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Summary
Background There is no simple model to screen for Alzheimer’s disease, partly because the diagnosis of Alzheimer’s 
disease itself is complex—typically involving expensive and sometimes invasive tests not commonly available outside 
highly specialised clinical settings. We aimed to develop a deep learning algorithm that could use retinal photographs 
alone, which is the most common method of non-invasive imaging the retina to detect Alzheimer’s disease-dementia.

Methods In this retrospective, multicentre case-control study, we trained, validated, and tested a deep learning 
algorithm to detect Alzheimer’s disease-dementia from retinal photographs using retrospectively collected data from 
11 studies that recruited patients with Alzheimer’s disease-dementia and people without disease from different 
countries. Our main aim was to develop a bilateral model to detect Alzheimer’s disease-dementia from retinal 
photographs alone. We designed and internally validated the bilateral deep learning model using retinal photographs 
from six studies. We used the EfficientNet-b2 network as the backbone of the model to extract features from the 
images. Integrated features from four retinal photographs (optic nerve head-centred and macula-centred fields from 
both eyes) for each individual were used to develop supervised deep learning models and equip the network with 
unsupervised domain adaptation technique, to address dataset discrepancy between the different studies. We tested 
the trained model using five other studies, three of which used PET as a biomarker of significant amyloid β burden 
(testing the deep learning model between amyloid β positive vs amyloid β negative).

Findings 12 949 retinal photographs from 648 patients with Alzheimer’s disease and 3240 people without the disease 
were used to train, validate, and test the deep learning model. In the internal validation dataset, the deep learning 
model had 83·6% (SD 2·5) accuracy, 93·2% (SD 2·2) sensitivity, 82·0% (SD 3·1) specificity, and an area under the 
receiver operating characteristic curve (AUROC) of 0·93 (0·01) for detecting Alzheimer’s disease-dementia. In the 
testing datasets, the bilateral deep learning model had accuracies ranging from 79·6% (SD 15·5) to 92·1% (11·4) and 
AUROCs ranging from 0·73 (SD 0·24) to 0·91 (0·10). In the datasets with data on PET, the model was able to 
differentiate between participants who were amyloid β positive and those who were amyloid β negative: accuracies 
ranged from 80·6 (SD 13·4%) to 89·3 (13·7%) and AUROC ranged from 0·68 (SD 0·24) to 0·86 (0·16). In subgroup 
analyses, the discriminative performance of the model was improved in patients with eye disease (accuracy 89·6% 
[SD 12·5%]) versus those without eye disease (71·7% [11·6%]) and patients with diabetes (81·9% [SD 20·3%]) versus 
those without the disease (72·4% [11·7%]).

Interpretation A retinal photograph-based deep learning algorithm can detect Alzheimer’s disease with good accuracy, 
showing its potential for screening Alzheimer’s disease in a community setting.

Funding BrightFocus Foundation.

Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the  CC BY-NC-ND  
4.0 license.

Introduction 
Alzheimer’s disease, the most common form of 
dementia, is a global public health problem.1 Diagnosis 
of Alzheimer’s disease is complex and typically involves 
expensive and sometimes invasive tests not commonly 
available outside of highly specialised clinical settings. 
For example, biomarkers of amyloid β and phosphorylated 
tau measured through cerebrospinal fluid assessments, 

PET scans, and plasma assays are helpful for Alzheimer’s 
disease diagnosis, but these tests are not suitable for 
screening possible Alzheimer’s disease in primary care 
or community settings.2 Of note, because Alzheimer’s 
disease treatment is available,3 simple, accessible, and 
sensitive community-based screening tests would 
substantially improve population-based strategies to 
manage Alzheimer’s disease.

http://crossmark.crossref.org/dialog/?doi=10.1016/S2589-7500(22)00169-8&domain=pdf
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The retina, a neurosensory layered tissue lining the 
back of the eye and directly connected to the brain via the 
optic nerve, has long been considered a platform to study 
disorders in the CNS because it is an accessible extension 
of the brain in terms of embryology, anatomy, and 
physiology.4,5 Retinal changes in Alzheimer’s disease 
have been shown in post-mortem histopathological 
studies.6,7 This concept is supported by clinical studies 
showing a range of retinal changes in patients with 
Alzheimer’s disease, such as changes in the retinal 
vasculature (eg, vessel calibre and retinopathy signs), the 
optic nerve, and the retinal nerve fibre layer.5,8 These 
features can be non-invasively imaged using digital 
retinal photography, which is now widely available at a 
low cost in primary care optometry and community 
settings.

Artificial intelligence (AI), particularly deep learning, 
allows algorithms to extract both known and unknown 
features from images for accurate detection of a 
condition, without the need for manual identification of 
specific features. Deep learning has been applied to 
retinal photographs for detecting various ophthalmic 
diseases (such as diabetic retinopathy,9 optic disc 
papilledema,10 glaucoma,11 and age-related macular 
degeneration12). Furthermore, deep learning approaches 
can also detect systemic diseases based on retinal 
photographs (eg, systemic biomarkers,13 cardiovascular 

disease,14 diabetes,15 chronic kidney disease,16 and hepato-
biliary diseases17). However, the role of deep learning 
approaches in detecting Alzheimer’s disease from retinal 
photographs has yet to be determined.

We aimed to develop a novel deep learning algorithm 
for automated detection of Alzheimer’s disease-dementia 
from retinal photographs alone to determine its possible 
use for Alzheimer’s disease screening. To address this, 
we trained, validated, and tested the deep learning 
models using retinal photographs from 11 clinical 
studies. We also tested the ability of our deep learning 
model to differentiate patients who were amyloid β 
positive from those who were amyloid β negative.

Methods 
Study design and participants 
In this retrospective, multicentre case-control study, we 
trained, validated, and tested a deep learning model for 
detecting Alzheimer’s disease from retrospectively 
collected retinal photographs from 648 patients with 
Alzheimer’s disease and 3240 patients who did not have 
the disease. Our study included 11 clinical studies and 
was done at eight centres in four countries (Hong Kong 
Special Administrative Region, China, Singapore, the 
UK, and the USA; appendix pp 3–7). The inclusion and 
exclusion criteria for patients in each of the 11 studies are 
reported in the appendix (pp 3–7). For all participants, we 

Research in context

Evidence before this study
We searched PubMed for studies of deep learning-based 
Alzheimer’s disease detection from retinal photographs 
published from the inception of the database to Jan 31, 2022. 
We used the terms “deep learning” OR “machine learning” AND 
“Alzheimer’s disease” AND “retinal photographs”. The references 
of identified studies were also reviewed. We found a study that 
developed a deep learning system to predict Alzheimer’s disease 
using images and measurements from multiple ocular imaging 
modalities (optical coherence tomography, optical coherence 
tomography-angiography, ultra-widefield retinal photography, 
and retinal autofluorescence) and patient data. Another study 
proposed a machine learning model to classify Alzheimer’s 
disease from retinal vasculature. These models were trained with 
a small amount of data and without external testing. Deep 
learning models trained with large sample sizes of retinal 
photographs and validated with testing datasets from different 
populations and testing using biomarkers of Alzheimer’s disease 
are warranted.

Added value of this study
We trained, validated, and tested a deep learning algorithm to 
detect Alzheimer’s disease based on retinal photographs using 
data from 648 patients with Alzheimer’s disease and 
3240 individuals without the disease from 11 multicentre 
clinical studies in different countries. To the best of our 

knowledge, our study included the largest sample size and the 
most comprehensive metadata of patients with Alzheimer’s 
disease for deep learning model development. We used 
advanced deep learning techniques (eg, unsupervised domain 
adaptation and feature fusion) to address two challenges: 
(1) data distribution discrepancy between training and 
validation and testing datasets and (2) individuals who have 
multiple retinal photographs from each visit, including optic 
nerve head-centred and macula-centred images of both eyes.

We also proposed deep learning models with different 
architecture for a practical application. For example, we trained 
a unilateral model that can provide an Alzheimer’s disease 
detection outcome when only photographs of one eye are 
available, covering a common scenario in the real world. In 
addition to Alzheimer’s disease-dementia detection, we have 
tested our model in multicentre datasets from different regions 
and countries (Hong Kong Special Administrative Region, 
China, Singapore, and the USA) with biomarkers of amyloid β.

Implications of all the available evidence
This is a proof-of-concept study to test a retinal photograph-
based deep learning algorithm for Alzheimer’s disease 
detection. We believe that after validation, testing, and 
integration with deep learning pipeline, our model can be 
implemented for Alzheimer’s disease screening, leveraging 
community eye-care infrastructure.

See Online for appendix
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used four retinal photographs (optic nerve head-centred 
and macula-centred images from both eyes) for the 
model development.

This multicentre study was approved by the human 
ethics boards of the Joint Chinese University of Hong 
Kong-New Territories East Cluster Clinical Research 
Ethics Committee, Hong Kong Special Administrative 
Region, China, and local research ethics committees in 
each centre. The 11 studies used to generate the test 
populations were all done according to the Declaration of 
Helsinki, with written informed consent obtained from 
each participant or their guardians. The STARD guideline 
was used for reporting in the current study.

Procedures 
The main aim of this study was to develop a bilateral 
deep learning model that outputted participant-level 
detection results (ie, Alzheimer’s disease-dementia or no 
dementia) accounting for Alzheimer’s disease features 
from optic nerve head-centred and macula-centred 
images from both eyes. We used retinal photographs 
from six studies with labels of either Alzheimer’s disease-
dementia or no dementia as primary datasets (ie, source 
domain; primary 1–6; appendix pp 3–5) for the 
development and internal validation of the deep learning 
model. We tested the trained deep learning models with 
five non-overlapping studies that had labels of 
Alzheimer’s disease-dementia or no dementia (ie, target 
domain; testing datasets 1–5; appendix pp 5–7). The 
image quality was labelled by three trained human 
graders (ARR, VTTC, and KS). Only gradable retinal 
photographs were used. If more than 25% of the 
peripheral area of the retina was unobservable due to 
artifacts, including the presence of foreign objects, 
out-of-focus imaging, blurring, and extreme illumination 
conditions and if the centre region of the retina had 
significant artifacts that would affect analysis, the 
photograph was considered ungradable. The inter-grader 
reliability was high, with Cohen’s κ coefficients ranging 
from 0·868 to 0·925. If grader 2 (VTTC) and grader 3 
(KS) could not make a decision as to whether an image 
should be included (eg, retinal photographs with 
borderline quality), the senior grader (grader 1 [ARR]) 
made final decisions.18 The labelling of Alzheimer’s 
disease-dementia in all studies followed the Diagnostic 
and Statistical Manual of Mental Disorders, 4th edition, 
criteria for dementia syndrome (Alzheimer’s type) and 
National Institute of Neurological and Communicative 
Disorders and Stroke and the Alzheimer’s Disease and 
Related Disorders Association criteria for probable or 
possible Alzheimer’s disease. Retinal photographs were 
labelled as no dementia when the participant had no 
objective cognitive impairment evident in the 
neuropsychological assessments and no history of 
neurodegenerative diseases.

Three testing sets (testing set 1–3; appendix p 6) also 
included data from amyloid-PET scan examinations 

following intravenous 11C-Pittsburgh compound B to 
quantify amyloid β deposition from a series of brain 
regions. The retinal photographs with amyloid-PET scan 
available were additionally labelled as either amyloid β 
positive or amyloid β negative based solely on the 
standardised uptake value ratio with reference to the 
locally validated cutoff value, regardless of their clinical 
diagnosis. The details of the primary and testing datasets 
are described in the appendix (pp 3–7).

Because the labelling input and classification output 
were dependent on the individual participant rather than 
the image, the deep learning model was designed to 
integrate features of Alzheimer’s disease from four retinal 
photographs from each participant (ie, both optic nerve 
head-centred and macula-centred fields from both eyes). 
The datasets were split at a participant level to prevent 
information leakage and performance over estimation. 
Our method consisted of four phases. In the first phase, 
we designed a basic model, using EfficientNet-b2,19 as the 
backbone for feature extractor, which is based on only one 
single retinal photograph for the detection of Alzheimer’s 
disease-dementia (appendix p 17). We then proposed a 
bilateral model based on four retinal photographs, which 
learned Alzheimer’s disease-related features from optic 
nerve head-centred and macula-centred retinal photo-
graphs from both eyes (figure A). Specifically, we designed 
an adaptative feature fusion technique to integrate the 
extracted information from multiple retinal photographs 
from both eyes. The bilateral model (main aim of this 
study) outputted participant-level detection results (ie, 
Alzheimer’s disease-dementia or no dementia) accounting 
for Alzheimer’s disease features from both eyes. If 
multiple paired images were available for the same 
individual, we sorted the predictive values for all the 
paired images and used the image with the median value 
for the final participant-level prediction. In the second 
phase, we developed a unilateral model for single eye 
analysis because individuals might have an ungradable 
retinal photograph from one eye (eg, due to severe 
cataract; figure B). In the third phase, we trained a hybrid 
model that could consider risk factors of Alzheimer’s 
disease (ie, age, gender, and presence or absence of 
hypertension and diabetes; figure C). Finally, we trained a 
risk factors alone model for Alzheimer’s disease prediction 
(appendix pp 23–25) for comparison with the bilateral 
model.

We used unsupervised domain adaptation with domain-
specific batch normalisation to address data heterogeneity 
and domain shift problems and to improve the model 
performance. Unsupervised domain adaptation is a type 
of learning framework that can transfer knowledge 
learned from a larger number of annotated training data 
in the source domains to target domains with unlabelled 
data only. Domain-specific batch normalisation is a 
building block for deep neural networks for which the 
source domain and the target domain datasets have their 
own separate batch normalisation layer for training and 
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We used domain-specific 
batch normalisation block for 

unsupervised domain 
adaptation. All the remaining 
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network. (A) The bilateral 
model feeds four retinal 

photographs, including optic 
nerve head-centred and 

macula-centred photographs 
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extraction of hyper-parameters. This design addressed 
characteristics specific to each domain that are not 
compatible within a single model while retaining domain-
invariant infor mation that is common to all domains. In 
brief, the labelled source domain dataset was first used 
for training in a supervised way to generate an unsuper-
vised domain adaption network. This unsupervised 
domain adaptation network was then used to generate 
pseudo-labels for unlabelled data in the target domain. 
The final classification network was subsequently trained 
with full supervision using labelled data from the source 
domain and pseudo-labelled data from the target 
domains. Through the fusion of the domain-independent 
and domain-dependent knowledge learning, the deep 
learning models could transfer discriminative features 
from the labelled source domain to the unlabelled target 
domain (ie, domain adaptation) and improve the 
classification performance on the target domain. Due to 
poor model transfer capability of the domain adaptation-
based method, we trained one model for each testing 
dataset to obtain the information, such as image style 
distribution of unlabelled testing datasets.

Furthermore, to better understand discriminative 
features between patients with Alzheimer’s disease-
dementia and participants without the disease, we used 
Gradient-weighted Class Activation Mapping (ie, heatmap) 
to visualise the features extracted from the last convo-
lutional layer. Details of the network architecture, training 
details, and objective functions were described in the 
appendix (pp 8–15).

Statistical analysis
We used the testing datasets to evaluate the model 
performance at a participant level on three aspects: 
clinically diagnosed Alzheimer’s disease-dementia 
versus no dementia, individuals who were amyloid β 
positive versus individuals who were amyloid β negative, 
and individuals who had clinically diagnosed Alzheimer’s 
disease-dementia and were amyloid β positive versus 
those who had no cognitive impairment and were 
amyloid β negative. Models were evaluated based on the 
following metrics from the five-fold cross validation: the 
area under the receiver operating characteristic curve 
(AUROC) and values for accuracy, sensitivity, and 
specificity for which the cutoff point was the largest 
Youden Index in each dataset.

In subgroup analyses, we combined the testing 
1–3 datasets and stratified individuals on the basis of the 
presence of eye disease from retinal photographs and 
diabetes diagnosis status to evaluate discriminative 
performance. The performance of the unilateral model 
was also compared between right eyes and left eyes.

Role of the funding source 
The funder had no role in study design, data collection, 
data analysis, data interpretation, writing of the report, 
and decision to submit the paper for publication.
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Results 
5598 retinal photographs from 648 individuals with 
Alzheimer’s disease and 7351 retinal photographs from 
3240 people without the disease were used to train, 
validate, and test the deep learning models. The 
characteristics of the primary training, internal 
validation, and testing datasets at a participant level are 
reported in table 1 and the appendix (pp 3–7, 21).

In the internal validation dataset, the bilateral model 
had 83·6% (SD 2·5) accuracy, 93·2% (SD 2·2) sensitivity, 
82·0% (SD 3·1) specificity, and an AUROC of 0·93 (0·01) 
for detection of Alzheimer’s disease-dementia. For 
differen tiation between patients with Alzheimer’s disease-
dementia and participants who did not have the disease, 
both bilateral and unilateral models had accuracies of 
more than 83% and AUROCs of more than 0·9 in internal 
validation (table 2). During testing, the bilateral model 
had accuracies ranging from 79·6% (SD 15·5) to 92·1% 
(11·4) and AUROCs ranging from 0·73 (SD 0·24) to 0·91 
(0·10; table 2). In the three testing datasets with known 
amyloid β status from PET, the bilateral model was able to 
differentiate between those who were amyloid β positive 
and those who were amyloid β negative with an accuracy 
ranging from 80·6% (SD 13·4) to 89·3% (13·7), and an 
AUROC ranging from 0·68 (SD 0·24) to 0·86 (0·16; 
table 2), which was similar to the model’s ability to 
differentiate between people who were clinically diagnosed 
with Alzheimer’s disease and were amyloid β positive 
from people without the disease and were amyloid β 
negative. Heatmaps differentiating true-positive and true-
negative examples are reported in the appendix (pp 19–20). 
The performance of the bilateral model was better than 
that of the unilateral model in the testing (table 2). The 
performance of the unilateral model was largely similar 
between right eyes and left eyes (appendix p 22).

In the subgroup analysis, the ability of the model to 
differentiate between people with Alzheimer’s disease-
dementia and those without the disease and those who 
were amyloid β positive from those who were amyloid β 
negative was improved in patients with concomitant eye 
disease (accuracy 89·6% [SD 12·5%]) versus those 
without eye disease (71·7% [11·6%]; table 3) and patients 
with diabetes (81·9% [SD 20·3%]) versus those without 
diabetes (72·4% [11·7%]). Of note, the model performance 
was maintained when risk factors of Alzheimer’s disease 
(ie, age, gender, and presence of hypertension and 
diabetes) were included in the model (hybrid model; 
appendix pp 23–25). Except for the testing set 5, which 
had a similar performance, the bilateral model had 
higher accuracy than the risk factors alone model 
(appendix pp 23–24).

Compared with the Hong Kong version of the Montreal 
Cognitive Assessment for Alzheimer’s disease-dementia 
detection in a community-based cohort, our bilateral 
model’s assessment of testing set 5 had higher sensitivity 
(100% vs 50%) and a higher AUROC (0·91 vs 0·75; 
appendix p 18).

Unsupervised domain adaptation with domain-specific 
batch normalisation was used in the testing datasets to 
address the issue of data heterogeneity and domain 
shift problems. After domain adaptation, the model 
performance was generally improved, suggesting that 
the model also learned discriminative features from the 
source domain for Alzheimer’s disease detection 
(appendix p 26).

Discussion 
In this study, we developed, validated, and tested a novel, 
retinal photograph-based deep learning algorithm to 
detect individuals with Alzheimer’s disease, using an 
unsupervised domain adaptation deep learning 
technique to improve its generalisability. Our deep 

Accuracy Sensitivity Specificity AUROC

Bilateral model

Alzheimer’s disease-dementia vs no dementia

Internal validation 83·6% (2·5) 93·2% (2·2) 82·0% (3·1) 0·93 (0·01)

Testing 1 79·6% (15·5) 72·0% (19·8) 100·0% (0·0) 0·77 (0·21)

Testing 2 89·3% (13·7) 91·7% (16·7) 90·0% (20·0) 0·73 (0·24)

Testing 3 85·0% (9·1) 93·3% (14·9) 93·3% (14·9) 0·74 (0·16)

Testing 4 92·1% (11·4) 95·0% (11·2) 93·3% (14·9) 0·88 (0·16)

Testing 5 91·7% (8·4) 100·0% (0·0) 90·9% (9·1) 0·91 (0·10)

Amyloid β positive vs amyloid β negative

Testing 1 80·6% (13·4) 75·4% (22·5) 92·0% (11·5) 0·68 (0·24)

Testing 2 89·3% (13·7) 90·0% (20·0) 93·8% (12·5) 0·86 (0·16)

Testing 3 85·4% (10·5) 86·7% (16·3) 100·0% (0·0) 0·80 (0·14)

Patients with Alzheimer’s disease-dementia who were amyloid β positive (clinically diagnosed cases only) vs 
patients with no cognitive impairment who are amyloid β

Testing 1 85·6% (10·9) 82·5% (23·6) 100·0% (0·0) 0·77 (0·21)

Testing 2 90·8% (10·7) 91·7% (16·7) 93·8% (12·5) 0·85 (0·17)

Testing 3 85·4% (17·2) 79·2% (25·0) 100·0% (0·0) 0·73 (0·21)

Unilateral model

Alzheimer’s disease-dementia vs no dementia

Internal validation 83·9% (3·4) 91·3% (4·9) 82·7% (4·8) 0·93 (0·01)

Testing 1 70·7% (3·1) 65·3% (7·1) 96·0% (8·9) 0·62 (0·07)

Testing 2 83·4% (8·1) 91·7% (16·7) 90·8% (10·7) 0·65 (0·15)

Testing 3 90·0% (9·1) 83·3% (23·6) 93·3% (14·9) 0·74 (0·27)

Testing 4 85·2% (9·5) 83·3% (23·6) 100·0% (0·0) 0·75 (0·19)

Testing 5 83·4% (23·5) 100·0% (0·0) 83·7% (18·0) 0·84 (0·18)

Amyloid β positive vs amyloid β negative

Testing 1 65·9% (9·5) 68·7% (17·4) 72·0% (24·0) 0·61 (0·15)

Testing 2 86·2% (11·7) 91·7% (16·7) 93·8% (12·5) 0·75 (0·18)

Testing 3 87·5% (15·9) 82·5% (23·6) 100·0% (0·0) 0·83 (0·24)

Patients with Alzheimer’s disease-dementia who were amyloid β positive (clinically diagnosed cases only) vs 
patients with no cognitive impairment who were amyloid β

Testing 1 75·4% (9·1) 71·8% (10·6) 96·0% (8·9) 0·64 (0·13)

Testing 2 84·5% (13·7) 91·7% (16·7) 93·8% (12·5) 0·75 (0·21)

Testing 3 94·2% (9·6) 90·1% (15·9) 100·0% (0·0) 0·91 (0·16)

Data are mean (SD). Five-fold cross-validation method was applied in each testing dataset. AUROC=area under the 
receiver operating characteristic curve. 

Table 2: The participant-level performance of the deep learning bilateral model and unilateral model in 
the internal validation and the testing datasets
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learning algorithm showed consistently accurate 
performance for differentiating between patients with 
Alzheimer’s disease-dementia and individuals with no 
dementia. In particular, the performance was similar for 
differentiating between people who were amyloid β 
positive from those who were amyloid β negative. In 
addition, our deep learning algorithm had good 
performance in the presence of concomitant eye diseases 
(eg, age-related macular degeneration), thus allowing 
screening in optometry and ophthalmology settings.

To the best of our knowledge, this is the first deep 
learning model to detect Alzheimer’s disease from 
retinal photographs alone. Wisely and colleagues20 
proposed a deep learning system to predict Alzheimer’s 
disease using images and measurements from multiple 
ocular imaging modalities (optical coherence tomo-
graphy, optical coherence tomography angiography, 
ultra-widefield retinal photography, and retinal auto-
fluorescence) and patient data. Although their results 
were promising and provided proof-of-concept data on 
using AI to interpret retinal images for detection of 
Alzheimer’s disease, their findings were based on a small 
sample of 159 individuals, of whom 36 (23%) had 
Alzheimer’s disease, and required multiple specialised 
imaging modalities, which might not be feasible in a 
primary care or community setting. By contrast, our 
algorithm could predict Alzheimer’s disease based on 
retinal photographs only, thus improving the efficiency 
and potential cost-effectiveness of the algorithm. Our 
algorithm was also developed with two advanced deep 
learning techniques: unsupervised domain adaptation 
and feature fusion. The use of the two techniques 
addresses two significant challenges: (1) data distribution 
discrepancy between training and validation and testing 
datasets, and (2) the integration from multiple optic 
nerve head-centred and macula-centred retinal 
photographs from both eyes. With this deep learning 
architecture, our algorithm could be transferrable to a 
new centre without developing a new deep learning 

model. Retrospective data can be collected from this 
specific centre for unsupervised domain adaptation, and 
the model can subsequently be refined to keep the deep 
learning model up to date.

To increase applicability, we intentionally included 
retinal photographs with concomitant eye disease in the 
training dataset because age-associated eye conditions 
(eg, age-related macular degeneration and glaucoma) are 
common in people older than 60 years. Meanwhile, 
excluding eyes with these conditions might also 
introduce selection bias because studies have shown the 
patients with Alzheimer’s disease are more likely to have 
age-associated macular degeneration and glaucoma.5,21,22 
Of note, our deep learning algorithm retained a robust 
ability to differentiate between people who had and did 
not have Alzheimer’s disease, even in the presence of 
concomitant eye diseases. These findings suggest that 
Alzheimer’s disease has unique retinal features that are 
distinguishable from other eye diseases. Furthermore, 
patients with type 2 diabetes are at higher risk of cognitive 
impairment.23 Our deep learning algorithm performed 
well without significant interference from concomitant 
diabetes, suggesting its similarity with deep learning-
based diabetic retinopathy screening.24 However, the 
performance of the model in participants without eye 
disease dropped. Although we do not have a definitive 
explanation for this observation, it is possible that an 
overlap in pathophysiological features shared between 
Alzheimer’s disease and eye diseases might enhance the 
identification of Alzheimer’s disease-associated features 
from retinal imaging, but validation is warranted.

We developed a supplementary unilateral model, which 
can estimate the risk of Alzheimer’s disease based on 
retinal photographs from a single eye. A unilateral model 
is essential for community screening of Alzheimer’s 
disease because retinal photograph of one eye might not 
be assessable due to media opacity (eg, cataract). Our 
results suggest that the unilateral model can also reliably 
predict Alzheimer’s disease-dementia based on unilateral 
retinal photographs.

Our proposed retinal photograph-based deep learning 
model provides a proof-of-concept solution to address the 
current gap in Alzheimer’s disease screening, in which 
under-diagnosis of dementia is highly prevalent.25 Early 
diagnosis of Alzheimer’s disease relies on a complex 
series of cognitive tests, clinical assessments, supportive 
evidence from neuroimaging (eg, PET), and cerebrospinal 
fluid biomarker evidence, with the definitive diagnosis 
only confirmed post mortem.26 Therefore, patients with 
Alzheimer’s disease are usually diagnosed late after the 
onset of debilitating dementia when there has already 
been extensive brain neurodegeneration that might not 
be amenable to any disease-modifying treatment.27 Our 
proposed retinal photograph-based deep learning model 
provides a simple, low-cost, low labour-dependent 
approach to identify potential Alzheimer’s disease-
dementia patients in community settings with reasonable 

Accuracy Sensitivity Specificity AUROC

Alzheimer’s disease-dementia vs no dementia

With eye disease 89·6% (12·5) 100·0% (0·0) 81·3% (23·9) 0·81 (0·16)

Without eye disease 71·7% (11·6) 71·0% (13·6) 78·6% (25·7) 0·60 (0·17)

With diabetes mellitus 81·9% (20·3) 87·5% (25·0) 87·5% (25·0) 0·71 (0·25)

Without diabetes mellitus 72·4% (11·7) 78·3% (18·5) 76·0% (25·1) 0·63 (0·20)

Amyloid β positive vs amyloid β negative

With eye disease 79·2% (19·1) 73·9% (24·2) 100·0% (0·0) 0·76 (0·22)

Without eye disease 74·5% (6·2)   67·3% (15·9) 87·1% (8·3) 0·67 (0·10)

With diabetes mellitus 81·9% (14·4) 77·5% (26·3) 100·0% (0·0) 0·70 (0·22)

Without diabetes mellitus 73·6% (10·1) 66·1% (12·1) 93·0% (6·5) 0·67 (0·10)

Data are mean (SD). Five-fold cross-validation method was applied in each testing dataset. AUROC=area under the 
receiver operating characteristic curve. 

Table 3: The participant-level performance of the deep learning-based model stratified by eye disease 
and diabetic mellitus in the testing datasets with amyloid-PET imaging
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accuracy and sensitivity. The identified patients can then 
be referred to and followed up at tertiary facilities with 
diagnostic evaluation and subsequent multidisciplinary 
managements. The detection of Alzheimer’s disease 
based on retinal photographs could also leverage existing 
community eye-care infrastructure (eg, optometry or 
primary care networks) that enables opportunistic 
Alzheimer’s disease screening during routine screening 
for common eye diseases, such as diabetic retinopathy 
and glaucoma. With advances in telemedicine and the 
increasing popularity of non-mydriatic digital retinal 
cameras and smartphone-based cameras, access to 
retinal photography is expected to increase. Because 
retinal photograph-based deep learning approaches 
could be used for screening Alzheimer’s disease-
dementia, future research might explore any increments 
in sensitivity and specificity when combining retinal 
photography with blood-based biomarkers, which have 
been shown to correlate with brain amyloid and tau 
burden—the upstream pathology of Alzheimer’s disease. 
In addition, identifying prodromal and preclinical 
Alzheimer’s disease and predicting progression to 
dementia in those with mild cognitive impairment would 
be very valuable. Exploration of retinal photograph-based 
deep learning model development in this direction would 
also be important for future clinical applications.

Strengths of this study include a diverse clinical sample, 
with datasets from multiethnic, multicountry cohorts and 
in different clinical settings. Our algorithm was also 
validated in five testing datasets, three of which included 
amyloid-PET scan. Furthermore, we used unsupervised 
domain adaptation with domain-specific batch normal-
isation to address data discrepancy from different datasets, 
which largely improved the proposed model’s general-
isability and its potential feasibility in other unseen 
clinical settings. After integration with prediagnosis 
assessment deep learning models,18 our model might be 
integrated into a comprehensive deep learning pipeline 
for Alzheimer’s disease screening in the community. 
Other AI models for detection of dementia from retinal 
imaging are under development,29 and future studies 
could compare our deep learning model with these.

Our study had some limitations. First, the overall size of 
our training dataset was relatively small compared with 
traditional deep learning studies, which typically require 
larger datasets including diverse populations.28 Moreover, 
our data might not be heterogeneous enough for 
developing as a screening tool. Nevertheless, few datasets 
are available with both retinal photographs and 
information on Alzheimer’s disease. Second, pathological 
studies suggest that clinical Alzheimer’s disease 
diagnostic sensitivity ranges between 70·9% and 87·3%, 
and specificity between 44·3% and 70·8%.29 Because the 
labelling of our training dataset was based on clinician-
derived diagnosis, the development of the deep learning 
algorithm might include retinal photographs from 
individuals incorrectly labelled as having Alzheimer’s 

disease. Nevertheless, we also tested our deep learning 
algorithm in datasets with PET imaging to mitigate this 
concern. Third, other inherent biases including selection 
bias, unbalanced training data, bias in human labelling, 
racial and ethnic bias, and unknown confounders 
(eg, myopia status) cannot be eliminated and evaluated in 
the present retrospective study design. Fourth, the 
performances across testing cohorts were slightly variable 
due to the differences in data distribution. For example, 
the testing 5 cohort, which only included three patients 
with Alzheimer’s disease and had a higher mean age than 
that of other testing datasets, might overestimate the 
model’s performance. Future testing of the model 
generalisability across diverse populations or settings and 
on retinal photographs acquired with different retinal 
cameras, and research on interpretability of the deep 
learning algorithms and their clinical implementation will 
be required. Fifth, substantial overlap between Alzheimer’s 
disease and cerebrovascular disease was expected because 
they commonly manifest as comorbidities due to shared 
risk factors. Nevertheless, the recruitment of patients with 
predominantly Alzheimer’s disease-dementia in our study 
rested on the clinical judgement of our neurologists 
according to their clinical experience, diagnostic criteria, 
and the best available evidence.

In conclusion, we developed, validated, and tested a 
retinal photograph-based deep learning algorithm for 
detecting Alzheimer’s disease-dementia. Our proof-of-
concept study provides a unique and generalisable model 
that could be used in community settings to screen for 
Alzheimer’s disease.
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