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Abstract: The liquid biopsy has the potential to improve patient care in the diagnostic and therapeutic
setting in non-small cell lung cancer (NSCLC). Consented patients with epidermal growth factor
receptor (EGFR) positive disease (n = 21) were stratified into two cohorts: those currently receiving
EGFR tyrosine kinase inhibitor (TKI) therapy (n = 9) and newly diagnosed EGFR TKI treatment-naïve
patients (n = 12). Plasma genotyping of cell-free DNA was carried out using the FDA-approved
cobas® EGFR mutation test v2 and compared to next generation sequencing (NGS) cfDNA panels.
Circulating tumor cell (CTC) numbers were correlated with treatment response and EGFR exon
20 p.T790M. The prognostic significance of the neutrophil to lymphocyte ratio (NLR) and lactate
dehydrogenase (LDH) was also investigated. Patients in cohort 1 with an EGFR exon 20 p.T790M
mutation progressed more rapidly than those with an EGFR sensitizing mutation, while patients
in cohort 2 had a significantly longer progression-free survival (p = 0.04). EGFR exon 20 p.T790M
was detected by liquid biopsy prior to disease progression indicated by computed tomography (CT)
imaging. The cobas® EGFR mutation test detected a significantly greater number of exon 20 p.T790M
mutations (p = 0.05). High NLR and derived neutrophil to lymphocyte ratio (dNLR) were associated
with shorter time to progression and worse survival outcomes (p < 0.05). High LDH levels were
significantly associated with shorter time to disease progression (p = 0.03). These data support the use
of liquid biopsy for monitoring EGFR mutations and inflammatory markers as prognostic indicators
in NSCLC.

Keywords: EGFR; liquid biopsy; T790M; biomarkers; CTCs; NGS; NSCLC

1. Introduction

An improved understanding and identification of molecular pathways that drive
tumor growth in non-small cell lung cancer (NSCLC) has led to the development of specific
tyrosine kinase inhibitors (TKIs) in advanced stage disease. Mutations in the epidermal
growth factor receptor (EGFR) tyrosine kinase domain occur more frequently in never
smokers, the incidence of which is reported to be approximately 15% of adenocarcinoma
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cases and up to 62% in Asian populations [1,2]. In 2004, activating EGFR mutations were
first identified in NSCLC and were characterized as oncogenic mutations that were shown to
confer a more favourable prognosis and predict a greater sensitivity to EGFR TKIs [3–5]. In
advanced NSCLC tumors of adenocarcinoma histology, current guidelines from the College
of American Pathologists (CAP), the International Association for the Study of Lung Cancer
(IASLC) and the Association of Molecular Pathologists (AMP) recommend EGFR analysis
regardless of clinical characteristics [6], where these should not be used to either select or
exclude patients for EGFR mutation testing, including ALK or ROS1 rearrangements.

EGFR, also known as ErbB1 or HER1, is a transmembrane receptor involved in
the regulation of cell proliferation, survival, differentiation and other key cellular pro-
cesses through the activation of multiple downstream signalling cascades, including the
PI3K/AKT, RAS/RAF/MAPK and STAT pathways [7]. For the most part, EGFR gene
mutations are located in the region encoding for the adenosine triphosphate (ATP) bind-
ing pocket of the kinase domain between exons 18–21. These result in the constitutive
activation of the receptor tyrosine kinase domain, inducing downstream pro-survival sig-
nalling pathways. The most common EGFR mutations include in-frame exon 19 deletions
and exon 21 point mutations, which result in the substitution of arginine for leucine at
position 858 (L858R) and account for approximately 85% of EGFR mutations [8]. While
additional EGFR sensitizing mutations such as G719X, L861Q and S768I have also been
described [9–11], these mutations are relatively rare in NSCLC. For many years, first (e.g.,
gefitinib and erlotinib) or second-generation (e.g., afatinib) EGFR TKIs have been used
successfully as first-line therapy in advanced EGFR-mutated NSCLC [12]. Nevertheless,
acquired resistance inevitably develops in 50–60% of patients. This is due to the emergence
of the secondary EGFR Thr790Met mutation in exon 20 (EGFR exon 20 p.T790M) of the
EGFR gene [13] where osimertinib is indicated for use in this setting.

The use of targeted therapies such as EGFR TKIs has greatly advanced the personalized
treatment of NSCLC patients. Traditionally, tissue genotyping has been used for identifying
such genomic alterations. This methodology is however limited by a number of factors such
as insufficient tumor tissue, tumor heterogeneity, inaccessibility of the tumor and risks as-
sociated with serial tumor biopsies, particularly in patients with underlying co-morbidities.
Studies have shown that up to 20% of NSCLC tissue biopsies are inadequate for molecular
testing due to inadequate DNA or insufficient tissue [14,15]. Plasma EGFR genotyping
using circulating tumor DNA (ctDNA) is an emerging technology that has shown promise
due to its accessibility, minimal invasiveness and potential clinical utility. To date, several
platforms have been developed and clinically validated to examine their use in detecting
and monitoring genomic alterations during the course of disease using liquid biopsy. These
include amplification refractory mutation system PCR (ARMS-PCR), digital droplet PCR
(ddPCR), BEAMing PCR and next-generation sequencing (NGS) [16–20]. Next generation
sequencing (NGS) panels such as the AVENIO ctDNA Targeted Kit and Oncomine™ Lung
cfDNA assays have largely been used for research use only. In 2016, the FDA approved
the semi-quantitative PCR-based Roche cobas® EGFR mutation test v2 as a companion
diagnostic test, using ctDNA, for the detection of EGFR-sensitizing mutations in NSCLC.
This approval was based on the ENSURE study, a multicentre, open-label, randomized
Phase III study, evaluating the efficacy and safety of Tarceva versus gemcitabine plus
cisplatin as first-line treatment for stage IIIB/IV NSCLC. Using paired plasma and tissue
samples from 517 patients, the cobas® test demonstrated moderate sensitivity and high
specificity of 76.7% and 98.2%, respectively, for the detection of EGFR-sensitizing muta-
tions [21]. In early phase, multicentre trials (AURA and AURA2) in patients with locally
advanced or metastatic disease, osimertinib demonstrated clinical activity in patients with
EGFR exon 20 p.T790M, supporting its use in patients who have progressed on an EGFR
tyrosine-kinase inhibitor [22]. Compared to plasma genotyping assays using NGS, the
sensitivity and specificity for the detection of EGFR exon 20 p.T790M were 91.5% and 91.1%,
respectively, using the cobas® mutation test. These were in contrast to tissue genotyping,
where sensitivity and specificity were lower, at 61.4% and 78.6%, respectively [19]. This
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discordance was hypothesized to be due, at least in part, to the heterogeneity of resistance
mutations present in tumor tissue.

Recently, circulating tumor cells (CTCs) and inflammatory markers such as C-reactive
protein, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lympho-
cyte-to-monocyte ratio (LMR), lactate dehydrogenase (LDH) and the lung immune prog-
nostic index (LIPI) have gained considerable interest as potential markers in the diagnosis,
prognosis and monitoring of treatment response in cancer, including lung cancer [23,24].
Evidence is emerging to suggest the possible clinical relevance of CTC detection and enu-
meration using liquid biopsies and peripheral pro-inflammatory status, which has been
associated with worse outcomes in patients with different cancer types [25,26].

In this study, patients with EGFR-mutated NSCLC were assessed for EGFR-sensitizing
and EGFR exon 20 p.T790M resistance mutations using longitudinal samples of K2EDTA
whole blood (standard of care) and blood collection tubes with a novel stabilization system
for comparison (Roche). The cobas® EGFR mutation test v2 was used as a companion
diagnostic in parallel with two commercially available next generation sequencing (NGS)-
based assays that are currently employed in molecular cancer diagnostics in the clinical
setting. We hypothesized that CTCs and inflammatory markers (using NLR and dNLR)
are surrogates of response to EGFR-targeted therapy that may be used as biomarkers and
complement the use of circulating tumor DNA (ctDNA) in the diagnosis and prognosis of
NSCLC patients.

2. Materials and Methods
2.1. Patient Recruitment and Sample Collection

Patients with EGFR-mutated NSCLC were recruited prospectively from Medical On-
cology departments across three Irish hospitals: St James’s Hospital Dublin, University
Hospital Limerick and Midlands Regional Hospital. Following informed consent, patients
were recruited into one of two cohorts: cohort 1 (n = 9) included those currently receiv-
ing EGFR TKI therapy at the time of accrual, and cohort 2 (n = 12), comprised of newly
diagnosed treatment-naïve EGFR patients (Figure 1). Whole blood samples were collected
longitudinally in 9 mL and 6 mL K2EDTA blood tubes (Cruinn Diagnostics Ltd., Ireland &
Becton Dickinson, UK) and Roche CE-IVD cell-free DNA (cfDNA) collection tubes (Roche
Molecular Systems, Pleasanton, CA, USA) at baseline and every three months for two years.
Blood tubes were mixed by gentle inversion immediately following blood withdrawal.
Blood plasma was collected by centrifugation at 3000 rpm for 10 min (EDTA blood tubes)
or 1600× g for 10 min (cell-free DNA blood tubes) at 48 h and 72 h post-collection per
manufacturer’s instructions (Roche Molecular Systems, Pleasanton, CA, USA). All bloods
were processed within 4 h of collection. This study was ethically approved by the Tallaght
University Hospital and St James’s University Hospital Joint Research Ethics Committee
(Ref. No. 041018/8804) and in line with GDPR and Health Research Regulations 2018.

2.2. DNA Extraction

Cell-free DNA was extracted from plasma samples using the cobas® cfDNA sample
preparation kit (Roche Molecular Systems, Pleasanton, CA, USA) according to manufac-
turer’s instructions. In brief, 2 mL plasma was diluted in proteinase K and DNA binding
buffer, mixed by gentle inversion and incubated for 30 min at room temperature. Following
the digestion of DNases, unbound substances such as salts, proteins and other cellular
impurities were removed by centrifugation. Bound DNA was washed and subsequently
eluted from glass fibre filters. cfDNA was eluted (80 µL) by centrifugation at 8000× g for
1 min and stored at −20 ◦C.



Diagnostics 2022, 12, 2360 4 of 27

Figure 1. EGFR study design. A total of 21 patients with a confirmed tissue diagnosis of
epidermal growth factor receptor (EGFR) mutated NSCLC were consented and enrolled on
this two-year longitudinal study involving three participating Irish hospitals. Patients were stratified
into one of two cohorts based on their treatment status: cohort 1 patients were consented during treat-
ment with EGFR tyrosine kinase inhibitor (TKI) therapy, while cohort 2 patients were consented at
diagnosis, prior to treatment. Liquid biopsy was collected every three months over two years. Plasma
genotyping using cell-free DNA (cfDNA), circulating tumor cells (CTCs) and inflammatory markers
derived from liquid biopsy at each time-point were examined and correlated with clinical outcomes.

2.3. Real-Time RT-PCR

The cobas® EGFR mutation test v2 (Roche Molecular Systems, Pleasanton, CA, USA)
is a real-time PCR test that can detect 42 mutations in exons 18, 19, 20 and 21 of the EGFR
gene, including EGFR exon 20 p.T790M. PCR amplification was performed according
to manufacturer’s instructions. Three working master mixes were prepared, to which
magnesium acetate was added. For each master mix, 25 µL was added to each reaction
well of a 0.3 mL AD-plate followed by 25 µL of cfDNA. EGFR mutant and negative controls
(25 µL) were included in all PCR reactions. Plates were spun at 1000 rpm for 1 min and run
on a cobas® z 480 real-time PCR analyzer using cobas® 4800 software v2.0.
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2.4. Circulating Tumor Cell Isolation

CTCs were isolated from K2EDTA blood tubes using ScreenCell® Cyto kits (ScreenCell,
Sarcelles, France) for each patient at baseline and every three months during the course of
the study. Cells were isolated on the basis of size exclusion technology on a microporous
membrane filter and a vacuum tube, allowing leucocytes to pass through the 7.5 µm filter
pores, while trapping the larger and less deformable CTCs on the filter, avoiding any
bias induced by epithelial cellular adhesion molecule (EpCAM) antibody capture. Briefly,
4 mL ScreenCell® fixation buffer was added to 3 mL whole blood, inverted gently and
allowed to stand for 8 min at room temperature. The whole blood/buffer mix was added
to a ScreenCell Cyto device and allowed to filtrate through the upper module and filter.
Once the mix had passed through to the lower collection module, the ScreenCell® filter
was gently washed in PBS, removed from the device, allowed to dry overnight at room
temperature and stored at −20 ◦C.

2.5. Morphological Staining of ScreenCell® Filters

ScreenCell® filter morphology was assessed using May–Grünwald Giemsa staining.
Filters were placed into a bath containing May–Grünwald (Sigma Aldrich Ltd., Dublin, Ire-
land) and incubated for 2 min 30 s with constant agitation, followed by a second incubation
in a 1:1 dilution of May-Grünwald:dH2O (pH 7) for a further 2 min with agitation. Filters
were subsequently incubated in a stain consisting of a 1:10 dilution of Giemsa:dH2O (pH 7)
for 10 min. Excess stain was removed by washing in dH2O (pH 7) for 1 min, and filters were
allowed to air dry at room temperature for 20 min. Morphological assessment of stained
filters was carried out using an Olympus BX41 light microscope (Olympus Life Science,
Waltham, MA, USA). CTCs that were identified, based on morphology, were enumerated
and recorded by an independent expert cytopathologist (B.H.). CTCs were defined as cells
in the same plane of focus as filter pores whose nucleus was at least twice the diameter of a
filter pore, dark blue/purple in colour and with an outline that was well-defined around
its entire circumference. These criteria have been used for the morphological identification
of CTCs in recently published studies of prostate cancer patients [27].

2.6. AVENIO ctDNA Targeted Panel Sequencing

NGS libraries were prepared from plasma-derived cfDNA isolated from six EGFR patients
using the liquid biopsy AVENIO ctDNA targeted panel (Roche, Branchburg, NJ, USA) to
identify and detect aberrations such as single nucleotide variants (SNVs), insertions and
deletions (Indels) and fusions from NSCLC tumors. A 17-gene pan-cancer targeted panel
was used based on guideline-driven biomarkers aligned with the National Comprehensive
Cancer Network (NCCN) and included the following genes: ALK, APC, BRAF, BRCA1,
BRCA2, DPYD, EGFR, ERBB2, KIT, KRAS, MET, NRAS, PDGFRA, RET, ROS1, TP53 and
UGT1A1. cfDNA was isolated from blood plasma using the AVENIO cfDNA isolation kit
and quantified using the Qubit™ dsDNA HS assay kit (Thermo Fisher Scientific, Frederick,
MD, USA). DNA quality was assessed on High Sensitivity DNA Chips (Agilent Technolo-
gies, Santa Clara, CA, USA) using a 2100 Bioanalyzer (Agilent Technologies Germany
GmbH, Walbronn, Germany). Input cfDNA (15–50 ng) was used for subsequent library
preparation. Samples were prepared for ligation using a PCR master mix and incubated
on a thermal cycler at 20 ◦C for 30 min followed by 65 ◦C for 30 min. A unique sam-
ple adaptor was added to each sample to allow for highly efficient molecular barcoding,
ligated in a master mix containing DNA ligase and incubated overnight at 16 ◦C. Follow-
ing post-ligation clean-up using clean-up beads and ethanol (80%), the adaptor-ligated
DNA samples were amplified by PCR amplification and post-PCR products cleaned as per
manufacturer’s instructions. Prior to enrichment, libraries were quantified (Qubit) and
DNA quality was assessed (Bioanalyzer). Good quality cfDNA was indicated where no
or minimal high molecular weight genomic DNA (>2000 bp) was present. Enrichment of
genes from ligated cfDNA was carried out by hybridizing biotinylated enhancing oligos
targeting the AVENIO ctDNA panel regions bound to the DNA at 47 ◦C overnight. These
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are enriched for blocking repetitive DNA sequences and used to block non-specific hy-
bridization of probes, thereby increasing specificity. Dynabeads M-270 streptavidin were
prepared prior to the hybridization clean-up and washing of beads. Amplification of the
enriched ctDNA samples was completed on a thermocycler for 15 cycles of 98 ◦C for 15 s,
60 ◦C for 30 s and 72 ◦C for 1 min. Post-capture PCR products were cleaned using clean-up
beads, and the final enriched library was quality assessed and quantified. Pooled libraries
were diluted to 4 nM and denatured. A 15% PhiX spike-in was used as a sequencing
control in line with manufacturer’s guidelines (Illumina, San Diego, CA, USA). Enriched
libraries were sequenced on the NextSeq 500 using the High Output Kit v2 (300 cycles)
with a median unique target sequence coverage of 7600× (range 2013×–12467×). NGS
run metrics included a total number of 510 M read pairs in the lane passing the Illumina
filter on the sequencer. The percentage of all read bases with a quality score of at least
30, corresponding to a probability of an error in base calling of 1/1000, was 82.83%. The
percentage of reads aligned to the Illumina PhiX sequencing control was 14.33% (typical
range: 10–15%). Automated processing of raw data and subsequent analysis was per-
formed using AVENIO ctDNA analysis software version 1.2 (Roche Sequencing Solutions,
Inc., Pleasanton, CA, USA). A CSV template was uploaded to the Roche server, which
contained adapter details, enabling the de-multiplexing of samples. The remaining analysis
and resulting variant and sample metrics were recorded.

2.7. Oncomine™ Lung cfDNA Assay

Plasma samples were processed for cfDNA extraction using the cobas® sample cfDNA
sample preparation kit (Roche Molecular Systems, Pleasanton, CA, USA) followed by
quantification using the Qubit™ dsDNA HS assay. Genomic profiling of samples by
targeted NGS was performed using the Oncomine™ Lung cfDNA assay (Thermo Fisher
Scientific, Frederick, MD, USA). The assay covers 169 key hotspot mutations across 11 genes
and includes ALK, BRAF, EGFR, ERBB2, KRAS, MAP2K1, MET, NRAS, PIK3CA, ROS1 and
TP53. In brief, library preparation was performed according to manufacturer’s instructions.
cfDNA targets were amplified using a cfDNA library PCR master mix and purified as
per manufacturer’s recommendations. Purifications were carried out using AMPure™ XP
magnetic beads (Beckman Coulter, Pasadena, CA, USA). Target amplicons were amplified
with Tag Sequencing barcodes, and the resulting barcoded library was further purified.
Library quantification was performed by qPCR using the Ion Library TaqMan® Quantitation
kit (Thermo Fisher Scientific, Frederick, MD, USA) and run on the 7500 Fast Real-Time
PCR system (Applied Biosystems, Waltham, MA, USA). Serial dilutions of the E. coli
DH10B Ion Control Library were used as standards. No template controls (NTC) were also
included. Sample barcoded libraries were diluted to a final concentration of 100 pM, pooled
together for template preparation on the Ion Chef™ system and loaded onto an Ion 520
chip (Ion 520™ Chip Kit, Thermo Fisher Scientific). The chip was subsequently sequenced
on the Ion Chef™ S5 system (Thermo Fisher Scientific, Frederick, MD, USA). Analysis of
raw sequencing data was performed using Torrent Suite Software (v5.6). The unaligned
BAM (Binary Alignment Map) files generated by the sequencer were mapped against the
human reference genome (GRCh37/hg19) using the Torrent Mapping Alignment Program
(TMAP) and Ion Torrent Suite™ Software (TSS, version 5.10). The Torrent Variant Caller
(TVC, version 5.10) plugin was used for the analysis and annotation of variants using
pre-configured parameter settings for the application of liquid biopsy. Analysis, annotation
of variants and filtering were performed on the Ion Reporter (v5.6) platform using the
Oncomine™ Lung Liquid Biopsy workflow v1.3. The Lung Liquid Biopsy workflow
combines the read depth for each region of interest to calculate a limit of detection (LoD).
Each sample can have a different LoD depending on read depth and sequence quality.
Samples were not deemed to pass quality control unless a LoD of 0.1% was achieved.
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2.8. Inflammatory Marker Analysis

Complete blood counts and biochemistry (LDH) were obtained for all patients at
baseline and at each time-point (every 3 months) throughout the study from the electronic
patient records (EPR) at each participating hospital. The NLR, which has previously been
demonstrated to play a predictive role in the prognosis of acute and chronic inflammatory
processes [28], was measured by dividing the number of neutrophils by the number of
lymphocytes. The dNLR was calculated as [absolute neutrophil count]/[white blood cell
concentration − absolute neutrophil count] [29,30].

2.9. Statistical Analysis

Analysis between groups was carried using student’s t-tests or analysis of variance
(ANOVA) with Bonferroni post-hoc analysis. The chi-squared test was used to compare
categorical variables between groups. Scatter plots with a line of best fit were plotted to
explore correlations between continuous variables, with a Pearson’s correlation coefficient
used to determine if variables were significantly correlated. Time to progression and overall
survival based on EGFR exon 20 p.T790M status, CTC numbers and inflammatory markers
were calculated using univariate Cox proportional hazards analysis based on median cut-
off values for each parameter, and Kaplan Meier curves were plotted to visualize the data.
Statistical significance was defined as p ≤ 0.05. All data were analysed using R statistical
software, version 3.6.2.

3. Results
3.1. Patient Characteristics

From March 2017 to May 2019, a total of 21 NSCLC patients with a confirmed EGFR
mutation at biopsy (Oncomine™ NGS, as per standard of care) were consented for par-
ticipation in this longitudinal study (Table 1). At baseline, the median age of participants
was 66 years and was composed largely of females (76.19%) with adenocarcinoma his-
tology (95.24%). At the time of informed consent, none of the participants were current
smokers, while former smokers (47.62%) and never smokers (52.38%) accounted for most
of the study cohort. While approximately 38% had at least one prior line of treatment
with a first-generation EGFR TKI, 23.81% of patients had either no previous treatment or
two previous lines of treatment with first and second-generation EGFR TKIs—erlotinib and
afatinib, respectively. The most common EGFR sensitizing mutations, exon 19 deletions
(61.90%) and L858R (28.57%) were largely represented at baseline in NSCLC tissue biopsies.
One patient had both an EGFR sensitizing (exon 19 deletion) and resistance mutation (EGFR
exon 20 p.T790M) at baseline.

3.2. Detection of EGFR Mutations in Cell-Free DNA Using Plasma Genotyping

Plasma genotyping of cfDNA from liquid biopsies identified EGFR mutations that
included deletions in exon 19, in addition to L858R and L861Q substitution mutations in
exon 21 at 62%, 24% and 5%, respectively, using the cobas® EGFR mutation test (Figure 2A).
In a parallel analysis of EGFR mutations in cfDNA derived from standard EDTA blood
tubes and CE-IVD cell-free DNA collection tubes (Roche), EGFR mutation profiling of
cfDNA derived from whole blood from all patients in cohort 1 (Figure 2B) and cohort 2
(Figure 2C) showed only modest differences in the detection of exon 19 deletions between
the different blood tubes over time. There was a slight increase in the number of L858R
mutations detected in liquid biopsies from cohort 2 relative to cohort 1. In one patient,
a L861Q mutation was detected in cfDNA derived from EDTA blood plasma with no
mutation detected in plasma cfDNA from 48 h or 72 h cell-free DNA collection tubes. EGFR
exon 20 p.T790M was detected in blood plasma from all blood collection tubes with only a
modest increase in detection found in plasma-derived cfDNA at 72 h. The total numbers of
EGFR mutations detected in cfDNA from all blood tubes (EDTA and cell-free) across both
patient cohorts (cohort 1 and cohort 2) are shown (Figure 2D). There was a significantly
greater number of exon 19 deletions detected in plasma cfDNA derived from liquid biopsy
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using the cobas® EGFR mutation test relative to L858R (p = 0.0489) and EGFR exon 20
p.T790M (p = 0.0264).

Table 1. Patient demographics and characteristics.

Patient Baseline Characteristics

Characteristics Number of Patients Percentage (%)

Age, years
Median (Range) 66 (40−85)

Gender
Male 5 23.81

Female 16 76.19

Smoking status
Current 0 0

Former smokers 10 47.62
Never smokers 11 52.38

Histology
Adenocarcinoma 20 95.24

Squamous cell carcinoma 1 4.76

Alive or Dead
Alive 10 47.62
Dead 11 52.38

ECOG status
0 3 14.29
1 12 57.14
2 5 23.81
3 1 4.76

Previous lines of treatment
0 5 23.81
1 8 38.10
2 5 23.81
3 1 4.76
4 2 9.52

Consented patients (n = 21) with a pathologically confirmed EGFR mutation were recruited prospectively from
Medical Oncology departments across three participating Irish hospitals: St James’s Hospital Dublin, University
Hospital Limerick and Midlands Regional Hospital Tullamore.

The emergence of the EGFR exon 20 p.T790M resistance mutation was detected in 57%
of patients during treatment with EGFR TKIs. The presence or absence of this mutation was
correlated with disease progression and overall survival at baseline. At baseline (Figure 3A),
those in cohort 1 with EGFR exon 20 p.T790M progressed more rapidly than those with
an EGFR sensitizing mutation. This, however, was not statistically significant (p = 0.318)
and was in contrast to that observed in cohort 2 (Figure 3B), where those with EGFR exon
20 p.T790M had a significantly longer progression-free survival (p = 0.0421). This finding
must be considered with caution, however, as the number of patients with no mutation at
baseline was small (n = 2). There were no significant differences in overall survival between
patients with EGFR exon 20 p.T790M and those with an EGFR sensitizing mutation in
cohort 1 (p = 0.44) (Figure 3C) or cohort 2 (p = 0.571) (Figure 3D). When both cohorts were
combined, no significant differences were found between EGFR exon 20 p.T790M and
overall survival (Figure S1A–C) or time to progression (Figure S1D–F) at baseline, 3 months
or 6 months. Due to the limited number of patients still alive at 2 years, it was not possible
to examine the statistical relevance between these parameters at this time-point.
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Figure 2. Plasma genotyping of EGFR mutations using the cobas® EGFR mutation v2 test. Plasma
genotyping of EGFR mutations using cfDNA from liquid biopsy was carried out using the cobas®

EGFR mutation v2 test. EGFR mutations identified included exon 19 deletions, L858R point mutations
and L861Q mutations in exon 21 (A). A comparator analysis of EGFR sensitizing and resistance
mutations (EGFR exon 20 p.T790M) in standard EDTA and CE-IVD cell-free DNA blood collection
tubes (Roche) was examined in cohort 1 (B) and cohort 2 (C). EGFR mutations across both cohorts
combined are also shown (D). Statistical analysis was performed using a two-way ANOVA with
Bonferroni post-hoc analysis (* p < 0.05).

3.3. Circulating Tumor Cells as Markers of Disease Outcome

The detection and isolation of CTCs in the peripheral blood of NSCLC patients remains
a challenging strategy in the diagnosis and monitoring of treatment response. It has been
reported in advanced lung cancer patients that CTCs are present in the blood at relatively
low concentrations. In approximately 1 mL of peripheral whole blood, this typically con-
tains 1–10 CTCs against a background of 106–107 nucleated blood cells and approximately
109 red blood cells [31]. Using size-exclusion technology, CTCs were isolated, stained and
enumerated from liquid biopsies (3 mL) at each time-point. These varied in size from 20 to
24 µm (Figure 4A), consistent with those previously reported for CTCs (9–30 µm) [32]. To
explore the sequential analysis of CTC counts and their potential indication as a measure
of disease burden, CTC numbers were shown to vary considerably between patients at
baseline, with transient changes in numbers during treatment with EGFR TKIs in cohort 1
(Figure 4B) and cohort 2 (Figure 4C) over the study period of two years. Such alterations
in CTC counts at the various time-points may reflect the response to EGFR TKIs during
treatment. At baseline (Figure 5A) and 6 months (Figure 5B), the ability of CTC counts to
predict disease progression was examined in each cohort and combined. No significant
differences were observed in time to progression based on CTC counts using median
cut-off values at baseline (≥16 per 3 mL blood) and 6 months (≥10 per 3 mL blood). At
baseline, however, when both cohorts were combined, a trend towards significance was
observed (p = 0.06), where patients with high CTC counts had a shorter time to progression.
When examined in patients with a resistance mutation or EGFR sensitizing mutations at
baseline, no significant associations were found between CTCs and EGFR exon 20 p.T790M
(p = 0.989), exon 19 deletions (p = 0.759) or exon 21 L858R mutations (p = 0.746) (Figure 5C).
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Figure 3. Time to progression and overall survival analysis relative to EGFR exon 20 p.T790M
detection. The presence or absence of EGFR exon 20 p.T790M was correlated with disease progression
(A,B) and overall survival (C,D) in cohort 1 and cohort 2 at baseline. Time to progression in both
cohorts combined was examined at baseline, 3 months and 6 months (E). Univariate Cox proportional
hazards analysis of time to progression and overall survival was used and Kaplan Meier survival
plots represented (* p < 0.05).
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Figure 4. Prospective staining and enumeration of CTCs using ScreenCell® Cyto filters during
treatment with EGFR TKIs. CTCs were isolated from liquid biopsies at each 3 month time-point using
ScreenCell® Cyto filters based on size exclusion technology. Filters were stained with May–Grünwald
Giemsa stain. Morphological assessment and CTC enumeration was carried out by an independent
cytopathologist using an Olympus BX41 light microscope. Representative images of CTCs are shown
at ×20 magnification (A). Longitudinal analysis of CTCs as markers of disease burden and response
to EGFR TKI therapy was assessed in EGFR cohort 1 (B) and cohort 2 (C) at baseline and during the
2 year follow-up period.
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Figure 5. Assessment of CTC numbers and correlation with disease progression. At baseline (A) and
at 6 months (B), the ability of CTC counts to predict disease progression was examined in each cohort
individually and combined. No significant differences were observed in time to progression based on
CTC counts below and above the median cut-off at baseline (≥16) or at 6 months (≥10). Univariate
Cox proportional hazards analysis of time to progression and overall survival was used and Kaplan
Meier survival plots represented. Comparison of mean CTC counts by EGFR mutation status (exon
20 p.T790M, exon 19del and exon 21 L858R) was examined at baseline in cohorts 1 and 2 combined
using student’s t-tests (C).
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3.4. EGFR Exon 20 p.T790M Detection by Liquid Biopsy vs. Clinical Progression by CT Imaging

During the two years of the study, the emergence of EGFR exon 20 p.T790M was
detected in 12 (57%) patients using cfDNA from liquid biopsy during serial blood samping
every 3 months. Of these, 4 (33%) were detected in cohort 1, while the remaining 8 (67%)
were detected in cohort 2. In order to elucidate the timing of EGFR exon 20 p.T790M
detection using liquid biopsy relative to clinical progression by radiological computed
tomography (CT) imaging, the time interval between these was calculated for each patient
where EGFR exon 20 p.T790M was detected (Table 2). In both cohorts combined, 67%
had an EGFR exon 20 p.T790M detected by liquid biopsy prior to a clinical diagnosis of
disease progression by CT imaging. The average time interval between the detection of
EGFR exon 20 p.T790M by liquid biopsy and a radiological CT diagnosis of disease pro-
gression was 166.25 days (5.5 months) for both cohorts combined (p = 0.066) and 189.5 days
(6.23 months) for cohort 2 (p = 0.053), where the latter had a greater number of EGFR exon
20 p.T790M mutations detected. There was no statistically significant relationship between
CTC numbers and time to progression.

Table 2. Time analysis of EGFR exon 20 p.T790M detection by liquid biopsy and radiological detection
of disease progression by CT imaging.

Study ID Time Difference (Days) between T790M Detection & Disease Progression

C1P1-02 545
C1P3-01 −16
C1P4-04 97
C1P8-05 −177
C2P2-02 −66
C2P3-02 −201
C2P9-00 −203

C2P10-05 40
C2P11-02 −33
C2P13-01 4
C2P14-02 −153
C2P15-01 −481

A comparison between the time of EGFR exon 20 p.T790M detection by serial liquid biopsy (cobas® EGFR mutation
v2 assay) and detection of disease progression by CT imaging was carried out across all patients (n = 12) in whom
EGFR exon 20 p.T790M was detected during the 2 year period of the study. While not statistically significant, there
was an emerging trend towards earlier detection of EGFR exon 20 p.T790M using serial liquid biopsy compared
to radiological detection of disease progression by CT. Positive and negative numbers indicate the difference
(number of days) after which EGFR exon 20 p.T790M was detected by liquid biopsy post- and pre-CT imaging
(disease progression), respectively. Statistical analysis was carried out using a one-sample student t-test.

3.5. Comparative Assessment of NGS ctDNA Analysis Platforms

An assessment of analytical performance in EGFR mutation detection was compared
between the cobas® EGFR mutation test and two next-generation sequencing (NGS) cell-
free DNA panels: Oncomine™ lung cfDNA assay and AVENIO ctDNA targeted panel. A
preliminary analysis of a small cohort of plasma cfDNA from different blood collection
tubes (n = 12) that was acquired prospectively during the study compared EGFR mutation
detection in liquid biopsies using the cobas® EGFR mutation test and the Oncomine™ NGS
assay (Table 3). These were examined in parallel to the EGFR mutation status known for
each patient based on the original tissue diagnosis. EGFR mutations were more frequently
detected in liquid biopsies using the cobas® mutation test compared to those detected using
the Oncomine™ lung cfDNA assay across the plasma cfDNA examined. Furthermore, the
detection of EGFR exon 20 p.T790M was significantly greater (p = 0.05) when analysed using
the cobas® test compared to those detected using the Oncomine™ assay. In two samples
analysed as part of this comparative assessment, no mutations were detected (NMD) using
the Oncomine™ panel due to low reads. When EGFR mutations detected by liquid biopsy
using the Oncomine™ assay were compared to those initially detected by tissue biopsy,
there was a significant difference (p = 0.017) in the number of EGFR mutations detected. It
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must be noted, however, that the time of sampling of the tissue and liquid biopsy for these
patients was not uniform, with liquid biopsies acquired up to several weeks or months
following a tissue diagnosis (range 20–31 months for C1; range 1–7 months for C2). As such,
these observations must be interpreted accordingly and with caution. In the second part of
this analysis of three mutation detection platforms, plasma cfDNA samples were used to
assess the detection of EGFR mutations in liquid biopsies between the cobas® mutation test
and the AVENIO ctDNA targeted panel (Table 4). While there was little or no difference in
EGFR mutations detected across all samples using the two platforms (p = 0.94), compared
to mutations detected in the original tissue biopsy, both assays identified EGFR exon 20
p.T790M in 33% of patients.

Table 3. Assessment of EGFR mutation detection using NGS and cobas® EGFR mutation v2 assay.
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3.6. Prognostic Value of Systemic Inflammatory Markers in EGFR Patients

Previous studies in cancer have suggested the importance of the baseline NLR and
LDH levels in determining outcomes. Furthermore, the systemic inflammatory status has
been reported to correlate with a worse prognosis in patients with lung cancer treated with
chemotherapy and, more recently, targeted therapies [33]. We performed an exploratory
analysis by evaluating inflammatory markers and survival outcomes in our study cohort.
While the NLR is a well-known prognostic factor in NSCLC, the dNLR includes mono-
cytes and other granulocyte subpopulations and may therefore be of more relevance as a
prognostic indicator. Correlations between peripheral blood inflammatory markers (neu-
trophils, WCC, LDH, CTCs, NLR and dNLR) were examined in both cohorts at baseline
and in combined cohorts at 3 and 6 months. At baseline, significant positive correlations
were found between LDH vs. WBCs (p = 0.02119), CTCs vs. WBCs (p = 7.33 × 10−5)
and CTCs vs. LDH (p = 0.001) in cohort 1 (Figure 6A). Similarly, in cohort 2 (Figure 6B),
significant positive correlations were found between LDH vs. WBCs (p = 0.003), NLR vs.
WBCs (p = 0.0005) and NLR vs. LDH (p = 6.83 × 10−14). Of interest, highly significant
correlations were observed across all inflammatory markers examined at baseline, 3 months
and 6 months (Figure S2).

The prognostic significance of the systemic inflammatory markers, NLR and dNLR at
baseline, 3 and 6 months was examined. When both cohorts were combined at baseline,
high NLR (Figure 7A) (p = 0.04) and dNLR (Figure 7B) (p = 0.05), above the median cut-off
values of ≥5.37 and ≥3, respectively, were significantly associated with a shorter time to
progression. No differences were observed in overall survival for NLR (p = 0.642) or dNLR
(p = 0.352). At 3 months, and in contrast to that observed for NLR and dNLR at baseline,
high NLR (Figure 7C) (p = 0.024) and dNLR (Figure 7D) (p = 0.0143) above the median cut-off
values of ≥3.42 and ≥2.28, respectively, were significantly associated with a worse survival
outcome. No differences were observed in time to progression for NLR (p = 0.618) or dNLR
(p = 0.507). At 6 months, while poor survival outcomes were significantly associated with a
high NLR (p = 0.014) (Figure 7E), there was a trend towards significance in patients with
a high dNLR and worse survival outcome (p = 0.0534) (Figure 7F). Median cut-off values
for NLR and dNLR at 6 months were ≥4.64 and ≥2.17, respectively. When both NLR
and dNLR were correlated with each cohort independently based on time to progression
and overall survival, a trend towards a shorter time to progression was observed for a
high dNLR (p = 0.097) (Figure S3B) at 3 months compared to baseline levels (p = 0.665)
(Figure S3A), with little or no correlations observed in terms of overall survival at baseline
(Figure S3C) or 3 months (Figure S3D). No significant correlations were observed between
high NLR and time to progression or survival when examined at baseline and at 3 months.

The metabolic and proliferation biomarker, LDH, was examined at baseline (Figure 8A)
and at 3 months (Figure 8B). High LDH (IU/L) levels above the median cut-off value of
≥220.5 were significantly associated with a shorter time to disease progression when
examined across cohorts at 3 months (p = 0.0301) relative to those observed at baseline
(p = 0.133). Median cut-off value for LDH at 3 months was ≥229. There were no significant
correlations between LDH levels and time to progression (Figure S4A) or overall survival
(Figure S4B) when cohorts were analysed independently at baseline. Automated white
cell counts were recorded for all EGFR patients at baseline and at 3 months, and median
cut-off values of ≥9.29 and ≥6.11 were determined, respectively. When combined cohorts
were examined, WCC at baseline (Figure 9A) had no prognostic value in relation to time to
progression (p = 0.167) or overall survival (p = 0.317). Similar findings were observed at
3 months (Figure 9B). When both cohorts were stratified and examined independently as
cohort 1 and cohort 2, those in cohort 2 with a high WCC at 3 months had a significantly
shorter time to disease progression (p = 0.0233) relative to baseline counts (p = 0.774). There
were no differences in survival outcomes and WCC when examined at baseline (p = 0.317)
and at 3 months (p = 0.521) (Figure S5).
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Figure 6. Correlations between systemic inflammatory markers and CTCs. At baseline, correlations
between peripheral blood inflammatory markers (WBCs, LDH, NLR, dNLR, CTCs) were examined
in cohort 1 (A) and cohort 2 (B). Scatter plots and Pearson’s correlation coefficients show correlations
between continuous blood biomarkers (* p < 0.05, ** p < 0.01, *** p < 0.001).
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Figure 7. Cont.
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Figure 7. Prognostic significance of the systemic inflammatory markers NLR and dNLR. Systemic
inflammatory markers (NLR and dNLR) were correlated with time to progression and overall survival
at baseline (A,B), 3 months (C,D) and 6 months (E,F). The median cut-offs for NLR and dNLR at each
of the three time-points were ≥5.37 and ≥3, ≥3.42 and ≥2.28, and ≥4.64 and ≥2.17, respectively.
Univariate Cox proportional hazards analysis of time to progression and overall survival was used
and Kaplan Meier survival plots represented (* p < 0.05).

Figure 8. Cont.
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Figure 8. LDH as a prognostic biomarker of disease progression. Relative to LDH levels at baseline
(A), high LDH levels above the median cut off (≥220.5) were significantly associated with a shorter
time to disease progression at 3 months (B). The median cut-off for LDH at baseline was ≥229.
Univariate Cox proportional hazards analysis of time to progression was used and Kaplan Meier
survival plots represented (* p < 0.05).

Figure 9. Cont.
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Figure 9. Prognostic significance of WCC in different cohorts. Automated white cell counts were
recorded for EGFR patients. Combined cohorts in addition to each cohort alone were examined
at baseline and at 3 months for the prognostic significance of white cell counts at baseline and
at 3 months, using median cut-off values of ≥9.29 and ≥6.11, respectively. Combined WCC at
baseline (A) and at 3 months (B), had no prognostic significance on time to progression or overall
survival. When stratified into respective cohorts (1 and 2), patients in cohort 2 with high WCC had a
significantly shorter time to disease progression (C,D). Univariate Cox proportional hazards analysis
of time to progression was used and Kaplan Meier survival plots represented (* p < 0.05).

4. Discussion

Recent advances in technologies have allowed for the development of novel plasma
genotyping assays for detecting targetable alterations in plasma-derived cell-free DNA
using non-invasive strategies, thereby avoiding the inherent risks associated with tradi-
tional tissue genotyping [34]. EGFR mutations identified in cfDNA isolated from blood
have been shown to predict response to the first-generation EGFR TKIs gefitinib and er-
lotinib [35]. The semi-quantitative cobas® EGFR mutation test is one of few FDA-approved
plasma genotyping assays currently available. In a previously reported exploratory anal-
ysis, two EGFR mutation tests were used to examine matched tissue and blood biopsies
from three Asian studies (ENSURE, FASTACT-2, ASPIRATION) using first-line erlotinib
with similar intent-to-treat populations [36] to inform the clinical utility of EGFR mutation
testing in blood cfDNA using the cobas® EGFR mutation test v2. EGFR mutation testing
using blood or liquid biopsy demonstrated high specificity and sensitivity with potential
utility in the clinical setting that could be used to complement current tissue-based di-
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agnostic approaches. Based on a retrospective analysis of plasma genotyping, the assay
has been approved for the detection of EGFR exon 20 p.T790M in patients enrolled on the
AURA and AURA2 trials of osimertinib [37]. In the current study, and in collaboration
with Roche Molecular Diagnostics, the cobas® EGFR mutation test (v2) was used for the
detection of EGFR sensitizing mutations and the emergence of EGFR exon 20 p.T790M in
serial liquid biopsies from patients with EGFR-mutated NSCLC currently receiving EGFR
TKIs (cohort 1) or in newly diagnosed treated-naïve patients (cohort 2). Plasma geno-
typing using the cobas® test, for the most part, identified the classical EGFR-sensitizing
mutations—namely, exon 19 deletions and L858R mutations—in concordance with those
identified in the original tissue biopsy. Over the 2 year period of this study, the emer-
gence of EGFR exon 20 p.T790M was detected in 57% of patients during treatment with
second-generation EGFR TKIs. This is in agreement with rates reported in the literature
where EGFR exon 20 p.T790M accounted for 50–60% of those with acquired resistance to
gefitinib or erlotinib [38]. While exon 19 deletions and exon 21 L858R substitutions account
for approximately 90% of EGFR mutations in NSCLC, patients with these mutations have
longer progression-free survival when treated with TKIs compared with chemotherapy. In
a literature-based pooled analysis, data from 25 studies involving 1770 patients examined
the prevalence of EGFR exon 20 p.T790M upon acquired resistance to EGFR-TKIs between
exon 19 deletions and L858R mutations [39]. Post-resistance EGFR exon 20 p.T790M was
more frequent in those with exon 19 deletions compared to those with L858R mutations
(53% vs. 36%, respectively; OR 1.87; p < 0.001) [40]. In the present study, 69% of patients
harbouring an exon 19 deletion in their tumor developed EGFR exon 20 p.T790M, while in
those with an L858R mutation, 50% had a detectable mutation. To elucidate if this observed
increase in EGFR exon 20 p.T790M in patients harbouring exon 19 deletions is related to
decreased sensitivity to EGFR TKIs, requires further investigation.

The exon 21 L861Q mutation was detected in one patient receiving EGFR TKI therapy.
This mutation is the second most frequent uncommon mutation, accounts for approxi-
mately 2% of EGFR-mutated mutations and, in some cases, can be compounded with
other mutations [41]. This patient progressed within 9 months of EGFR TKI therapy. In
preclinical trials, low efficacy or complete resistance of the L861Q mutation to EGFR-TKIs
has been demonstrated, suggesting a poor prognostic outcome. Moderate responses in
patients harbouring the EGFR L861Q mutation have been reported by Yang et al. [42],
demonstrating high activity of the EGFR TKI, afatinib, with an overall response rate (ORR)
of 56.3%, median PFS of 8.2 months and median OS of 17.1 months. During the collection of
serial liquid biopsies over the course of this study, a comparator analysis of EGFR mutations
detected using cfDNA isolated from different blood collections tubes was carried out in
parallel. At each three month time-point, liquid biopsy was obtained in standard K2EDTA
blood tubes and cell-free DNA collection tubes (Roche) containing a proprietary solution
to prevent cell lysis, thereby enabling the detection of plasma-derived cfDNA up to 72 h
following blood withdrawal. No significant differences were observed across the different
blood collection tubes in the detection of either EGFR-sensitizing mutations or EGFR exon
20 p.T790M. The use of cell-free blood collection tubes may, however, provide a more
appropriate carrier for the collection, stabilization and prolonged transportation of whole
blood specimens for cfDNA analysis by preserving nucleated cells during transit and may
be used over standard EDTA blood tubes in such cases.

CTCs are characteristically shed from primary or metastatic tumors into the blood
circulation and as such have been proposed as a potential marker of response to therapy
in several tumor types [43–45], including NSCLC [46]. We prospectively evaluated the
prognostic value of CTCs from liquid biopsy collected every three months until the end
of the study at two years. CTC counts above that of the median cut-off value, predicted
a worse outcome with shorter progression-free survival. While this did not appear to be
significant in cohort 1 (having already started EGFR TKI therapy at the time of consent),
our data suggest that CTC counts were an independent prognostic factor in EGFR TKI
treatment-naïve patients (cohort 2). Those with high CTC counts had a reduced progression-
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free survival. These findings suggest that changes in CTC counts may be associated with
therapeutic response and may be used to monitor patients during treatment with EGFR
TKIs. Previous studies have reported the progressive monitoring and predictive value
of CTCs in EGFR-mutated NSCLC treated with first-line EGFR TKIs [47]. Compared to
those with high CTC counts at baseline, patients with low CTC counts had a markedly
longer progression-free survival (hazard ratio = 0.48; p < 0.001) and overall survival (hazard
ratio = 0.52; p = 0.002). Others have shown that baseline CTC counts were an independent
predictive factor of progression-free survival and overall survival in patients with NSCLC
treated with chemotherapy [48]. In a recent phase II study investigating the correlation
between the efficacy of EGFR-TKIs and CTC levels in patients with advanced NSCLC, low
CTC counts were associated with a significantly better objective response rate and longer
progression-free survival [49].

The use of NGS has permitted the parallel sequencing of small DNA fragments for
testing a wide range of mutational gene panels [50] and is now recognized as an acceptable
sequencing method for mutational testing in lung cancer. Combining liquid biopsy with
NGS offers the potential to comprehensively profile tumors for specific genomic alterations,
while avoiding invasive tissue biopsies. We assessed the EGFR mutation profile of patients
using targeted NGS and real-time PCR (cobas® EGFR mutation test v2) of liquid biopsy and
how these platforms compared to standard tissue biopsy (NGS). Liquid biopsy (cfDNA) was
used to examine the EGFR mutation status in a small cohort, comparing the qPCR-based
cobas® test to the NGS Oncomine™ lung panel. The former platform detected significantly
more EGFR exon 20 p.T790M, all of which co-occurred with their original EGFR-sensitizing
mutations. Of interest, while EGFR exon 20 p.T790M mutations were found in liquid
biopsy using both NGS platforms, no resistance mutation was detected by NGS analysis in
the corresponding lung tumor tissue at diagnosis. Tissue and blood samples from these
patients were not acquired on the same day. This must be considered when interpreting
these differences in EGFR exon 20 p.T790M detection between liquid and tissue biopsies.
This, however, highlights the importance of the follow-up and monitoring of patients using
liquid biopsy, which is not otherwise possible with tissue. While cfDNA constitutes a small
fraction of the total cell DNA, the absence of EGFR exon 20 p.T790M detection in tissue
biopsies may reflect intratumoral heterogeneity, in comparison to liquid biopsy from the
same patient, where the shedding of tumor DNA may account for the higher numbers
of EGFR exon 20 p.T790M mutations detected. It is well established that intratumoral
heterogeneity inherently limits the accuracy of a tissue biopsy and capturing a snapshot of
the mutational status of a tumor. As such, this can give rise to large variability in results
from different sites of biopsy [51]. Alternatively, this may simply be due the infrequency
of de novo EGFR exon 20 p.T790M. In our analyses, where plasma was collected after the
initial tumor biopsy taken as part of routine clinical diagnostics, the discordance observed
between the liquid biopsy vs tissue biopsy may be due to tumor evolution within this
time period, which in turn may result in altered cfDNA levels in the blood, but not seen in
tissues [52]. This timing of sample collection is, however, a limitation of the current study.
In a recent systematic review by Esagian et al. [53], a comparison of liquid and tissue-based
biopsy analyses by targeted NGS was examined in advanced NSCLC. The authors reported
that targeted NGS using liquid biopsy fell short in detecting mutations compared to that
using tissue biopsy in NSCLC. Based on these data, the application of NGS in the context
of liquid biopsy was unable to substitute a tissue biopsy diagnosis. However, the authors
suggested that in the case of EGFR testing, their data supported the use of liquid biopsy as a
useful tool to complement tissue biopsy in specific clinical settings where tissue sampling or
otherwise may be inadequate. The use of different polymerase chain reaction (PCR)-based
methodologies, such as allele-specific PCR and droplet digital PCR, have also been studied
using liquid biopsy to assess prognosis, treatment response and the emergence of resistance
in advanced disease, in addition to comparing results derived from blood plasma to those
obtained from tissue biopsy [54,55]. Using a targeted EGFR panel offers a cheaper approach
with a more rapid turnaround time than NGS and furthermore requires less technical
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expertise. While it offers less output in terms of multiple genomic alterations, the technique
is of value in guiding treatment with EGFR TKIs, particularly with osimertinib, based on
the presence of EGFR exon 20 p.T790M [56].

Systemic inflammation is now recognized as a mechanism of immune resistance in
cancer. It has been shown to promote cancer growth and metastasis through its activation
of oncogenic signalling pathways [57]. Furthermore, a peripheral pro-inflammatory status
has been associated with worse outcomes, particularly in patients with early-stage lung
cancer [58] and in advanced stage disease, where a negative impact of this inflammatory
environment has been reported during treatment with platinum chemotherapy and targeted
therapies [59,60]. Peripheral blood markers such as absolute neutrophil count and platelet
counts, circulating white blood cells and LDH levels have been studied as inflammatory
biomarkers in cancer. The NLR and dNLR have recently been reported as a measure of the
inflammatory status in melanoma [30] and NSCLC [29] treated with immune checkpoint
inhibitors (ICIs). In the latter study, Mezquita et al. reported the use of the lung immune
prognostic index (LIPI) based on a multicentre retrospective study. This comprised of
a test (n = 161) and validation set (n = 305) of patients treated with programmed death
1/programmed death ligand 1(PD-1/PD-L1) inhibitors across eight different European
centres. The study also included a control cohort (n = 162) treated with chemotherapy only.
This composite index was based on a dNLR of greater than 3 and an LDH level higher than
the upper limit of normal which were then used to stratify patients into three risk groups:
good, intermediate and poor. The authors showed that pre-treatment LIPI correlated with
worse outcomes for patients with NSCLC treated with ICIs, but not for chemotherapy.
Elevated dNLR was found in 35% of NSCLC patients (n = 466) compared to 22.5% reported
by Ferruci et al. [30] in melanoma patients (n = 720) treated with ipilimumab. Other
studies [61] have shown that LIPI is an independent prognostic factor for chemotherapy in
wild-type EGFR patients and for EGFR-TKI therapy in EGFR-mutated subsets, but not for
squamous cell carcinoma. While LIPI was not possible in our study due to limited patient
numbers, these findings suggest that LIPI may be a useful biomarker for chemotherapy
and EGFR-TKI therapy in specific subsets of NSCLC and highlights the need to evaluate
such biomarkers based on histological and genetic subtypes. In the current EGFR study,
pre-treatment dNLR levels (>3) were elevated in 60% of newly diagnosed patients. After
3 months of treatment with EGFR TKI therapy, dNLR levels remained increased in only 8%,
while at 6 months, this systemic pro-inflammatory state was shown to be further elevated
in 30% of the study cohort. Furthermore, these elevated increases in dNLR were mirrored
by a decreased progression-free survival and shorter overall survival observed in this EGFR
patient population.

Another classic inflammatory marker, LDH, has also been widely studied in cancer and
has been found to be associated with shorter survival in lung cancer [62,63]. In melanoma,
Diem et al. [64] reported the use of LDH in predicting early response or disease progression
in patients with advanced melanoma during treatment with anti-PD1 therapy. Patients
with a relative increase in LDH of >10% from baseline had a significantly shorter overall
survival compared to those with a change of ≤10% (4.3 vs. 15.7 months). When combined,
we observed a significantly reduced progression-free survival in EGFR patients based on
LDH values above the median cut-off value at 3 months. While there was a similar trend
observed at baseline for progression-free survival and overall survival, these were not
statistically significant.

One of the main limitations of the current study is the small number of patients
included in this prospective, longitudinal analysis of patients with EGFR-mutated NSCLC.
This can be attributed to (a) the low prevalence of EGFR mutations (~11%) in Irish patients
and (b) the short time frame for completion of the study (2 years). We attempted to
address this by extending recruitment to medical oncology departments from three different
hospitals in Ireland to increase patient numbers within the study period. Building on the
results described for this limited number of patients, future studies are warranted in a
larger cohort of EGFR patients and may require cross-border/international collaborations



Diagnostics 2022, 12, 2360 24 of 27

to further increase the statistical power for this oncogene-driven subset of NSCLC patients.
Larger studies are needed to identify optimal threshold cut-off values for CTCs and immune
markers examined in the current study.

5. Conclusions

In the current study, we show that longitudinal monitoring using plasma-derived
cfDNA may be used to detect EGFR sensitizing mutations and monitor the emergence of
EGFR resistance mutations in patients with a confirmed histological diagnosis of NSCLC.
Targeted NGS analysis using cfDNA has significant potential as a highly accurate diagnostic
platform for detecting the presence of actionable mutations in lung cancer and for patient
stratification as part of clinical trials. Our data also suggest that CTCs may be used
as a surrogate marker to monitor treatment response. Furthermore, peripheral blood
inflammatory markers hold potential as prognostic markers in NSCLC and may also be
used for stratification or enrichment. Moreover, they have the potential to provide valuable
information on the prognosis prior to and during treatment and in the risk–benefit ratio
that is required when deciding on the best treatment approach. While this study was
carried out in a cohort of patients with advanced disease, a future role for liquid biopsy
in the early-stage setting is warranted in light of the recent FDA approval of osimertinib
as an adjuvant treatment in surgically resected patients with exon 19 deletions or exon
21 L858R mutations.
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