for UAV n, and denote
H̃In,c as the sensing result that sub-channel c is vacant for UAV
n. For clarity, let ρc be the prior probability of sub-channel c
being idle at time ς , i.e., ρc , Pr {Sc (ς) = 0} =

λc0
λc0+λ

c
1

. With
the Bayes’ rule, the probabilities of Cases 1, 2, 3, and 4 for
UAV n on sub-channel c can be written by (13), (14), (15),
and (16), respectively, shown at the top of the next page.

Given the probabilities of Cases 1, 2, 3, and 4 as listed in
Table I, it can be easy to verify that only Case 1 ensures the
normal access to the sub-channel by the UAV for forwarding
the sensing data. Note that in Case 3 of miss-detection, the
UAV can also transmit the sensing data to the next-hop UAV.
However, the transmitted sensing data will be lost due to the
collision with the PU transmission. Different from [42], that
combines all of four different cases to represent the throughput
of secondary transmission, we in this work focus on the actual
achievable rate of the UAV, i.e., the successfully transmitted
bits, under the imperfect SS. In this case, the number of actual
transmitted bits will be zero, and thus, we ignore Case 3 of
miss-detection during the disaster information fusion phase.
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ρ(1)n,c=Pr
{
HIn,c

∣∣∣H̃In,c}=
Pr
{
HIn,c

}
Pr
{
H̃In,c

∣∣HIn,c}
Pr
{
HIn,c

}
Pr
{
H̃In,c

∣∣HIn,c}+Pr
{
HBn,c

}
Pr
{
H̃In,c

∣∣HBn,c}=
ρc
(
1−ρFn,c

)
ρc
(
1−ρFn,c

)
+(1−ρc)

(
1−ρDn,c

) , (13)

ρ(2)n,c=Pr
{
HIn,c

∣∣∣H̃Bn,c}=
Pr
{
HIn,c

}
Pr
{
H̃Bn,c

∣∣HIn,c}
Pr
{
HIn,c

}
Pr
{
H̃Bn,c

∣∣HIn,c}+Pr
{
HBn,c

}
Pr
{
H̃Bn,c

∣∣HBn,c}=
ρcρ

F
n,c

ρcρFn,c+(1− ρc) ρDn,c
, (14)

ρ(3)n,c=Pr
{
HBn,c

∣∣∣H̃In,c}=
Pr
{
HBn,c

}
Pr
{
H̃In,c

∣∣HBn,c}
Pr
{
HBn,c

}
Pr
{
H̃In,c

∣∣HBn,c}+Pr
{
HIn,c

}
Pr
{
H̃In,c

∣∣HIn,c}=
(1−ρc)

(
1−ρDn,c

)
(1−ρc)

(
1−ρDn,c

)
+ρc

(
1−ρFn,c

) , (15)

ρ(4)n,c=Pr
{
HBn,c

∣∣∣H̃Bn,c}=
Pr
{
HBn,c

}
Pr
{
H̃Bn,c

∣∣HBn,c}
Pr
{
HBn,c

}
Pr
{
H̃Bn,c

∣∣HBn,c}+ Pr
{
HIn,c

}
Pr
{
H̃Bn,c

∣∣HIn,c}=
(1− ρc) ρDn,c

(1− ρc) ρDn,c + ρcρFn,c
. (16)

3) Transmission Model: To enable the sensing data for-
warding in the disaster information fusion phase, the UAV and
its next-hop UAV set up the air-to-air (A2A) channel between
them by a short-range LoS link. For practical consideration, we
incorporate both path loss exponent and shadow fading into the
A2A channel model for low-altitude UAV swarm application.
Thus, we utilize the extension of the classical log-distance
path loss model as in [43] to describe the propagation path
loss of A2A channel between the UAV pair in CU-SWARM.
Specifically, the path loss (in dB) of A2A channel between
UAV n and its next-hop UAV j on sub-channel c at time slot
K, for n, j ∈ N and n 6= j, can be given as

Lcn,j [K] = Lc (d0)+10µ log10

(
dn,j [K]

d0

)
+Xc

σ+Xc
A, (17)

where Lc (d0) is the path loss of sub-channel c at the reference
distance of d0 = 1 m, µ ≥ 2 is the path loss exponent, dn,j [K]
is the distance between UAV n and its next-hop UAV j at
time slot K, Xc

σ is the zero-mean Gaussian distributed random
variable with standard deviation σ used to describe the shadow
fading of sub-channel c, and Xc

A is the additional fading of
sub-channel c caused by increasing altitude of the UAV [43].

Then, the channel power gain between UAV n and its next-
hop UAV j on sub-channel c at time slot K is modeled by

gcn,j [K] =

(
10

Lcn,j [K]

10

)−1
. (18)

Combining with the imperfect SS, the achievable rate from
UAV n to its next-hop UAV j on sub-channel c at time slot
K is obtained as

Rcn,j = BP log2

(
1 +

pug
c
n,j [K]

σ2
j

)
ρ(1)n,c, (19)

where pu is the transmit power of the UAV for forwarding
the sensing data, and σ2

j is the noise power spectral density at
next-hop UAV j.

4) Energy Consumption Model: We focus on the energy
consumption of the UAV in a rotary-wing configuration before
the routing decision and forwarding subphase, i.e., the energy
consumed in both the disaster sensing phase with duration
τ and the SS subphase with duration τs during the disaster
information fusion phase, as indicated in Fig. 2.

As for the disaster sensing phase, determined by the GM
mobility model, we consider that each UAV is capable of
hovering at the time-dependent horizontal location for disaster
sensing within one time slot, and flying to the next horizontal
location within the successive time slot. Therefore, the to-
tal energy consumption of UAV during the disaster sensing
phase includes three major components, namely, the energy
consumed in sensing, hovering, and flying, respectively. The
sensing related energy consumption of UAV is aimed at the
energy consumed at the operation of disaster sensing, while
hovering at the horizontal location. For simplicity, we assume
that the sensing related power for UAV is regarded as a
constant within each time slot, but may continuously vary over
the different UAVs. We thus let PSn [k] denote the disaster
sensing related power of UAV n at time slot k.

On the other hand, the required power of hovering for
each UAV primarily includes the induced power and profile
power [44]. For the UAV in hovering status, the induced power
produces thrust by propelling air downward, while the profile
power overcomes the rotational drag encountered by rotating
propeller blades. Thus, the hovering power consumption of
UAV n at time slot k can be expressed by

PHn [k] = (1 +$)
W

3
2
n√

2%aAn︸ ︷︷ ︸
,P In, induced power

+
Mnκcd%aR

4
b

8
Ω3︸ ︷︷ ︸

,PPn , profile power

, (20)

where $ is the incremental correction factor to induced power,
Wn is the weight of UAV n, %a is the density of air, An is the
rotor disc area of UAV n, Mn is the total number of blades of
UAV n, κ is the blade chord width, cd is the drag coefficient
of the blade, Rb is the radius of rotor blade, and Ω is the
angular speed of rotor blade.

Besides, the flying energy consumption of UAV is mainly
based on its propulsion energy consumption to maintain the
airborne and to support the flying speed. As in [44], the
propulsion power consumption of UAV is decomposed into
three components, i.e., the induced power, profile power, and
parasite power. Note that the parasite power resists UAV’s
body drag when there exists relative translational motion
between the aircraft and wind. To be specific, the required
power of UAV n for flying at time slot k can be calculated as



8

PFn [k] =P In

√√√√√1 +
v4n [k]

4v40
− v2n [k]

2v20

+ PPn

(
1 +

3v2n [k]

V 2
t

)
+
f0%ar0Anv

3
n [k]

2
,

(21)

where v0 is the mean rotor induced velocity in hovering, Vt is
the tip speed of the rotor blade, f0 is the fuselage drag ratio,
and r0 is the ratio of blade area to the disc area.

So far, we have obtained the required power for sensing,
hovering, and flying of rotary-wing UAV during the disaster
sensing phase. To derive the total energy consumption, we then
turn to derive the required time to sense, hover, and fly for the
UAV within the time slot, respectively. Given the horizontal
location qn [k] of UAV n as in (8) and (9), the flying distance
with respect to UAV n from previous time slot k−1 to current
time slot k within Υ (Ll,Lw) can be specified by

∆dn [k]=

√
(xn [k]−xn [k−1])

2
+(yn [k]−yn [k−1])

2
. (22)

Then, the required time to sense, hover, and fly for UAV n
at time slot k can be expressed as
TSn [k]=THn [k]=

τ

K
−∆dn[k]

vn[k]
, for sensing or hovering,

TFn [k]=
∆dn[k]

vn[k]
, for flying.

(23)

Thereby, the total energy consumption of UAV n during the
disaster sensing phase is given by

EDSn =

K∑
k=1

TSn [k]PSn [k]+

K∑
k=1

THn [k]PHn [k]+

K−1∑
k=1

TFn [k]PFn [k]

=

K∑
k=1

(
τ

K
−∆dn[k]

vn[k]

)(
PSn [k] + PHn [k]

)
+

K−1∑
k=1

∆dn[k]

vn[k]
PFn [k] .

(24)
For the SS subphase, the total energy consumption of UAV

includes two major parts, namely, the energy consumed in
SS and hovering, respectively. Let PSPn be the SS associated
power of UAV n during the SS subphase with duration τs.
Recall that the horizontal location qn [K] of UAV n will
be kept unchanged at time slot K, which continues for the
whole duration of the disaster information fusion phase. Then,
the hovering power consumption of UAV n during the SS
subphase is equal to the power consumed at time slot K for
hovering. Therefore, the total energy consumption of UAV n
during the SS subphase is denoted as

ESSn =
(
PSPn + PHn [K]

)
τs. (25)

We denote the initial energy of UAV n by EIn, which is
determined by the nature of UAV’s energy storage (e.g., on-
board lithium-ion polymer battery) and is further assumed to
be equal for each UAV. The residual energy of UAV n during
the routing decision and forwarding subphase can be given by

En = EIn − EDSn − ESSn . (26)

V. Q-LEARNING AIDED INTELLIGENT ROUTING SCHEME

In this section, we will present the Q-learning framework
of intelligent routing with maximum utility for CU-SWARM
in Subsection V-A, based on which we particularly design the
reward function by combining the routing metric and candidate
UAV selection optimization in Subsection V-B. Then, we
propose an overall iterative algorithm to achieve the training
procedure through the analytical efforts in Subsection V-C,
and also analyze the complexity of the proposed algorithm in
Subsection V-D.

A. Q-Learning Framework

Under the above setup, we pursue an intelligent routing
design aided by Q-learning for improving the system’s perfor-
mance of utility maximization in CU-SWARM. The proposed
Q-learning framework of intelligent routing considers each
UAV as a learning agent in RL. Each agent maintains its
own Q-table, while the other UAVs, HAP, PUs, and licensed
sub-channels over the RB constitute the external environment
for the agent. Particularly, the learning process for the agent
by interacting with the environment is modeled as a Markov
decision process (MDP) with discrete time-steps, which is
formulated by 4-tuple (S,A,R, γ), where S is the state space,
A is the action space, R : S × A → R is the finite set of
rewards that contains all the immediate rewards when moving
from one state to next state resulting from the actions taken
by the agents, and γ ∈ [0, 1] is the discount factor, which
determines the effect of future rewards on the current action.
Note that a higher discount factor generally contributes to
more accumulated rewards. The state, action, and reward of
the Q-learning framework are defined as follows.
• State: The state observed by an agent is determined by

a combination of the horizontal location and residual en-
ergy of a UAV during the routing decision and forwarding
subphase. Thus, we define the state of UAV n at time-step
t, for n ∈ N , as follows

s(t)n = (qn [K] , En)
(t)
. (27)

The state space is given by the discrete set of all possible
states at time-step t, i.e., S=

{
s
(t)
1 , s

(t)
2 ,· · ·, s(t)n ,· · ·, s(t)N

}
.

• Action: The action taken by the agent at each epoch
consists of two components, namely, obtaining an idle
sub-channel and choosing a next-hop UAV. Thus, each
agent needs to consider at least the following two aspects
before taking a new action: i) to choose the sub-channel
by identifying whether it is being occupied by the PU or
not, and ii) to select the next-hop UAV as the relay to for-
ward the sensing data. Thus, the total number of actions is
given by N×C. We define the action performed in time-
step t as a(t)` , for ` = 1, 2, · · · , N ×C. The action space
is denoted by the discrete set of all possible actions at
time-step t, i.e., A =

{
a
(t)
1 , a

(t)
2 , · · · , a(t)` , · · · , a(t)N×C

}
.

• Reward: The immediate reward is the utility achieved
by the agent in response to the state transition from
current state s

(t)
n ∈ S to next state s

(t+1)
n′ ∈ S by

executing an action a
(t)
` ∈ A, for n 6= n′ ∈ N . With

this transition, the agent receives an immediate reward
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of r(t+1) , r
(
s(t), a(t)

)
∈ R that describes its benefit

from taking action a(t) ∈ A at state s(t) ∈ S . Note
that r

(
s(t), a(t)

)
is the reward function that is designed

based on the adopted routing metric and the available sub-
channel we will elaborate on in the following subsection.

• Action selection algorithm: The ε-greedy policy is
applied in the learning process to enable the agent to
explore and exploit available action for current state.
When the agent explores, it will select an action at
random, targeting a higher long-term reward. And when
exploiting, it selects the greedy action to gain the most
rewards immediately, even if it is a sub-optimal behavior.
The aim of the ε-greedy policy is thus to seek a trade-
off between exploration and exploitation for the agent by
performing the exploration with probability ε ∈ (0, 1),
referred to as the exploration rate. More specifically,
conditioned on the current state being s(t) in time-step t,
the agent chooses action a∗(t) ∈ A that maximizes the Q-
value with probability 1−ε for exploitation, and a random
action a′(t) ∈ A with probability ε for exploration, i.e.,

a(t)=

{
random action a′(t), with probability ε,
arg max

a∗(t)
Q
(
s(t), a(t)

)
, with probability 1−ε, (28)

where Q
(
s(t), a(t)

)
is the Q-value associate with action

a(t) taken by the agent under state s(t) in time-step t.

B. Reward Function Design
1) Design of Routing Metric: Since different UAVs may

have different energy states and different rate requirements for
forwarding sensing data in CU-SWARM, both the achievable
rate and residual energy are essential for UAVs. The routing
metric for identifying the potential next-hop UAV should be
carefully designed by jointly capturing the achievable rate
from current UAV to its next-hop UAV and the residual energy
of the potential next-hop UAV. Thus, the utility received from
selecting the potential next-hop UAV for current UAV contains
two parts: one is proportional to the achievable rate of UAV
pair, and the other is earned by considering the residual energy
of the potential next-hop UAV. Hence, combined with (19) and
(26), the utility of UAV n obtained from selecting the potential
next-hop UAV j can be defined as

Un
(
Rcn,j , Ej

)
= wRnR

c
n,j + wEnEj , (29)

where wRn and wEn are adjustable weighting factors announced
from UAV n, indicating its desire to improve the utility by
well balancing the residual energy of next-hop UAV j and the
achievable rate from UAV n to next-hop UAV j on sub-channel
c, and wRn + wEn = 1.

We then readily define the routing metric as UAV n chooses
UAV j∗ serving as the optimal next-hop UAV that maximizes
the utility Un

(
Rcn,j , Ej

)
given in (29), i.e.,

j∗ = arg max
j∈N , j 6=n

Un
(
Rcn,j , Ej

)
. (30)

2) Candidate UAV Selection Strategy: Due to the large-
scale deployment of UAVs in the aerial sensing layer, it is
challenging to efficiently identify the next-hop UAV j∗ for
UAV n using (30). In addition, the massive deployment of
UAVs enlarges the scale of action selection taken by the

agent, and consequently, the convergence speed of Q-learning
algorithm will become much slower. Therefore, it is necessary
to optimize the action selection taken by the agent for reducing
the complexity of the next-hop UAV selection. With this in
mind, we present a paradigm of candidate UAV set to further
narrow the search scope for the next-hop UAVs. We denote
the maximum transmission range of UAV n by Ru, which is
assumed to be equal for each UAV. Then, the UAVs distributed
within Ru of UAV n over Υ (Ll,Lw) can be regarded as the
neighboring UAVs of UAV n, as illustrated in Fig. 3(a). To
facilitate the following analysis, let Nn [K] correspond to the
set of neighboring UAVs of UAV n. The key notations used
in the candidate UAV selection strategy are listed in Table II.

We denote the horizontal location of the HAP mapped onto
Υ (Ll,Lw) by qH=(x0, y0), which is also referred to as the
HAP’s projection point, as depicted in Fig. 3(b). For brevity,
we use FH [K] to denote the set of the UAVs located inside
the HAP coverage area3. Therefore, the HAP coverage area
can be described as a circular area ΨH (qH ,FH [K] , RH)

+

of radius RH centered at the projection point qH of the HAP
over the 2D rectangular area Υ (Ll,Lw), as shown in Fig. 3(b).

Accordingly, we have the potential to devise a circular sector
Jn (qn [K] , Ru, ψn)

+ with a radius of length Ru and a central
angle (in rad) of ψn for UAV n within Υ (Ll,Lw). As can
be seen from Fig. 3(a), the circular sector Jn (·)+ can also
be viewed as a pie-shaped part of a circle enclosed by two
radii and a minor arc between them. Three constraints are
considered for designing the circular sector Jn (·)+:
• Location constraint: The center of the circle associated

with the circular sector is the horizontal location of UAV
n, i.e., qn [K] = (xn [K] , yn [K]).

• Arc constraint: The minor arc of the circular sector is
divided equally by the connection line between qn [K]
of UAV n and qH of the HAP.

• Direction constraint: The central angle of the circular
sector is always pointing towards qH of the HAP.

With that in mind, we then consider neighboring UAV j of
UAV n within Υ (Ll,Lw), for j ∈ Nn [K]. The distance from
UAV n to UAV j, the distance from UAV n to the HAP’s
projection point, and the distance from UAV j to the HAP’s
projection point, can be respectively expressed as

dn,j [K]=

√
(xn [K]− xj [K])

2
+ (yn [K]− yj [K])

2
, (31)

dn,H [K] =

√
(xn [K]− x0)

2
+ (yn [K]− y0)

2
, (32)

dj,H [K] =

√
(xj [K]− x0)

2
+ (yj [K]− y0)

2
. (33)

The angle (in rad) of the triangle formed by UAV n, UAV
j, and the projection point qH of the HAP is obtained by

ψn→j = arccos
d2n,j [K] + d2n,H [K]− d2j,H [K]

2dn,j [K] dn,H [K]
. (34)

3Note that the HAP can create FH [K] via the periodic exchange of “hello”
message with the UAVs located inside the HAP coverage area, while the
associated UAVs can also obtain FH [K] through the periodic exchange of
“hello” message with the HAP [45]. In practice, the “hello” message contains
the coverage radius and location information of the HAP as well as the
velocity, timestamp, and position information of UAVs. Remark that a detailed
discussion on the control message format is beyond the scope of this work.
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Fig. 3. An illustration of the selection strategy for candidate UAVs during the disaster information fusion phase: (a) 2D plane view, and (b) 3D view.

TABLE II
LIST OF KEY NOTATIONS USED IN CANDIDATE UAV SELECTION STRATEGY.

Notation Description
Υ (Ll,Lw) 2D rectangular area with a length of Ll and a width of Lw

ΨH (qH ,FH [K] , RH)+ HAP coverage area with a radius of RH centered at HAP projection point qH

Jn (qn [K] , Ru, ψn)+ Circular sector with a radius of length Ru and a central angle of ψn for UAV n
Nn [K] Set of the neighboring UAVs of UAV n at time slot K
FH [K] Set of the UAVs located inside the HAP coverage area at time slot K
Gn [K] Set of the candidate UAVs of UAV n at time slot K
qn [K] = (xn [K] , yn [K]) Horizontal location of UAV n at time slot K
qH =(x0, y0) Horizontal location of HAP
ψn→j Angle of the triangle formed by UAV n, UAV j, and the HAP projection point qH

To reduce the complexity for choosing the next-hop UAVs,
and to guarantee the efficiency for forwarding the sensing data,
only the candidate UAVs inside the circular sector Jn (·)+ (see
Fig. 3(a)) have the opportunity to serve as the potential next-
hop UAVs. With this insight, we can then readily establish the
following constraints that must be simultaneously satisfied for
identifying the candidate UAVs with respect to UAV n, i.e.,
• Central angle constraint:

ψn→j ≤ 0.5ψn. (35)

• SNR constraint:
pug

c
n,j [K] /σ2

j ≥ Γmin, (36)

where Γmin is the acceptable SNR for UAV.
It can be noted that the central angle constraint (35) is designed
to narrow the scale for searching the next-hop UAVs from the
physical location perspective, while the SNR constraint (36) is
considered based on the transmission quality of A2A channel
for the sensing data forwarding.

Although the circular sector Jn (·)+ and the constraints in
(35) and (36) give a solution for the selection of candidate
UAVs for each UAV, it still remains to develop an algorithm
to indicate the execution structure for the equations and con-
straints. Let Gn [K] be the set of the candidate UAVs of UAV
n. We then propose Algorithm 1, which gives the procedures
of the implementation. Algorithm 1 can be implemented by
each UAV via only local information and limited interaction
with other neighboring UAVs4, and consequently, Algorithm
1 is distributed and the practicability is guaranteed.

4Note that in Algorithm 1, the horizontal location information, e.g., qn [K],
qj [K], and qH , can be obtained at each UAV through an onboard GPS
device. In addition, the neighbor table (e.g., neighboring UAV set Nn [K]) for
each UAV can be created by periodic exchange of “hello” message containing
the velocity, timestamp, and position information of neighboring UAVs [45].

Algorithm 1 Distributed Candidate UAV Selection Algorithm
Input: Ru, Γmin, Nn [K], qn [K], qj [K], qH , ψn, ∀n, j.
Output: G1 [K], G2 [K], · · · , GN [K].

1: for n = 1 to N do
2: Set Gn [K] = ∅;
3: Calculate dn,H [K] according to (32);
4: for j = 1 to |Nn [K]| do
5: Calculate dn,j [K] according to (31);
6: Calculate dj,H [K] according to (33);
7: Calculate ψn→j according to (34);
8: if ψn→j ≤ 0.5ψn then
9: if pugcn,j [K] /σ2

j ≥ Γmin then
10: Set Gn [K] = Gn [K] ∪ {j};
11: end if
12: end if
13: end for
14: Return Gn [K];
15: end for

With the output of Algorithm 1, the action space of each
agent at time-step t can be interpreted as

A =
{
a
(t)
1 , a

(t)
2 , · · · , a(t)` , · · · , a(t)|Gn[K]|×C

}
, (37)

where |·| is the cardinality of a set (or a space).
3) Reward Function Representation: The reward function

is formulated by the immediate utility of the agent in response
to the state transition from s

(t)
n to s

(t+1)
n′ by carrying out an

action a
(t)
` , for n 6= n′ ∈ N . The design principle of reward

function are shown as follows:
• Single-hop case: Since UAV j∗ can directly transmit the

sensing data to the HAP via single hop, we calculate the
reward function obtained by UAV n through setting a
larger positive reward of RH ∈ R+, for j∗ ∈ FH [K],
RH � Un

(
Rcn,j′ , Ej′

)
, j′ ∈ Nn [K], and j∗ 6= j′.
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• Multi-hop case choosing candidate UAV: As the routing
metric is to maximize the utility Un

(
Rcn,j∗ , Ej∗

)
, we

represent the reward function as the instantaneous utility
received by UAV n via choosing UAV j∗ as the optimal
next-hop UAV from Gn [K], for j∗ ∈ Gn [K].

• Multi-hop case choosing non-candidate UAV: We set
the reward to be zero when UAV n chooses UAV j∗ as
the next-hop UAV that does not belong to the candidate
UAV set Gn [K], for j∗ ∈ Nn [K]− Gn [K].

• Overlapped sub-channel usage: The reward received by
UAV n would be a penalty value via setting a negative
reward of RP ∈ R− when UAV n chooses UAV j∗ as
the next-hop UAV via sub-channel c overlapping with the
same sub-channel c through which the previous-hop UAV
n′ chooses UAV n as the next-hop UAV, for j∗ ∈ FH [K]
or j∗ ∈ Gn [K] or j∗ ∈ Nn [K]− Gn [K].

To sum up, based on the above design principle, the reward
function can be specifically determined by

r(t+1) , r
(
s(t), a(t)

)

=


RH , j∗ ∈ FH [K] ,

wRnR
c
n,j∗+w

E
nEj∗ , j

∗ ∈ Gn [K] ,

0, j∗ ∈ Nn [K]−Gn [K] ,

RP , Overlapped sub-channel usage.

(38)

C. Proposed Algorithm

We summarize the training procedure as an overall iterative
algorithm for achieving the Q-learning aided intelligent rout-
ing. We use Emax and Tmax to denote the maximum number
of iterations and time-steps for training, respectively. Let Ξs(t)
be the set of relay UAVs of state s(t). We define a temporary
variable racc, which records the accumulated reward values
during the learning process. At the very beginning, all Q-
values in Q-table are initialized to zero, and the maximum
number of iterations and time-steps are respectively set to be
positive integers. Then, at each iteration ζ, the accumulated
rewards are also set as zero and an initial state is randomly
selected as source UAV in time-step t = 1. In time-step t, by
taking the current state, the agent obtains the candidate UAV
set to generate the action space in (37) using Algorithm 1,
and calculates the channel availability probability of the UAV
due to the imperfect SS according to (13). Conditioned on
the current state in this time-step, the action will be chosen
via the ε-greedy policy as discussed in (28). Subsequently,
based on the design principle of the reward function in (38)
by observing the next state, the accumulated rewards will be
updated, and the Q-value will be further updated depending
on the current state, the selected action and the next state. To
be precise, the Q-value at each state can be calculated through
the following iterative procedure

Q
(
s(t), a(t)

)
← Q

(
s(t), a(t)

)
+ α

{
r(t+1) + γmax

a∈A
Q
(
s(t+1), a

)
−Q

(
s(t), a(t)

)}
,

(39)

where α ∈ (0, 1] is the learning rate. Here, we are interested
in the mode of dynamic learning rate, which has a beneficial

effect on the rate of convergence for all Q-values in Q-table
by modifying the learning rate over time according to the
environment change, instead of keeping it fixed. As in [46],
the dynamic learning rate α can be obtained by

α = αmax

(
1− e−

(η−1)2

φ2

)
, (40)

where αmax is the maximum value of α, φ2 is the updating rate,
and η is the environment change parameter used to measure the
change rate of environment state. In practice, the environment
change parameter η can be specifically given as

η =
Q
(
s(t), a(t)

)
−max

a∈A
Q
(
s(t+1), a

)
r(t+1)

. (41)

Note that the learning rate in (40) can be dynamically adjusted
based on the feedback of the change of environment state, and
the convergence rate for Q-table can also change adaptively.
With this setup, the Q-table will be accordingly updated with
Q-value at each iteration. The training process continues till
the number of iterations reaches upper bound Emax, which
indicates the training process achieving routing selection with
maximum utility for each UAV. The detailed process of the
proposed algorithm is shown in Algorithm 2.

D. Complexity Analysis

We now analyze the complexity of Algorithm 2 in terms of
the space and the computational complexity as follows.

1) Space Complexity: For Algorithm 2, the space complex-
ity of the training process is given in Theorem 1.
Theorem 1. For each agent, the space complexity of Algo-
rithm 2 to keep track of the Q-table is O (|S| · |A|).

Proof: For Algorithm 2, the state space and action space
of each agent are respectively determined by |S| and |Gn [K]| ·
C (see the output of Algorithm 1). Then, each agent requires
at least a memory of |S| · |Gn [K]| · C to keep track of the
Q-table, and the maximum of which is |S| · |A|. Therefore,
the space complexity of Algorithm 2 in the worst case would
be O (|S| · |A|), which is proportional to the size of the state
space and action space for each agent.

Note that, for a larger size of state and action space, the
space complexity accordingly is higher. In practice, we tend to
reduce the space complexity by designing the candidate UAV
selection strategy as previously introduced to cut down the
actions taken by the agent. Therefore, the space complexity of
Algorithm 2 can be reduced, and the candidate UAV selection
optimization is implementable in practical scenarios.

2) Computational Complexity: In Algorithm 2, the com-
putationally most expensive part is mainly incurred from the
implementation of the selection of candidate UAVs for the
agent in Algorithm 1 (the inner loop), as well as the Q-learning
algorithm through the determination of each action by the ε-
greedy policy in (28) along with the update of the Q-value for
each agent (the main loop). The computational complexity of
Algorithm 2 is given in Theorem 2.
Theorem 2. Given the UAV n’s neighboring UAV set |Nn [K]|,
the computational complexity of Algorithm 2 for the training
process is O (Emax ·Tmax ·N · |Nn [K]|).

Proof: For the inner loop, in the step of obtaining Gn [K]
at each iteration, the determination process requires |Nn [K]|
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Algorithm 2 Q-Learning Aided Intelligent Routing Algorithm
Input: αmax, γ, ε, FH [K], Emax, Tmax, Ru, Γmin, Nn [K],

qn [K], qj [K], qH , ψn, ∀n, j.
Output: Q

(
s(t), a(t)

)
.

1: Initialize Q
(
s(t), a(t)

)
= 0, ∀s(t) ∈ S, a(t) ∈ A;

2: repeat
3: Initialize racc = 0;
4: Set t = 1, Ξs(t) = ∅;
5: Randomly select an initial state s(t)∈S as source UAV;
6: while t ≤ Tmax do
7: Observe current state s(t);
8: Obtain candidate UAV set Gs(t)[K] via Algorithm 1;
9: Calculate channel availability probability ρ

(1)

s(t),c
ac-

cording to (13);
10: Choose action a(t) ∈ A via ε-greedy policy in (28);
11: Observe next state s′(t) ∈ S;
12: if s′(t) ∈ FH [K] then
13: Calculate reward r(t+1) = RH ∈ R+; Break;
14: else if s′(t) ∈ Gs(t) [K] then
15: Calculate r(t+1) = wR

s(t)
Rc
s(t),s′(t)

+ wE
s(t)
Es′(t) ;

16: Set Ξs(t) = Ξs(t) ∪
{
s′(t)

}
;

17: else if UAV s(t) chooses UAV s′(t) via sub-channel
c through which previous-hop UAV s′ chooses UAV
s(t) then

18: Calculate reward r(t+1) = RP ∈ R−;
19: else
20: Calculate reward r(t+1) = 0;
21: end if
22: Update accumulated reward racc = racc + r(t+1);
23: Update Q-value Q

(
s(t), a(t)

)
according to (39);

24: Update learning rate α according to (40) and (41);
25: Update state s(t) ← s′(t);
26: Set t = t+ 1;
27: end while
28: Set ζ = ζ + 1;
29: until ζ < Emax

calculations at most. With the total number of iterations N for
all the UAVs, the computational complexity of the inner loop
is given by the order of O (N · |Nn [K]|). For the main loop,
the maximum number of iterations for training is specified by
Emax, and in each iteration, the maximum number of time-steps
is given as Tmax. In a worst-case scenario, at each iteration, the
update process of the Q-value and state for each agent entails
Tmax operations at most. Then, the computational complexity
of the main loop is determined by the order of O (Emax ·Tmax).
In summary, the total computational complexity of Algorithm
2 is O (Emax ·Tmax ·N · |Nn [K]|).

Note that the computational complexity of Algorithm 2 is
linear in the number of UAVs and the number of neighboring
UAVs for any UAV. We wish to remark that, Algorithm 2 is
suitable for practical applications of UAV swarm, since it has
an acceptable complexity in polynomial time.

VI. PERFORMANCE EVALUATION

In this section, we numerically evaluate the performance of
the proposed Q-learning framework of intelligent routing by
implementing simulations. For CU-SWARM, all the UAVs are
uniformly distributed in their initial horizontal locations within

TABLE III
SIMULATION PARAMETERS.

Parameter Description Value
$ Incremental correction factor 0.1
Wn UAV’s weight 20 kg·m/s2

An UAV’s rotor disc area 0.503 m2

Mn UAV’s total number of blades 4
κ Blade chord width 0.0157
cd Drag coefficient of the blade 0.012
Rb Radius of rotor blade 0.4 m
Ω Angular speed of rotor blade 300 rad/s
Vt Tip speed of the rotor blade 120 m/s
%a Density of air 1.225 kg/m3

v0 Mean rotor induced velocity 4.03 m/s
f0 Fuselage drag ratio 0.6
r0 Ratio of blade area to disc area 0.05

Υ (10 km, 8 km) at the fixed altitude Hu = 50 m. We set the
maximum transmission range of UAV to be Ru=300 m. The
HAP’s horizontal location mapped onto the 2D rectangular
area is set to qH = (0 m, 0 m), and the radius of the HAP
coverage area is set to RH = 500 m. For the time-slotted frame
structure, the duration of cognitive frame is given by T = 80 s,
of which the duration of the disaster sensing phase is set as
τ = 50 s. We set K= 50 equally spaced time slots to divide
the duration of the disaster sensing phase, and set the duration
of the SS subphase to be τs=5 ms. The whole RB is divided
into C = 600 licensed sub-channels, each having an equally-
sized bandwidth of BP = 10 MHz. The acceptable SNR for
UAV is set to Γmin=50 dB.

Regarding the GM mobility model, the tuning parameter of
UAV is given by β = 0.5, and the mean values of flying speed
and direction of UAV are set as v = 12 m/s and ϕ = 1

5π rad,
respectively. In our simulations, the detection probability ρDn,c
and false alarm probability ρFn,c of UAV, and the prior probabil-
ity ρc of sub-channel being idle are uniformly distributed over
[0.9, 0.95], [0.05, 0.1], and [0.5, 0.75], respectively. For the
transmission model, we set the default parameters as d0 = 1 m,
Lc (d0) = 46.42 dB, µ = 2, σ2

j = −46 dBm. As analyzed in
[43], the shadow fading of sub-channel is defined as the zero-
mean Gaussian distributed random variable Xc

σ = 1.9144 dB.
Adapted from [43], the additional fading for sub-channel due
to increasing altitude of UAV is calculated by

Xc
A = ~1 ·Hu + ~2, (42)

where ~1=−0.09393 and ~2=4.702 are adopted for simula-
tions [43].

Additionally, the weighting factors for the utility in (29)
are set to be wRn =wEn =0.5. As for the energy consumption
model, we set the initial energy of UAV as EIn=8800 Joule.
The disaster sensing related power of UAV at each time
slot is set to PSn [k] = 1 W, and the SS associated power
of UAV during the SS subphase is set to PSPn = 250 mW.
Other simulation parameters for UAV’s energy consumption
are summarized in Table III, unless otherwise specified, which
are set based on the results in [44].

To verify the performance of the proposed algorithm, we
consider four benchmarks listed as follows for comparison:

• Fixed learning rate (FLR): Different from the dynamic
learning rate adapted to the change of environment state,
we in this scheme resort to the fixed learning rate by
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Fig. 4. Convergence behavior of the proposed algorithm, when N = 900, pu = 900mW, and ψn = 1
3
π rad. (a) Proposed algorithm under different exploration

rates ε=0.05, ε=0.1, and ε=0.2, respectively. (b) Comparison between the proposed algorithm and the benchmarks of FLR and DLR with ε=0.05.

setting the step size fixed at each iteration [46], [47].
In the simulations, we assume the constant learning rate
α=0.1 which is fixed during the training process.

• Decaying learning rate (DLR): The decaying learning
rate starts with a relatively large learning rate and then
gradually decreases to a lower value with the iteration
process [46]. From this perspective, we adopt an initially
large learning rate α= 0.5 in the simulations and then
decay it to 0.05 after pre-defined number of iterations.

• Intelligence routing without candidate UAV selection
(IR-CUS): This scheme adopts the same training process
as presented in Algorithm 2 under the same Q-learning
framework of intelligent routing. The dynamic learning
rate in (40) is also used for updating Q-values during the
training process. At each time-step, this scheme does not
adopt the candidate UAV selection strategy to optimize
the action space of the agent by Algorithm 1.

• Cognitive radio shortest path routing (CR-SPR): This
scheme combines the traditional shortest-path metric and
the spectrum-aware policy jointly to choose the next-hop
UAV. It always chooses the potential next-hop UAV with
higher probability of the associated sub-channel being
idle (OFF state) via the energy detection technique, while
satisfying the shortest-distance constraint.

Throughout the simulations, unless otherwise specified, we
set the discount factor as γ = 0.9, and set the number of
iterations to be Emax = 2000, for both the proposed algorithm
and these four benchmarks. We obtained the final results by
averaging every five previous simulated points to avoid the
larger fluctuation of the curves.

A. Convergence Speed and Analysis

To investigate the convergence behavior of the proposed
algorithm, we start with illustrating the accumulated rewards
of CU-SWARM versus the number of iterations in Fig. 4(a)
and Fig. 4(b), respectively. In obtaining the convergence speed,
the number of UAVs is set to N =900, and meanwhile, the
transmit power and the central angle are set as pu=900 mW
and ψn= 1

3π rad, respectively.
Fig. 4(a) shows the convergence speed of the proposed

algorithm over the number of iterations under different ex-
ploration rates ε = 0.05, ε = 0.1, and ε = 0.2, respectively.

We observe that the accumulated rewards of CU-SWARM
for the proposed algorithm increase quickly in less than 200
iterations, and then gradually converge to the optimal values
for varying exploration rates, which ensures that the proposed
algorithm is practical. As can be also seen from Fig. 4(a), the
accumulated rewards of the proposed algorithm with smaller
exploration rate are obviously higher than the rewards with
bigger exploration rate. The reason is that as the exploration
rate decreases, the action can be chosen by the agent based on
the maximum Q-value with a higher probability. These results
provide a hint to choose a proper exploration rate for the
training process to further improve the accumulated rewards.

In Fig. 4(b), we further report the convergence behavior of
the proposed algorithm in terms of the accumulated rewards
of CU-SWARM against the benchmark schemes of FLR and
DLR with ε=0.05. It is clear that the accumulated rewards
for the proposed algorithm and these two benchmarks increase
consistently and converge rapidly within approximately 200
iterations, and then gradually reach the optimal values for
the remaining iterations of training. We also find that the
proposed algorithm outperforms two benchmarks in terms of
the accumulated rewards, and the gap between them continues
with the relatively fixed values. This is because the dynamic
learning rate adopted in the proposed algorithm can modify the
learning rate over time according to the change of external
environment, which makes the training process more stable
compared to the fixed and decaying learning rates in these
two benchmarks. Such observations bolster the importance of
choosing an appropriate mode of learning rate for the training
process to improve the accumulated rewards.

B. Performance Comparison and Analysis

The accumulated rewards of CU-SWARM are plotted
against varying number of UAVs, N , in Fig. 5, for the pro-
posed algorithm and four benchmarks, when pu = 900 mW,
ψn = 1

3π rad, and ε= 0.05. It can be seen that as N grows,
the accumulated rewards present a markedly increasing trend
for both the proposed algorithm and four benchmark schemes.
With respect to the proposed algorithm and the benchmarks
of FLR and DLR, an intuitive explanation for this trend is
interpreted as follows. With the increasing number of UAVs,
each UAV is more likely to have more action sets to choose,
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Fig. 5. Accumulated rewards versus number of UAVs N , when pu =
900mW, ψn = 1

3
π rad, and ε = 0.05.

and consequently, it has a greater chance to obtain the optimal
routing compared to the case of a relatively small number
of UAVs. This implies that more accumulated rewards can
be received by CU-SWARM. As for the IR-CUS scheme, it
can be explained that, although the optimized action space for
the agent cannot be guaranteed, the IR-CUS scheme still has
more opportunities to select the optimal actions, as N keeps
growing. While for the CR-SPR scheme, an increment of N
contributes to more chances to select the next-hop UAV with
higher probability of the associated sub-channel being idle,
thus resulting in more accumulated rewards.

From Fig. 5, we can also observe that the proposed al-
gorithm shows performance gains over the benchmarks of
FLR and DLR in terms of the accumulated rewards, under
Ru = 300 m. This is due to the advantage of our proposed
algorithm by adopting the dynamic learning rate, adapting to
the dynamically changing environment state in the training
process for enhancing the accumulated rewards. As can be
expected, under Ru=300 m, our proposed algorithm signifi-
cantly outperforms the benchmarks of IR-CUS and CR-SPR
regarding the accumulated rewards. This observation confirms
our findings in the candidate UAV selection strategy via opti-
mizing the action selection taken by the agent to obtain consid-
erable performance gains over the IR-CUS scheme. However,
by balancing the shortest-path and the spectrum selection, the
CR-SPR scheme only considers the achievable rate between
the UAV pair without capturing the benefits brought by the
Q-learning process. Another important observation is that the
performance of the proposed algorithm with Ru = 300 m in
terms of the accumulated rewards always outperforms that of
Ru=200 m. To explain, for the current UAV, the larger Ru
is, the more next-hop UAVs and actions are available, thus
enabling the current UAV to find the optimal next-hop UAV
to improve the accumulated rewards. The results show the
performance gains of the accumulated rewards benefit a lot
from choosing larger maximum transmission range of UAV.

In Fig. 6, we compare the accumulated rewards of CU-
SWARM over the UAV’s transmit power, pu, between the
proposed algorithm (with Γmin = 40 dB and Γmin = 50 dB)
and four benchmarks, when N = 900, ψn = 1

3π rad, and
ε=0.05. It is evident that the simulated accumulated rewards
obviously increase with pu for the proposed algorithm and the
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Fig. 6. Accumulated rewards versus transmit power of UAV pu, when N =
900, ψn = 1

3
π rad, and ε = 0.05.

benchmarks. To explain, the higher the UAV’s transmit power
is, the larger the achievable rate is obtained by UAV, yielding
the increased accumulated rewards thanks to the routing metric
directly proportional to the achievable rate.

Moreover, the results in Fig. 6 also show that the proposed
algorithm obviously improve the accumulated rewards com-
pared to the benchmarks of FLR and DLR with evolution
of pu, under Γmin =50 dB. Noteworthy, the simulation results
for the effect of UAV’s transmit power on the accumulated
rewards provide similar insights to those for the effect of
number of UAVs. This implies that we need to properly set
up the learning rate to receive more accumulated rewards.
Under Γmin = 50 dB, the results of Fig. 6 further illustrate
significant performance gains of the proposed algorithm over
the benchmarks of IR-CUS and CR-SPR regarding the ac-
cumulated rewards. For the IR-CUS scheme, the reason is
that the current UAV is difficult to choose the optimized next-
hop UAV yielding more accumulated rewards, due to the lack
of location, arc, and direction constraints when selecting the
next-hop UAV. Since the CR-SPR scheme only considers the
achievable rate between the UAV pair via the shortest-path
metric, it cannot ensure that the current UAV is able to select
the proper next-hop UAV that could improve the accumulated
rewards. Besides, the accumulated rewards for the proposed
algorithm with Γmin =50 dB are observed to be always larger
than those of Γmin = 40 dB. The results manifest the crucial
role of the acceptable SNR for UAV on the performance of
accumulated rewards with increasing UAV’s transmit power.

C. The Effect of Central Angle and Discount Factor

Finally, in Fig. 7, we examine the accumulated rewards
of CU-SWARM for the proposed algorithm with discount
factors γ = 0.9 and γ = 0.95 against different values of
central angle, ψn, of circular sector Jn (·)+, when N=900,
pu = 900 mW, ε= 0.05, and BP = 25 MHz. We can observe
that with the increase of ψn varying from 1

6π rad to π rad,
the accumulated rewards for the proposed algorithm gradually
increase, and basically do not change when ψn=π rad. This
can be explained by the fact that, when ψn increases from
1
6π rad to π rad, the current UAV will have more candidate
UAVs as the potential next-hop UAVs. Thus, there will be
more candidate actions to choose for the current UAV during
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Fig. 7. Accumulated rewards versus central angle ψn of circular sector
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the training process, thereby resulting in notable performance
gains of the accumulated rewards. Moreover, as shown in
Fig. 7, the accumulated rewards for the proposed algorithm
with γ= 0.95 are observed to be always larger than that of
γ = 0.9. This implies that as γ increases, the accumulated
rewards clearly show an obvious improvement. Such behavior
can be interpreted as follows. The discount factor reflects the
ratio of future rewards to immediate rewards in the proposed
Q-learning framework. The larger the discount factor is, the
greater the importance of future rewards is shown on the
current action. In other words, it puts more emphasis on the
Q-values previously learned and stored in the Q-table. In this
way, it is easier to get the global optimal routing. Therefore,
we can conclude that designing appropriate discount factor
gives non-negligible improvement of the accumulated rewards
during the learning process, which validates our analysis.

VII. CONCLUSION

In this paper, we have investigated the intelligent routing
with maximum utility via Q-learning in CU-SWARM for
emergency communications. We integrate the CR with UAV
swarm to build the CU-SWARM in the aerial sensing layer of
the three-layer hierarchical architecture, which consists of a
UAV swarm for aerial sensing and an HAP for aerial access.
We combine both the routing metric and the candidate UAV
selection optimization policy to formulate the reward function.
In particular, we characterize the routing metric by maximizing
the utility, which is derived by balancing the achievable rate
and the residual energy of UAV. We present the circular sector
with the location, arc, and direction constraints by setting
the central angle to optimize the candidate UAV selection.
Finally, we develop a low-complexity iterative algorithm via
the dynamic learning rate for updating Q-values during the
training process to achieve a fast convergence speed. Our
results have demonstrated that the proposed algorithm is con-
vergent, and also shown that significant gains can be brought
by the proposed algorithm over the benchmark schemes in
terms of the accumulated rewards.
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